summaryrefslogtreecommitdiff
path: root/jpg/jcarith.c
diff options
context:
space:
mode:
authorJörg Frings-Fürst <debian@jff-webhosting.net>2015-05-01 16:13:57 +0200
committerJörg Frings-Fürst <debian@jff-webhosting.net>2015-05-01 16:13:57 +0200
commit094535c010320967639e8e86f974d878e80baa72 (patch)
treeefc3094b20355dcbeebb2c4ece4fcfc69bffedb5 /jpg/jcarith.c
parentc07d0c2d2f6f7b0eb6e92cc6204bf05037957e82 (diff)
Imported Upstream version 1.7.0upstream/1.7.0
Diffstat (limited to 'jpg/jcarith.c')
-rw-r--r--jpg/jcarith.c937
1 files changed, 0 insertions, 937 deletions
diff --git a/jpg/jcarith.c b/jpg/jcarith.c
deleted file mode 100644
index 033f670..0000000
--- a/jpg/jcarith.c
+++ /dev/null
@@ -1,937 +0,0 @@
-/*
- * jcarith.c
- *
- * Developed 1997-2011 by Guido Vollbeding.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains portable arithmetic entropy encoding routines for JPEG
- * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
- *
- * Both sequential and progressive modes are supported in this single module.
- *
- * Suspension is not currently supported in this module.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Expanded entropy encoder object for arithmetic encoding. */
-
-typedef struct {
- struct jpeg_entropy_encoder pub; /* public fields */
-
- INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */
- INT32 a; /* A register, normalized size of coding interval */
- INT32 sc; /* counter for stacked 0xFF values which might overflow */
- INT32 zc; /* counter for pending 0x00 output values which might *
- * be discarded at the end ("Pacman" termination) */
- int ct; /* bit shift counter, determines when next byte will be written */
- int buffer; /* buffer for most recent output byte != 0xFF */
-
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
- int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
-
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
- int next_restart_num; /* next restart number to write (0-7) */
-
- /* Pointers to statistics areas (these workspaces have image lifespan) */
- unsigned char * dc_stats[NUM_ARITH_TBLS];
- unsigned char * ac_stats[NUM_ARITH_TBLS];
-
- /* Statistics bin for coding with fixed probability 0.5 */
- unsigned char fixed_bin[4];
-} arith_entropy_encoder;
-
-typedef arith_entropy_encoder * arith_entropy_ptr;
-
-/* The following two definitions specify the allocation chunk size
- * for the statistics area.
- * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
- * 49 statistics bins for DC, and 245 statistics bins for AC coding.
- *
- * We use a compact representation with 1 byte per statistics bin,
- * thus the numbers directly represent byte sizes.
- * This 1 byte per statistics bin contains the meaning of the MPS
- * (more probable symbol) in the highest bit (mask 0x80), and the
- * index into the probability estimation state machine table
- * in the lower bits (mask 0x7F).
- */
-
-#define DC_STAT_BINS 64
-#define AC_STAT_BINS 256
-
-/* NOTE: Uncomment the following #define if you want to use the
- * given formula for calculating the AC conditioning parameter Kx
- * for spectral selection progressive coding in section G.1.3.2
- * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
- * Although the spec and P&M authors claim that this "has proven
- * to give good results for 8 bit precision samples", I'm not
- * convinced yet that this is really beneficial.
- * Early tests gave only very marginal compression enhancements
- * (a few - around 5 or so - bytes even for very large files),
- * which would turn out rather negative if we'd suppress the
- * DAC (Define Arithmetic Conditioning) marker segments for
- * the default parameters in the future.
- * Note that currently the marker writing module emits 12-byte
- * DAC segments for a full-component scan in a color image.
- * This is not worth worrying about IMHO. However, since the
- * spec defines the default values to be used if the tables
- * are omitted (unlike Huffman tables, which are required
- * anyway), one might optimize this behaviour in the future,
- * and then it would be disadvantageous to use custom tables if
- * they don't provide sufficient gain to exceed the DAC size.
- *
- * On the other hand, I'd consider it as a reasonable result
- * that the conditioning has no significant influence on the
- * compression performance. This means that the basic
- * statistical model is already rather stable.
- *
- * Thus, at the moment, we use the default conditioning values
- * anyway, and do not use the custom formula.
- *
-#define CALCULATE_SPECTRAL_CONDITIONING
- */
-
-/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
- * We assume that int right shift is unsigned if INT32 right shift is,
- * which should be safe.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define ISHIFT_TEMPS int ishift_temp;
-#define IRIGHT_SHIFT(x,shft) \
- ((ishift_temp = (x)) < 0 ? \
- (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
- (ishift_temp >> (shft)))
-#else
-#define ISHIFT_TEMPS
-#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-LOCAL(void)
-emit_byte (int val, j_compress_ptr cinfo)
-/* Write next output byte; we do not support suspension in this module. */
-{
- struct jpeg_destination_mgr * dest = cinfo->dest;
-
- *dest->next_output_byte++ = (JOCTET) val;
- if (--dest->free_in_buffer == 0)
- if (! (*dest->empty_output_buffer) (cinfo))
- ERREXIT(cinfo, JERR_CANT_SUSPEND);
-}
-
-
-/*
- * Finish up at the end of an arithmetic-compressed scan.
- */
-
-METHODDEF(void)
-finish_pass (j_compress_ptr cinfo)
-{
- arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
- INT32 temp;
-
- /* Section D.1.8: Termination of encoding */
-
- /* Find the e->c in the coding interval with the largest
- * number of trailing zero bits */
- if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
- e->c = temp + 0x8000L;
- else
- e->c = temp;
- /* Send remaining bytes to output */
- e->c <<= e->ct;
- if (e->c & 0xF8000000L) {
- /* One final overflow has to be handled */
- if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer + 1, cinfo);
- if (e->buffer + 1 == 0xFF)
- emit_byte(0x00, cinfo);
- }
- e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
- e->sc = 0;
- } else {
- if (e->buffer == 0)
- ++e->zc;
- else if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer, cinfo);
- }
- if (e->sc) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- do {
- emit_byte(0xFF, cinfo);
- emit_byte(0x00, cinfo);
- } while (--e->sc);
- }
- }
- /* Output final bytes only if they are not 0x00 */
- if (e->c & 0x7FFF800L) {
- if (e->zc) /* output final pending zero bytes */
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte((e->c >> 19) & 0xFF, cinfo);
- if (((e->c >> 19) & 0xFF) == 0xFF)
- emit_byte(0x00, cinfo);
- if (e->c & 0x7F800L) {
- emit_byte((e->c >> 11) & 0xFF, cinfo);
- if (((e->c >> 11) & 0xFF) == 0xFF)
- emit_byte(0x00, cinfo);
- }
- }
-}
-
-
-/*
- * The core arithmetic encoding routine (common in JPEG and JBIG).
- * This needs to go as fast as possible.
- * Machine-dependent optimization facilities
- * are not utilized in this portable implementation.
- * However, this code should be fairly efficient and
- * may be a good base for further optimizations anyway.
- *
- * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
- *
- * Note: I've added full "Pacman" termination support to the
- * byte output routines, which is equivalent to the optional
- * Discard_final_zeros procedure (Figure D.15) in the spec.
- * Thus, we always produce the shortest possible output
- * stream compliant to the spec (no trailing zero bytes,
- * except for FF stuffing).
- *
- * I've also introduced a new scheme for accessing
- * the probability estimation state machine table,
- * derived from Markus Kuhn's JBIG implementation.
- */
-
-LOCAL(void)
-arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
-{
- register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
- register unsigned char nl, nm;
- register INT32 qe, temp;
- register int sv;
-
- /* Fetch values from our compact representation of Table D.3(D.2):
- * Qe values and probability estimation state machine
- */
- sv = *st;
- qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */
- nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */
- nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */
-
- /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
- e->a -= qe;
- if (val != (sv >> 7)) {
- /* Encode the less probable symbol */
- if (e->a >= qe) {
- /* If the interval size (qe) for the less probable symbol (LPS)
- * is larger than the interval size for the MPS, then exchange
- * the two symbols for coding efficiency, otherwise code the LPS
- * as usual: */
- e->c += e->a;
- e->a = qe;
- }
- *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */
- } else {
- /* Encode the more probable symbol */
- if (e->a >= 0x8000L)
- return; /* A >= 0x8000 -> ready, no renormalization required */
- if (e->a < qe) {
- /* If the interval size (qe) for the less probable symbol (LPS)
- * is larger than the interval size for the MPS, then exchange
- * the two symbols for coding efficiency: */
- e->c += e->a;
- e->a = qe;
- }
- *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */
- }
-
- /* Renormalization & data output per section D.1.6 */
- do {
- e->a <<= 1;
- e->c <<= 1;
- if (--e->ct == 0) {
- /* Another byte is ready for output */
- temp = e->c >> 19;
- if (temp > 0xFF) {
- /* Handle overflow over all stacked 0xFF bytes */
- if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer + 1, cinfo);
- if (e->buffer + 1 == 0xFF)
- emit_byte(0x00, cinfo);
- }
- e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */
- e->sc = 0;
- /* Note: The 3 spacer bits in the C register guarantee
- * that the new buffer byte can't be 0xFF here
- * (see page 160 in the P&M JPEG book). */
- e->buffer = temp & 0xFF; /* new output byte, might overflow later */
- } else if (temp == 0xFF) {
- ++e->sc; /* stack 0xFF byte (which might overflow later) */
- } else {
- /* Output all stacked 0xFF bytes, they will not overflow any more */
- if (e->buffer == 0)
- ++e->zc;
- else if (e->buffer >= 0) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- emit_byte(e->buffer, cinfo);
- }
- if (e->sc) {
- if (e->zc)
- do emit_byte(0x00, cinfo);
- while (--e->zc);
- do {
- emit_byte(0xFF, cinfo);
- emit_byte(0x00, cinfo);
- } while (--e->sc);
- }
- e->buffer = temp & 0xFF; /* new output byte (can still overflow) */
- }
- e->c &= 0x7FFFFL;
- e->ct += 8;
- }
- } while (e->a < 0x8000L);
-}
-
-
-/*
- * Emit a restart marker & resynchronize predictions.
- */
-
-LOCAL(void)
-emit_restart (j_compress_ptr cinfo, int restart_num)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci;
- jpeg_component_info * compptr;
-
- finish_pass(cinfo);
-
- emit_byte(0xFF, cinfo);
- emit_byte(JPEG_RST0 + restart_num, cinfo);
-
- /* Re-initialize statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
- /* Reset DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
- }
- }
-
- /* Reset arithmetic encoding variables */
- entropy->c = 0;
- entropy->a = 0x10000L;
- entropy->sc = 0;
- entropy->zc = 0;
- entropy->ct = 11;
- entropy->buffer = -1; /* empty */
-}
-
-
-/*
- * MCU encoding for DC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl;
- int v, v2, m;
- ISHIFT_TEMPS
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
-
- /* Compute the DC value after the required point transform by Al.
- * This is simply an arithmetic right shift.
- */
- m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
-
- /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.4: Encode_DC_DIFF */
- if ((v = m - entropy->last_dc_val[ci]) == 0) {
- arith_encode(cinfo, st, 0);
- entropy->dc_context[ci] = 0; /* zero diff category */
- } else {
- entropy->last_dc_val[ci] = m;
- arith_encode(cinfo, st, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
- st += 2; /* Table F.4: SP = S0 + 2 */
- entropy->dc_context[ci] = 4; /* small positive diff category */
- } else {
- v = -v;
- arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
- st += 3; /* Table F.4: SN = S0 + 3 */
- entropy->dc_context[ci] = 8; /* small negative diff category */
- }
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- arith_encode(cinfo, st, 0);
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] += 8; /* large diff category */
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC initial scan (either spectral selection,
- * or first pass of successive approximation).
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int tbl, k, ke;
- int v, v2, m;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
-
- /* Establish EOB (end-of-block) index */
- for (ke = cinfo->Se; ke > 0; ke--)
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if ((v = (*block)[natural_order[ke]]) >= 0) {
- if (v >>= cinfo->Al) break;
- } else {
- v = -v;
- if (v >>= cinfo->Al) break;
- }
-
- /* Figure F.5: Encode_AC_Coefficients */
- for (k = cinfo->Ss; k <= ke; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 0); /* EOB decision */
- for (;;) {
- if ((v = (*block)[natural_order[k]]) >= 0) {
- if (v >>= cinfo->Al) {
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 0);
- break;
- }
- } else {
- v = -v;
- if (v >>= cinfo->Al) {
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 1);
- break;
- }
- }
- arith_encode(cinfo, st + 1, 0); st += 3; k++;
- }
- st += 2;
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- if (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- }
- arith_encode(cinfo, st, 0);
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- /* Encode EOB decision only if k <= cinfo->Se */
- if (k <= cinfo->Se) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for DC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- unsigned char *st;
- int Al, blkn;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- st = entropy->fixed_bin; /* use fixed probability estimation */
- Al = cinfo->Al;
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- /* We simply emit the Al'th bit of the DC coefficient value. */
- arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * MCU encoding for AC successive approximation refinement scan.
- */
-
-METHODDEF(boolean)
-encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- JBLOCKROW block;
- unsigned char *st;
- int tbl, k, ke, kex;
- int v;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data block */
- block = MCU_data[0];
- tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
-
- /* Section G.1.3.3: Encoding of AC coefficients */
-
- /* Establish EOB (end-of-block) index */
- for (ke = cinfo->Se; ke > 0; ke--)
- /* We must apply the point transform by Al. For AC coefficients this
- * is an integer division with rounding towards 0. To do this portably
- * in C, we shift after obtaining the absolute value.
- */
- if ((v = (*block)[natural_order[ke]]) >= 0) {
- if (v >>= cinfo->Al) break;
- } else {
- v = -v;
- if (v >>= cinfo->Al) break;
- }
-
- /* Establish EOBx (previous stage end-of-block) index */
- for (kex = ke; kex > 0; kex--)
- if ((v = (*block)[natural_order[kex]]) >= 0) {
- if (v >>= cinfo->Ah) break;
- } else {
- v = -v;
- if (v >>= cinfo->Ah) break;
- }
-
- /* Figure G.10: Encode_AC_Coefficients_SA */
- for (k = cinfo->Ss; k <= ke; k++) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- if (k > kex)
- arith_encode(cinfo, st, 0); /* EOB decision */
- for (;;) {
- if ((v = (*block)[natural_order[k]]) >= 0) {
- if (v >>= cinfo->Al) {
- if (v >> 1) /* previously nonzero coef */
- arith_encode(cinfo, st + 2, (v & 1));
- else { /* newly nonzero coef */
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 0);
- }
- break;
- }
- } else {
- v = -v;
- if (v >>= cinfo->Al) {
- if (v >> 1) /* previously nonzero coef */
- arith_encode(cinfo, st + 2, (v & 1));
- else { /* newly nonzero coef */
- arith_encode(cinfo, st + 1, 1);
- arith_encode(cinfo, entropy->fixed_bin, 1);
- }
- break;
- }
- }
- arith_encode(cinfo, st + 1, 0); st += 3; k++;
- }
- }
- /* Encode EOB decision only if k <= cinfo->Se */
- if (k <= cinfo->Se) {
- st = entropy->ac_stats[tbl] + 3 * (k - 1);
- arith_encode(cinfo, st, 1);
- }
-
- return TRUE;
-}
-
-
-/*
- * Encode and output one MCU's worth of arithmetic-compressed coefficients.
- */
-
-METHODDEF(boolean)
-encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- jpeg_component_info * compptr;
- JBLOCKROW block;
- unsigned char *st;
- int blkn, ci, tbl, k, ke;
- int v, v2, m;
- const int * natural_order;
-
- /* Emit restart marker if needed */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0) {
- emit_restart(cinfo, entropy->next_restart_num);
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num++;
- entropy->next_restart_num &= 7;
- }
- entropy->restarts_to_go--;
- }
-
- natural_order = cinfo->natural_order;
-
- /* Encode the MCU data blocks */
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
-
- /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
-
- tbl = compptr->dc_tbl_no;
-
- /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
- st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
-
- /* Figure F.4: Encode_DC_DIFF */
- if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
- arith_encode(cinfo, st, 0);
- entropy->dc_context[ci] = 0; /* zero diff category */
- } else {
- entropy->last_dc_val[ci] = (*block)[0];
- arith_encode(cinfo, st, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
- st += 2; /* Table F.4: SP = S0 + 2 */
- entropy->dc_context[ci] = 4; /* small positive diff category */
- } else {
- v = -v;
- arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
- st += 3; /* Table F.4: SN = S0 + 3 */
- entropy->dc_context[ci] = 8; /* small negative diff category */
- }
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- arith_encode(cinfo, st, 0);
- /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
- if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
- entropy->dc_context[ci] = 0; /* zero diff category */
- else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
- entropy->dc_context[ci] += 8; /* large diff category */
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
-
- /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
-
- if ((ke = cinfo->lim_Se) == 0) continue;
- tbl = compptr->ac_tbl_no;
-
- /* Establish EOB (end-of-block) index */
- do {
- if ((*block)[natural_order[ke]]) break;
- } while (--ke);
-
- /* Figure F.5: Encode_AC_Coefficients */
- for (k = 0; k < ke;) {
- st = entropy->ac_stats[tbl] + 3 * k;
- arith_encode(cinfo, st, 0); /* EOB decision */
- while ((v = (*block)[natural_order[++k]]) == 0) {
- arith_encode(cinfo, st + 1, 0);
- st += 3;
- }
- arith_encode(cinfo, st + 1, 1);
- /* Figure F.6: Encoding nonzero value v */
- /* Figure F.7: Encoding the sign of v */
- if (v > 0) {
- arith_encode(cinfo, entropy->fixed_bin, 0);
- } else {
- v = -v;
- arith_encode(cinfo, entropy->fixed_bin, 1);
- }
- st += 2;
- /* Figure F.8: Encoding the magnitude category of v */
- m = 0;
- if (v -= 1) {
- arith_encode(cinfo, st, 1);
- m = 1;
- v2 = v;
- if (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st = entropy->ac_stats[tbl] +
- (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
- while (v2 >>= 1) {
- arith_encode(cinfo, st, 1);
- m <<= 1;
- st += 1;
- }
- }
- }
- arith_encode(cinfo, st, 0);
- /* Figure F.9: Encoding the magnitude bit pattern of v */
- st += 14;
- while (m >>= 1)
- arith_encode(cinfo, st, (m & v) ? 1 : 0);
- }
- /* Encode EOB decision only if k < cinfo->lim_Se */
- if (k < cinfo->lim_Se) {
- st = entropy->ac_stats[tbl] + 3 * k;
- arith_encode(cinfo, st, 1);
- }
- }
-
- return TRUE;
-}
-
-
-/*
- * Initialize for an arithmetic-compressed scan.
- */
-
-METHODDEF(void)
-start_pass (j_compress_ptr cinfo, boolean gather_statistics)
-{
- arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
- int ci, tbl;
- jpeg_component_info * compptr;
-
- if (gather_statistics)
- /* Make sure to avoid that in the master control logic!
- * We are fully adaptive here and need no extra
- * statistics gathering pass!
- */
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-
- /* We assume jcmaster.c already validated the progressive scan parameters. */
-
- /* Select execution routines */
- if (cinfo->progressive_mode) {
- if (cinfo->Ah == 0) {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_first;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_first;
- } else {
- if (cinfo->Ss == 0)
- entropy->pub.encode_mcu = encode_mcu_DC_refine;
- else
- entropy->pub.encode_mcu = encode_mcu_AC_refine;
- }
- } else
- entropy->pub.encode_mcu = encode_mcu;
-
- /* Allocate & initialize requested statistics areas */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* DC needs no table for refinement scan */
- if (cinfo->Ss == 0 && cinfo->Ah == 0) {
- tbl = compptr->dc_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->dc_stats[tbl] == NULL)
- entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
- MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
- /* Initialize DC predictions to 0 */
- entropy->last_dc_val[ci] = 0;
- entropy->dc_context[ci] = 0;
- }
- /* AC needs no table when not present */
- if (cinfo->Se) {
- tbl = compptr->ac_tbl_no;
- if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
- ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
- if (entropy->ac_stats[tbl] == NULL)
- entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
- MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
-#ifdef CALCULATE_SPECTRAL_CONDITIONING
- if (cinfo->progressive_mode)
- /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
- cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
-#endif
- }
- }
-
- /* Initialize arithmetic encoding variables */
- entropy->c = 0;
- entropy->a = 0x10000L;
- entropy->sc = 0;
- entropy->zc = 0;
- entropy->ct = 11;
- entropy->buffer = -1; /* empty */
-
- /* Initialize restart stuff */
- entropy->restarts_to_go = cinfo->restart_interval;
- entropy->next_restart_num = 0;
-}
-
-
-/*
- * Module initialization routine for arithmetic entropy encoding.
- */
-
-GLOBAL(void)
-jinit_arith_encoder (j_compress_ptr cinfo)
-{
- arith_entropy_ptr entropy;
- int i;
-
- entropy = (arith_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(arith_entropy_encoder));
- cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
- entropy->pub.start_pass = start_pass;
- entropy->pub.finish_pass = finish_pass;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- entropy->dc_stats[i] = NULL;
- entropy->ac_stats[i] = NULL;
- }
-
- /* Initialize index for fixed probability estimation */
- entropy->fixed_bin[0] = 113;
-}