diff options
author | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-09-01 13:56:46 +0200 |
---|---|---|
committer | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-09-01 13:56:46 +0200 |
commit | 22f703cab05b7cd368f4de9e03991b7664dc5022 (patch) | |
tree | 6f4d50beaa42328e24b1c6b56b6ec059e4ef21a5 /numlib/dnsq.c |
Initial import of argyll version 1.5.1-8debian/1.5.1-8
Diffstat (limited to 'numlib/dnsq.c')
-rw-r--r-- | numlib/dnsq.c | 1675 |
1 files changed, 1675 insertions, 0 deletions
diff --git a/numlib/dnsq.c b/numlib/dnsq.c new file mode 100644 index 0000000..75f00a8 --- /dev/null +++ b/numlib/dnsq.c @@ -0,0 +1,1675 @@ + +/* Concatenated dnsq code */ + +/* + * This concatenation, translation to C and modifications, + * Copyright 1998 Graeme Gill + * All rights reserved. + * + * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- + * see the License.txt file for licencing details. + */ + +#include "numsup.h" +#include "dnsq.h" /* Public interface definitions */ + +#undef DEBUG + +typedef long int bool; +#ifndef TRUE +# define FALSE (0) +# define TRUE (!FALSE) +#endif + +#ifndef min +#define min(a,b) ((a) <= (b) ? (a) : (b)) +#endif +#ifndef max +#define max(a,b) ((a) >= (b) ? (a) : (b)) +#endif +#ifndef fabs +#define fabs(x) ((x) >= 0.0 ? (x) : -(x)) +#endif + +/* Forward difference jacobian approximation */ +static int dfdjc1( + void *fdata, + int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag), + int n, double *x, double * fvec, double *fjac, + int ldfjac, int ml, int mu, + double epsfcn, double *wa1, double *wa2); + +/* QR factorization */ +static int dqrfac(int m, int n, double *a, int lda, + bool pivot, int *ipvt, double *sigma, + double *acnorm, double *wa); + +/* Use QR decomposition to form the orthogonal matrix */ +static int dqform(int m, int n, double *q, int ldq, double *wa); + +/* QR decomposition update */ +static int d1updt(int m, int n, double *s, + double *u, double *v, double *w); + +/* Jacobian rotation, called by QR update */ +static int d1mpyq(int m, int n, double *a, int lda, + double *v, double *w); + +/* Compute norm of a vector */ +static double denorm(int n, double *x); + +/* Line search */ +static int ddoglg(int n, double *r, double *diag, double *qtb, + double delta, double *x, double *wa1, double *wa2); + +/***************************************************************/ + +/* + * A simplified interface to dnsq(). + */ + +int dnsqe( + void *fdata, /* Opaque pointer to pass to fcn() and jac() */ + int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag), + /* Pointer to function we are solving */ + int (*jac)(void *fdata, int n, double *x, double *fvec, double **fjac), + /* Optional function to compute jacobian, NULL if not used */ + int n, /* Number of functions and variables */ + double x[], /* Initial solution estimate, RETURNs final solution */ + double ss, /* Initial search area */ + double fvec[], /* Array that will be RETURNed with thefunction values at the solution */ + double dtol, /* Desired delta tollerance of the solution */ + double atol, /* Desired absolute tollerance of the solution */ + int maxfev, /* Maximum number of function calls. set to 0 for automatic */ + int nprint /* Turn on debugging printouts from func() every nprint itterations */ +) { + int info = 0; /* Return status */ + + int nfev, njev; + int i,j, index, ml, lr, mu; + double epsfcn = ss * ss; /* Jacobian estimate step */ + double factor = ss; /* Initial step size */ + double maxstep = 0.0; /* Subsequent step size (not working ??) */ + + if (maxfev <= 0) { + maxfev = (n + 1) * 100; + if (jac == NULL) + maxfev <<= 1; + } + ml = n - 1; /* number of subdiagonals within the band of the Jacobian matrix. */ + mu = n - 1; /* number of superdiagonals within the band of the Jacobian matrix. */ + + lr = n * (n + 1) / 2; + index = n * 6 + lr; + + /* Call dnsq. */ + info = dnsq(fdata, fcn, jac, NULL, 0, + n, &x[0], &fvec[0], dtol, atol, + maxfev, ml, mu, epsfcn, NULL, factor, maxstep, nprint, + &nfev, &njev); + + if (info == 5) + info = 4; + if (info == 0) + warning("dnsqe: invalid input parameter."); + return info; +} /* dnsqe */ + + + +/***************************************************************/ +/* + * Library: SLATEC + * Category: F2A + * Type: Double precision (SNSQE-S, DNSQE-D) + * Keywords easy-to-use, nonlinear square system, + * powell hybrid method, zeros + * Author: Hiebert, K. L. (SNLA) + * Translated to C by f2c and Graeme W. Gill + * + * 1. Purpose. + * + * The purpose of DNSQ is to find a zero of a system of N nonlinear + * functions in N variables by a modification of the Powell + * hybrid method. The user must provide a subroutine which + * calculates the functions. The user has the option of either to + * provide a subroutine which calculates the Jacobian or to let the + * code calculate it by a forward-difference approximation. + * This code is the combination of the MINPACK codes (Argonne) + * HYBRD and HYBRDJ. + * + * 2. Subroutine and Type Statements. + * + * SUBROUTINE DNSQ(FCN,JAC,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV, + * ML,MU,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV, + * NJEV,R,LR,QTF,WA1,WA2,WA3,WA4) + * INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,NJEV,LR + * DOUBLE PRECISION XTOL,EPSFCN,FACTOR + * DOUBLE PRECISION + * X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N), + * WA1(N),WA2(N),WA3(N),WA4(N) + * EXTERNAL FCN,JAC + * + * 3. Parameters. + * + * Parameters designated as input parameters must be specified on + * entry to DNSQ and are not changed on exit, while parameters + * designated as output parameters need not be specified on entry + * and are set to appropriate values on exit from DNSQ. + * + * fcn() is the name of the user-supplied subroutine which calculates + * the functions. fcn() must be declared in an external statement + * in the user calling program, and should be written as follows. + * + * int fcn( + * void *fdata, + * int n, + * double *x, + * double *fvec, + * int iflag); + * { + * calculate the functions at x and + * return this vector in fvec. + * print out vector if iflag == 0 + * return 0 (or < 0 to abort) + * } + * The value 0 should be returned fcn() unless the + * user wants to terminate execution of DNSQ. In this case + * return a negative integer. + * + * jac() is the name of the user-supplied subroutine which calculates + * the Jacobian. If jac!=NULL, then jac() must be declared in an + * external statement in the user calling program, and should be + * written as follows. + * + * int jac( + * void *fdata, + * int n, + * double *x, + * double *fvec, + * double **fjac, + * { + * Calculate the Jacobian at x and return this + * matrix in fjac. fvec contains the function + * values at x and should not be altered. + * return 0 (or < 0 to abort) + * } + * The value 0 should be returned jac() unless the + * user wants to terminate execution of DNSQ. In this case + * return a negative integer. + * + * If jac == NULL, then the code will approximate the + * Jacobian by forward-differencing. + * + * double **sjac; + * sjac is an optional n by n matrix that can hold an initial + * jacobian matrix that will be used in preference to calling the jac() + * function, or to using forward differencing. If the array is provided, + * it will also contain the last jacobian matrix used before exiting. + * If this array is not used, it should be set to NULL. + * + * int startsjac; + * styatsjac is a flag, that when set to non-zero, will cause the + * sjac[] array to be used as the initial jacobian matrix, in preference + * to calling the jac() function, or to using forward differencing. + * + * n is a positive integer input variable set to the number of + * functions and variables. + * + * x is an array of length n. On input x must contain an initial + * estimate of the solution vector. On output x contains the + * final estimate of the solution vector. + * + * fvec is an output array of length n which contains the functions + * evaluated at the output x. + * + * fjac is an output N by N array which contains the orthogonal + * matrix Q produced by the QR factorization of the final + * approximate Jacobian. + * + * ldfjac is a positive integer input variable not less than n + * which specifies the leading dimension of the array fjac. + * + * dtol is a nonnegative input variable. Termination occurs when + * the relative error between two consecutive iterates is at most + * dtol. Therefore, dtol measures the relative error desired in + * the approximate solution. Section 4 contains more details + * about dtol. + * + * tol is a nonnegative input variable. Termination occurs when + * the value of all the function values falls below this threshold. + * Termination occurs when either the dtol or tol condition is met. + * + * maxfev is a positive integer input variable. Termination occurs + * when the number of calls to fcn is at least maxfev by the end + * of an iteration. + * + * ml is a nonnegative integer input variable which specifies the + * number of subdiagonals within the band of the Jacobian matrix. + * If the Jacobian is not banded or jac!=null, set ml to at + * least n - 1. + * + * mu is a nonnegative integer input variable which specifies the + * number of superdiagonals within the band of the Jacobian + * matrix. If the Jacobian is not banded or jac!=null, set mu to at + * least n - 1. + * + * epsfcn is an input variable used in determining a suitable step + * for the forward-difference approximation. This approximation + * assumes that the relative errors in the functions are of the + * order of epsfcn. If epsfcn is less than the machine + * precision, it is assumed that the relative errors in the + * functions are of the order of the machine precision. If + * jac!=null, then epsfcn can be ignored (treat it as a dummy + * argument). + * + * diag is an array of length n. If MODE = 1 (see below), diag is + * internally set. If mode = 2, diag must contain positive + * entries that serve as implicit (multiplicative) scale factors + * for the variables. + * + * mode is an integer input variable. If mode = 1, the variables + * will be scaled internally. If mode = 2, the scaling is + * specified by the input diag. Other values of mode are + * equivalent to mode = 1. + * + * factor is a positive input variable used in determining the + * initial step bound. This bound is set to the product of + * factor and the Euclidean norm of diag*x if nonzero, or else to + * factor itself. In most cases factor should lie in the + * interval (.1,100.). 100. is a generally recommended value. + * + * nprint is an integer input variable that enables controlled + * printing of iterates if it is positive. In this case, fcn is + * called with iflag = 0 at the beginning of the first iteration + * and every nprint iterations thereafter and immediately prior + * to return, with x and fvec available for printing. Appropriate + * print statements must be added to fcn(see example). If nprint + * is not positive, no special calls of fcn with iflag = 0 are + * made. + * + * info is an integer output variable. If the user has terminated + * execution, info is set to the (negative) value of iflag. See + * description of fcn and jac. Otherwise, INFO is set as follows. + * + * INFO = 0 Improper input parameters. + * + * INFO = 1 Relative error between two consecutive iterates is + * at most XTOL. Normal sucessful return value. + * + * INFO = 2 Number of calls to FCN has reached or exceeded + * MAXFEV. + * + * INFO = 3 XTOL is too small. No further improvement in the + * approximate solution X is possible. + * + * INFO = 4 Iteration is not making good progress, as measured + * by the improvement from the last five Jacobian + * evaluations. + * + * INFO = 5 Iteration is not making good progress, as measured + * by the improvement from the last ten iterations. + * Return value if no zero can be found from this starting + * point. + * + * Sections 4 and 5 contain more details about INFO. + * + * nfev is an integer output variable set to the number of calls to + * fcn. + * + * njev is an integer output variable set to the number of calls to + * jac. (If jac==null, then njev is set to zero.) + * + * 4. Successful completion. + * + * The accuracy of DNSQ is controlled by the convergence parameter + * XTOL. This parameter is used in a test which makes a comparison + * between the approximation X and a solution XSOL. DNSQ + * terminates when the test is satisfied. If the convergence + * parameter is less than the machine precision (as defined by the + * function D1MACH(4)), then DNSQ only attempts to satisfy the test + * defined by the machine precision. Further progress is not + * usually possible. + * + * The test assumes that the functions are reasonably well behaved, + * and, if the Jacobian is supplied by the user, that the functions + * and the Jacobian are coded consistently. If these conditions + * are not satisfied, then DNSQ may incorrectly indicate + * convergence. The coding of the Jacobian can be checked by the + * subroutine DCKDER. If the Jacobian is coded correctly or JAC==NULL, + * then the validity of the answer can be checked, for example, by + * rerunning DNSQ with a tighter tolerance. + * + * Convergence Test. If DENORM(Z) denotes the Euclidean norm of a + * vector Z and D is the diagonal matrix whose entries are + * defined by the array DIAG, then this test attempts to + * guarantee that + * + * DENORM(D*(X-XSOL)) .LE. XTOL*DENORM(D*XSOL). + * + * If this condition is satisfied with XTOL = 10**(-K), then the + * larger components of D*X have K significant decimal digits and + * INFO is set to 1. There is a danger that the smaller + * components of D*X may have large relative errors, but the fast + * rate of convergence of DNSQ usually avoids this possibility. + * + * Unless high precision solutions are required, the recommended + * value for XTOL is the square root of the machine precision. + * + * + * 5. Unsuccessful Completion. + * + * Unsuccessful termination of DNSQ can be due to improper input + * parameters, arithmetic interrupts, an excessive number of + * function evaluations, or lack of good progress. + * + * Improper Input Parameters. INFO is set to 0 if + * N .LE. 0, or LDFJAC .LT. N, or + * XTOL .LT. 0.E0, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0, + * or FACTOR .LE. 0.E0, or LR .LT. (N*(N+1))/2. + * + * Arithmetic Interrupts. If these interrupts occur in the FCN + * subroutine during an early stage of the computation, they may + * be caused by an unacceptable choice of X by DNSQ. In this + * case, it may be possible to remedy the situation by rerunning + * DNSQ with a smaller value of FACTOR. + * + * Excessive Number of Function Evaluations. A reasonable value + * for MAXFEV is 100*(N+1) for JAC!=NULL and 200*(N+1) for JAC==NULL. + * + * If the number of calls to FCN reaches MAXFEV, then this + * indicates that the routine is converging very slowly as + * measured by the progress of FVEC, and INFO is set to 2. This + * + * situation should be unusual because, as indicated below, lack + * of good progress is usually diagnosed earlier by DNSQ, + * causing termination with info = 4 or INFO = 5. + * + * Lack of Good Progress. DNSQ searches for a zero of the system + * + * by minimizing the sum of the squares of the functions. In so + * doing, it can become trapped in a region where the minimum + * does not correspond to a zero of the system and, in this + * situation, the iteration eventually fails to make good + * progress. In particular, this will happen if the system does + * not have a zero. If the system has a zero, rerunning DNSQ + * from a different starting point may be helpful. + * + * + * 6. Characteristics of The Algorithm. + * + * DNSQ is a modification of the Powell Hybrid method. Two of its + * main characteristics involve the choice of the correction as a + * convex combination of the Newton and scaled gradient directions, + * and the updating of the Jacobian by the rank-1 method of + * Broyden. The choice of the correction guarantees (under + * reasonable conditions) global convergence for starting points + * far from the solution and a fast rate of convergence. The + * Jacobian is calculated at the starting point by either the + * user-supplied subroutine or a forward-difference approximation, + * but it is not recalculated until the rank-1 method fails to + * produce satisfactory progress. + * + * Timing. The time required by DNSQ to solve a given problem + * depends on N, the behavior of the functions, the accuracy + * requested, and the starting point. The number of arithmetic + * operations needed by DNSQ is about 11.5*(N**2) to process + * each evaluation of the functions (call to FCN) and 1.3*(N**3) + * to process each evaluation of the Jacobian (call to JAC, + * if JAC!=NULL). Unless FCN and JAC can be evaluated quickly, + * the timing of DNSQ will be strongly influenced by the time + * spent in FCN and JAC. + * + * Storage. DNSQ requires (3*N**2 + 17*N)/2 single precision + * storage locations, in addition to the storage required by the + * program. There are no internally declared storage arrays. + * + * References: M. J. D. Powell, A hybrid method for nonlinear equa- + * tions. In Numerical Methods for Nonlinear Algebraic + * Equations, P. Rabinowitz, Editor. Gordon and Breach, + * 1988. + * + * Routines called: D1MPYQ, D1UPDT, DDOGLG, DENORM, DFDJC1, DQFORM, DQRFAC + * + * Revision history: (YYMMDD) + * 800301 DATE WRITTEN + * 890531 Changed all specific intrinsics to generic. (WRB) + * 890831 Modified array declarations. (WRB) + * 890831 REVISION DATE from Version 3.2 + * 891214 Prologue converted to Version 4.0 format. (BAB) + * 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) + * 920501 Reformatted the REFERENCES section. (WRB) + * 960510 Translated to C and features added. (GWG) + */ + +/* Returns status. 0 = OK. */ +int dnsq( + void *fdata, /* Opaque data pointer, passed to called functions */ + int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag), + /* Pointer to function we are solving */ + int (*jac)(void *fdata, int n, double *x, double *fvec, double **fjac), + /* Optional function to compute jacobian, NULL if not used */ + double **sjac, /* Optional initial jacobian matrix/last jacobian matrix. NULL if not used.*/ + int startsjac, /* Set to non-zero to use sjac as the initial jacobian */ + int n, /* Number of functions and variables */ + double x[], /* Initial solution estimate, RETURNs final solution */ + double fvec[], /* Array that will be RETURNed with thefunction values at the solution */ + double dtol, /* Desired delta tollerance of the solution */ + double atol, /* Desired tollerance of the root (stops on dtol or tol) */ + int maxfev, /* Set excessive Number of Function Evaluations */ + int ml, /* number of subdiagonals within the band of the Jacobian matrix. */ + int mu, /* number of superdiagonals within the band of the Jacobian matrix. */ + double epsfcn, /* determines suitable step for forward-difference approximation */ + double diag[], /* Optional scaling factors, use NULL for internal scaling */ + double factor, /* Determines the initial step bound */ + double maxstep, /* Determines the maximum subsequent step bound (0.0 for none) */ + /* maxstep is NOT WORKING !!! ??? */ + int nprint, /* Turn on debugging printouts from func() every nprint itterations */ + int *nfev, /* RETURNs the number of calls to fcn() */ + int *njev /* RETURNs the number of calls to jac() */ +) { + int info = 0; /* Return status - invalid argument */ + int smode = 0; /* Scaling mode, 1 = internal */ + + /* Internal working arrays */ + double *fjac = NULL; /* n by n array which contains the orthogonal matrix Q */ + /* produced by the QR factorization of the final approximate Jacobian. */ + int ldfjac = n; /* stride of 2d array */ + double **jjac = NULL; /* NR style pointers to fjac */ + + double *r = NULL; /* Array of length (n*(n+1))/2 which contains the upper */ + /* triangular matrix produced by the QR factorization of the */ + /* final approximate Jacobian, stored rowwise. */ + double *qtf = NULL; /* Array of length n which contains the vector (q transpose)*fvec. */ + + double *wa1 = NULL; /* Four working arrays length n */ + double *wa2 = NULL; + double *wa3 = NULL; + double *wa4 = NULL; + + int iwa[1]; /* Pivot swap array (only one element used) */ + + /* Local variables */ + bool jeval; + int iter; + int i, j, k, l, iflag; + int qrflag; /* Set when a valid Q is in fjac[], and R is in r[] */ + int ncsuc; + int nslow1, nslow2, ncfail; + double temp; + double delta = 0.0; + double ratio, fnorm, pnorm; + double xnorm = 0.0; + double fnorm1; + double actred, prered; + double sum; + + /* Allocate out working arrays */ + if (diag == NULL) { /* Internal scaling */ + smode = 1; + diag = dvector(0,n-1); + } + fjac = dvector(0,(n * n)-1); + jjac = convert_dmatrix(fjac,0,n-1,0,ldfjac-1); + r = dvector(0,((n * (n+1))/2)-1); + qtf = dvector(0,n-1); + wa1 = dvector(0,n-1); + wa2 = dvector(0,n-1); + wa3 = dvector(0,n-1); + wa4 = dvector(0,n-1); + + qrflag = 0; + iflag = 0; + *nfev = 0; + *njev = 0; + + /* Check the input parameters for errors. */ + if (n <= 0 || dtol < 0.0 || maxfev <= 0 + || ml < 0 || mu < 0 || factor <= 0.0 || maxstep < 0.0 + || (sjac == NULL && startsjac != 0)) { + goto func_exit; + } + if (!smode) { /* Check the scaling array we were given */ + for (j = 0; j < n; ++j) { + if (diag[j] <= 0.0) { + goto func_exit; + } + } + } + + /* Evaluate the function at the starting point */ + /* and calculate its norm. */ + *nfev = 1; + if ((iflag = (*fcn)(fdata, n, &x[0], &fvec[0], 1)) < 0) + goto func_exit; + fnorm = denorm(n, &fvec[0]); + + /* Initialize iteration counter and monitors. */ + + iter = 1; + ncsuc = 0; + ncfail = 0; + nslow1 = 0; + nslow2 = 0; + + /* Beginning of the outer loop. */ + for (;;) { + jeval = TRUE; + + /* initialize the jacobian matrix. */ + if (startsjac) { /* User provided array */ + for (j = 0; j < n; j++) { + for (i = 0; i < n; i++) + fjac[j * ldfjac + i] = sjac[j][i]; + } + } else if (jac == NULL) { /* Code approximates the jacobian */ + int ti; + iflag = dfdjc1(fdata, fcn, n, &x[0], &fvec[0], &fjac[0], ldfjac, + ml, mu, epsfcn, &wa1[0], &wa2[0]); + ti = ml + mu + 1; + *nfev += min(ti,n); + } else { /* User supplies jacobian function */ + iflag = (*jac)(fdata, n, &x[0], &fvec[0], jjac); + ++(*njev); + } +#ifdef DEBUG +printf("DNSQ: Jacobian initialized\n"); +#endif + + if (iflag < 0) + goto func_exit; + + /* Compute the qr factorization of the jacobian. */ + dqrfac(n, n, &fjac[0], ldfjac, FALSE, iwa, &wa1[0], &wa2[0], &wa3[0]); + + /* On the first iteration and if internal scaling mode set, scale */ + /* according to the norms of the columns of the initial jacobian. */ + /* (wa2[] will contain norms) */ + /* Do this on subsequent itterations too, if a maxstep is set. */ + if (iter == 1 || maxstep > 0.0) { + if (smode) { + for (j = 0; j < n; ++j) { + diag[j] = wa2[j]; + if (wa2[j] == 0.0) { + diag[j] = 1.0; + } + } + } + + /* On the first iteration, calculate the norm of the scaled */ + /* x[], and initialize the step bound delta. */ + for (j = 0; j < n; ++j) + wa3[j] = diag[j] * x[j]; + + xnorm = denorm(n, &wa3[0]); + if (iter == 1) { + delta = factor * xnorm; + if (delta == 0.0) + delta = factor; +#ifdef DEBUG + printf("Initial Delta = %f\n",delta); +#endif /* DEBUG */ + } else { + delta = maxstep * xnorm; + if (delta == 0.0) + delta = maxstep; +#ifdef DEBUG + printf("Subsequent Delta = %f\n",delta); +#endif /* DEBUG */ + } + } + + /* Form (q transpose)*fvec and store in qtf. */ + for (i = 0; i < n; ++i) + qtf[i] = fvec[i]; + + for (j = 0; j < n; ++j) { + if (fjac[j + j * ldfjac] != 0.0) { + sum = 0.0; + for (i = j; i < n; ++i) + sum += fjac[i + j * ldfjac] * qtf[i]; + temp = -sum / fjac[j + j * ldfjac]; + + for (i = j; i < n; ++i) + qtf[i] += fjac[i + j * ldfjac] * temp; + } + } + + /* Copy the triangular factor of the qr factorization into r. */ + for (j = 0; j < n; ++j) { + l = j; + if (j >= 1) { + for (i = 0; i < j; ++i) { + r[l] = fjac[i + j * ldfjac]; + l += (n-1) - i; + } + } + r[l] = wa1[j]; + } + + /* Accumulate the orthogonal factor Q in fjac. */ + dqform(n, n, &fjac[0], ldfjac, &wa1[0]); + + qrflag = 1; + + /* Rescale if necessary. */ + if (smode) { + for (j = 0; j < n; ++j) { + diag[j] = max(diag[j],wa2[j]); + } + } + + /* Beginning of the inner loop. */ + for (;;) { + /* If requested, call fcn to enable printing of iterates. */ + if (nprint > 0) { + if ((iter - 1) % nprint == 0) + if ((iflag = (*fcn)(fdata, n, &x[0], &fvec[0], 0)) < 0) + goto func_exit; + } + +#ifdef DEBUG + /* If the user supplied an array, and there is a valid Q in */ + /* fjac[], and R is in r[], recover the most recent Jacobian */ + /* matrix by multiplying Q by R */ + if (qrflag && sjac) { + for (i = 0; i < n; ++i) { + for (j = 0; j < n; ++j) { + double temp = 0.0; + l = j; + for (k = 0; k <= j; ++k) { + temp += fjac[k * ldfjac + i] * r[l]; + l += (n-1-k); + } + sjac[j][i] = temp; + } + } + printf("Current Jacobian = \n"); + for (j = 0; j < n; ++j) { + for (i = 0; i < n; ++i) { + printf("%f ",sjac[j][i]); + } + printf("\n"); + } + } +#endif /* DEBUG */ + + /* Determine the direction p. */ + ddoglg(n, &r[0], &diag[0], &qtf[0], delta, &wa1[0], &wa2[0], &wa3[0]); + + /* Store the direction p and x + p. calculate the norm of p. */ + /* (wa1[] is X[] output array from ddoglg()) */ + for (j = 0; j < n; ++j) { + wa1[j] = -wa1[j]; + wa2[j] = x[j] + wa1[j]; + wa3[j] = diag[j] * wa1[j]; + } + pnorm = denorm(n, &wa3[0]); + + /* On the first iteration, adjust the initial step bound. */ + /* Do this on subsequent itterations too, if maxstep is set. */ + if (iter == 1 || maxstep > 0.0) { + delta = min(delta,pnorm); +#ifdef DEBUG + if (iter == 1) + printf("First itter Delta = %f\n",delta); + else + printf("Subsequent itter Delta = %f\n",delta); +#endif /* DEBUG */ + } + + /* Evaluate the function at x + p and calculate its norm. */ + ++(*nfev); + if ((iflag = (*fcn)(fdata, n, &wa2[0], &wa4[0], 1)) < 0) + goto func_exit; + fnorm1 = denorm(n, &wa4[0]); + + /* Compute the scaled actual reduction. */ + actred = -1.0; /* Assume norm is made worse */ + if (fnorm1 < fnorm) { /* There was a reduction in the norm */ + double td; + td = fnorm1 / fnorm; + actred = 1.0 - td * td; + } + + /* Compute the scaled predicted reduction. */ + l = 0; + for (i = 0; i < n; ++i) { + sum = 0.0; + for (j = i; j < n; ++j) { + sum += r[l] * wa1[j]; + ++l; + } + wa3[i] = qtf[i] + sum; + } + + temp = denorm(n, &wa3[0]); + prered = 0.0; + if (temp < fnorm) { + double td; + td = temp / fnorm; + prered = 1.0 - td * td; + } + + /* Compute the ratio of the actual to the predicted reduction. */ + ratio = 0.0; /* Assume no improvement */ + if (prered > 0.0) + ratio = actred / prered; +#ifdef DEBUG +printf("DNSQ: actual/predicted ratio = %f\n",ratio); +#endif /* DEBUG */ + + /* Update the step bound. */ + if (ratio < 0.1) { + ncsuc = 0; + ++ncfail; /* Forces jacobian recalc when ncfail == 2 */ + delta = 0.5 * delta; +#ifdef DEBUG +printf("ratio < 0.1 bad, Delta = %f, ncfail = %d\n",delta,ncfail); +#endif /* DEBUG */ + } else { + ncfail = 0; /* Pospone jacobian recalc */ + ++ncsuc; + if (ratio >= 0.5 || ncsuc > 1) { + delta = max(delta, pnorm / 0.5); +#ifdef DEBUG +printf("ratio > 0.1 good, Delta = %f, ncsuc = %d\n",delta,ncsuc); +#endif /* DEBUG */ + } + if (fabs(ratio - 1.0) <= 0.1) { + delta = 2.0 * pnorm; +#ifdef DEBUG +printf("abs(ratio -1.0) <= 0.1 Delta = %f\n",delta); +#endif /* DEBUG */ + } + } + + /* Test for progressing iteration. */ + if (ratio > 0.0001) { +#ifdef DEBUG +printf("Successful itter\n"); +#endif /* DEBUG */ + /* Successful iteration. update x, fvec, and their norms. */ + for (j = 0; j < n; ++j) { + x[j] = wa2[j]; + wa2[j] = diag[j] * x[j]; + fvec[j] = wa4[j]; + } + xnorm = denorm(n, &wa2[0]); + fnorm = fnorm1; + ++iter; + } + +#ifdef DEBUG +printf("DNSQ: actual = %f\n",actred); +#endif /* DEBUG */ + /* Determine the progress of the iteration. */ + ++nslow1; + if (fabs(actred) >= 0.001) + nslow1 = 0; + if (jeval) + ++nslow2; + if (fabs(actred) >= 0.1) + nslow2 = 0; + + /* Test for convergence. */ + if (delta <= dtol * xnorm || fnorm == 0.0) { +#ifdef DEBUG +printf("DNSQ: delta %f <= dtol * xnorm %f || fnorm == %f\n",delta,dtol * xnorm,fnorm); +#endif /* DEBUG */ + info = 1; + goto func_exit; + } + /* Test for root meeting tolerance (GWG) */ + for (j = 0; j < n; ++j) { + if (fabs(fvec[j]) > atol) + break; + } + if (j >= n) { /* All were below tollerance */ +#ifdef DEBUG +printf("DNSQ: fvecs are all <= atol %f\n",atol); +#endif /* DEBUG */ + info = 1; + goto func_exit; + } + + /* Tests for termination and stringent tolerances. */ + if (*nfev >= maxfev) + info = 2; + if (0.1 * max(0.1 * delta, pnorm) <= M_DIVER * xnorm) + info = 3; + if (nslow2 == 5) + info = 4; + if (nslow1 == 10) + info = 5; + if (info != 0) + goto func_exit; + + /* Criterion for recalculating jacobian */ + if (ncfail == 2) { + break; /* Break out of inner loop */ + } + + /* Calculate the rank one modification to the jacobian */ + /* and update qtf if necessary. */ + for (j = 0; j < n; ++j) { + sum = 0.0; + for (i = 0; i < n; ++i) { + sum += fjac[i + j * ldfjac] * wa4[i]; + } + wa2[j] = (sum - wa3[j]) / pnorm; + wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm); + if (ratio >= 1e-4) { + qtf[j] = sum; + } + } + + /* Compute the qr factorization of the updated jacobian. */ + d1updt(n, n, &r[0], &wa1[0], &wa2[0], &wa3[0]); + d1mpyq(n, n, &fjac[0], ldfjac, &wa2[0], &wa3[0]); + d1mpyq(1, n, &qtf[0], 1, &wa2[0], &wa3[0]); + + jeval = FALSE; + } /* End of the inner loop. */ + } /* End of the outer loop. */ + + + /* Termination, either normal or user imposed. */ +func_exit: + + /* If the user supplied an array, and there is a valid Q in */ + /* fjac[], and R is in r[], recover the most recent Jacobian */ + /* matrix by multiplying Q by R */ + if (qrflag && sjac) { + for (i = 0; i < n; ++i) { + for (j = 0; j < n; ++j) { + double temp = 0.0; + l = j; + for (k = 0; k <= j; ++k) { + temp += fjac[k * ldfjac + i] * r[l]; + l += (n-1-k); + } + sjac[j][i] = temp; + } + } + } + + /* Free our working arrays */ + if (smode) + free_dvector(diag,0,n-1); + free_dvector(fjac,0,(n * n)-1); + free_convert_dmatrix(jjac,0,n-1,0,ldfjac-1); + free_dvector(r,0,((n * (n+1))/2)-1); + free_dvector(qtf,0,n-1); + free_dvector(wa1,0,n-1); + free_dvector(wa2,0,n-1); + free_dvector(wa3,0,n-1); + free_dvector(wa4,0,n-1); + + + if (iflag < 0) + info = iflag; + if (nprint > 0) + (*fcn)(fdata, n, &x[0], &fvec[0], 0); +#ifdef DEBUG + if (info < 0) + printf("dnsq: Execution terminated because user set iflag negative\n"); + if (info == 0) + printf("dnsq: Invalid input parameter\n"); + if (info == 2) + printf("dnsq: Too many function evaluations\n"); + if (info == 3) + printf("dnsq: dtol too small. no further improvement possible\n"); + if (info > 4) + printf("dnsq: Iteration not making good progress\n"); +#endif /* DEBUG */ + return info; +} /* dnsq */ + +/***************************************************************/ +/***************************************************************/ + +/* + * Given an M by N matrix A, this subroutine computes A*Q where + * Q is the product of 2*(N - 1) transformations + * + * GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + * + * and GV(I), GW(I) are Givens rotations in the (I,N) plane which + * eliminate elements in the I-th and N-th planes, respectively. + * Q itself is not given, rather the information to recover the + * GV, GW rotations is supplied. + * + */ + +static int d1mpyq( + int m, /* Number of rows of A */ + int n, /* Number of columns of A */ + double *a, /* M by N array */ + int lda, /* stride for a[][] */ + double *v, /* Input array */ + double *w) /* Input array */ +{ + /* Local variables */ + int i, j; + int nm1 = n - 1; + double temp; + double cos_ = 0.0, sin_ = 0.0; + + /* Apply the first set of givens rotations to a. */ + if (nm1 >= 1) { + for (j = n-2; j >= 0; --j) { + if (fabs(v[j]) > 1.0) + cos_ = 1.0 / v[j]; + if (fabs(v[j]) > 1.0) { /* Computing 2nd power */ + sin_ = sqrt(1.0 - cos_ * cos_); + } + if (fabs(v[j]) <= 1.0) { + sin_ = v[j]; + } + if (fabs(v[j]) <= 1.0) { /* Computing 2nd power */ + cos_ = sqrt(1.0 - sin_ * sin_); + } + for (i = 0; i < m; ++i) { + temp = cos_ * a[i + j * lda] - sin_ * a[i + nm1 * lda]; + a[i + nm1 * lda] = sin_ * a[i + j * lda] + cos_ * a[i + nm1 * lda]; + a[i + j * lda] = temp; + } + } + + /* Apply the second set of givens rotations to a. */ + for (j = 0; j < nm1; ++j) { + if (fabs(w[j]) > 1.0) + cos_ = 1.0 / w[j]; + if (fabs(w[j]) > 1.0) { /* Computing 2nd power */ + sin_ = sqrt(1.0 - cos_ * cos_); + } + if (fabs(w[j]) <= 1.0) + sin_ = w[j]; + if (fabs(w[j]) <= 1.0) { /* Computing 2nd power */ + cos_ = sqrt(1.0 - sin_ * sin_); + } + for (i = 0; i < m; ++i) { + temp = cos_ * a[i + j * lda] + sin_ * a[i + nm1 * lda]; + a[i + nm1 * lda] = -sin_ * a[i + j * lda] + cos_ * a[i + nm1 * lda]; + a[i + j * lda] = temp; + } + } + } + return 0; +} + +/***************************************************************/ +/***************************************************************/ + +/* + * Given an M by N lower trapezoidal matrix S, an M-vector U, + * and an N-vector V, the problem is to determine an + * orthogonal matrix Q such that + * + * t + * (S + U*V )*Q + * + * is again lower trapezoidal. + * + * This subroutine determines Q as the product of 2*(N - 1) + * transformations + * + * GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1) + * + * where GV(I), GW(I) are Givens rotations in the (I,N) plane + * which eliminate elements in the I-th and N-th planes, + * respectively. Q itself is not accumulated, rather the + * information to recover the GV, GW rotations is returned. + * + */ + +static int d1updt( + int m, /* Number of rows of S */ + int n, /* Number of columns of S */ + double *s, /* Array of length (n*(2*m-n+1))/2 containing the lower trapezoid matrix */ + double *u, /* U vector lenghth m */ + double *v, /* V vector length n */ + double *w) /* Output array W length m */ +{ + int i, j, l; + int jj; + int nm1 = n - 1; + int nmj; + double temp; + double giant, cotan; + double tan_; + double cos_, sin_, tau; + + /* Giant is the largest magnitude. */ + giant = M_LARGE; + + /* Initialize the diagonal element pointer. */ + jj = n * ((m << 1) - n + 1) / 2 - (m - n) - 1; + + /* Move the nontrivial part of the last column of s into w. */ + l = jj; + for (i = nm1; i < m; ++i) { + w[i] = s[l]; + ++l; + } + + /* Rotate the vector v into a multiple of the n-th unit vector */ + /* in such a way that a spike is introduced into w. */ + if (nm1 >= 1) { + for (nmj = 1; nmj <= nm1; ++nmj) { + j = n - nmj - 1; + jj -= m - j; + w[j] = 0.0; + if (v[j] == 0.0) + continue; + + /* Determine a givens rotation which eliminates the */ + /* j-th element of v. */ + if (fabs(v[nm1]) < fabs(v[j])) { + cotan = v[nm1] / v[j]; + sin_ = 0.5 / sqrt(0.25 + 0.25 * (cotan * cotan)); + cos_ = sin_ * cotan; + tau = 1.0; + if (fabs(cos_) * giant > 1.0) { + tau = 1.0 / cos_; + } + } else { + tan_ = v[j] / v[nm1]; + cos_ = 0.5 / sqrt(0.25 + 0.25 * (tan_ * tan_)); + sin_ = cos_ * tan_; + tau = sin_; + } + + /* Apply the transformation to v and store the information */ + /* necessary to recover the givens rotation. */ + v[nm1] = sin_ * v[j] + cos_ * v[nm1]; + v[j] = tau; + + /* Apply the transformation to s and extend the spike in w. */ + l = jj; + for (i = j; i < m; ++i) { + temp = cos_ * s[l] - sin_ * w[i]; + w[i] = sin_ * s[l] + cos_ * w[i]; + s[l] = temp; + ++l; + } + } + } + + /* Add the spike from the rank 1 update to w. */ + for (i = 0; i < m; ++i) + w[i] += v[nm1] * u[i]; + + /* Eliminate the spike. */ + if (nm1 >= 1) { + for (j = 0; j < nm1; ++j) { + if (w[j] != 0.0) { + /* Determine a givens rotation which eliminates the */ + /* j-th element of the spike. */ + if (fabs(s[jj]) < fabs(w[j])) { + cotan = s[jj] / w[j]; + sin_ = 0.5 / sqrt(0.25 + 0.25 * (cotan * cotan)); + cos_ = sin_ * cotan; + tau = 1.0; + if (fabs(cos_) * giant > 1.0) { + tau = 1.0 / cos_; + } + } else { + tan_ = w[j] / s[jj]; + cos_ = 0.5 / sqrt(0.25 + 0.25 * (tan_ * tan_)); + sin_ = cos_ * tan_; + tau = sin_; + } + + /* Apply the transformation to s and reduce the spike in w. */ + l = jj; + for (i = j; i < m; ++i) { + temp = cos_ * s[l] + sin_ * w[i]; + w[i] = -sin_ * s[l] + cos_ * w[i]; + s[l] = temp; + ++l; + } + + /* Store the information necessary to recover the givens rotation. */ + w[j] = tau; + } + jj += m - j; + } + } + + /* Move w back into the last column of the output s. */ + l = jj; + for (i = nm1; i < m; ++i) { + s[l] = w[i]; + ++l; + } + return 0; +} + +/***************************************************************/ +/***************************************************************/ + +/* + * Given an M by N matrix A, an N by N nonsingular diagonal + * matrix D, an M-vector B, and a positive number DELTA, the + * problem is to determine the convex combination X of the + * Gauss-Newton and scaled gradient directions that minimizes + * (A*X - B) in the least squares sense, subject to the + * restriction that the Euclidean norm of D*X be at most DELTA. + * + * This subroutine completes the solution of the problem + * if it is provided with the necessary information from the + * QR factorization of A. That is, if A = Q*R, where Q has + * orthogonal columns and R is an upper triangular matrix, + * then DDOGLG expects the full upper triangle of R and + * the first N components of (Q transpose)*B. + * + */ + +static int ddoglg( + int n, /* Order of r[] */ + double r[], /* Array of length (n*(n+!))/2 containing upper triangular matrix */ + double diag[], /* Array of length n containing the diagonal elements of the matrix d[] */ + double qtb[], /* Array of length n containing first n elements of vector (Q transpose)*B */ + double delta, /* Upper bound on the Euclidean norm of D*X */ + double x[], /* output array of length N containing the desired direction */ + double wa1[], /* Working arrays length n */ + double wa2[]) +{ + int i, j, k, l; + int jj; + int jp1; + int nm1 = n-1; + double temp; + double alpha, gnorm, qnorm; + double epsmch; + double sgnorm; + double sum; + + /* Epsmch is the machine precision. */ + epsmch = M_DIVER; + + /* First, calculate the gauss-newton direction. */ + jj = n * (n + 1) / 2; + for (k = 0; k < n; ++k) { + j = nm1 - k; + jp1 = j + 1; + jj -= (k+1); + l = jj + 1; + sum = 0.0; + if (n >= (jp1+1)) { + for (i = jp1; i < n; ++i) { + sum += r[l] * x[i]; + ++l; + } + } + + temp = r[jj]; + if (temp == 0.0) { + l = j; + for (i = 0; i <= j; ++i) { /* Computing MAX */ + double dt; + dt = fabs(r[l]); + temp = max(temp,dt); + l += nm1 - i; + } + temp = epsmch * temp; + if (temp == 0.0) { + temp = epsmch; + } + } + x[j] = (qtb[j] - sum) / temp; + } + + + /* Test whether the gauss-newton direction is acceptable. */ + for (j = 0; j < n; ++j) { + wa1[j] = 0.0; + wa2[j] = diag[j] * x[j]; + } + qnorm = denorm(n, &wa2[0]); + if (qnorm <= delta) { + return 0; /* Done - use this direction */ + } + + /* The gauss-newton direction is not acceptable. */ + /* Next, calculate the scaled gradient direction. */ + l = 0; + for (j = 0; j < n; ++j) { + temp = qtb[j]; + for (i = j; i < n; ++i) { + wa1[i] += r[l] * temp; + ++l; + } + wa1[j] /= diag[j]; + } + + /* Calculate the norm of the scaled gradient and test for */ + /* The special case in which the scaled gradient is zero. */ + gnorm = denorm(n, &wa1[0]); + sgnorm = 0.0; + alpha = delta / qnorm; + if (gnorm != 0.0) { + /* Calculate the point along the scaled gradient */ + /* at which the quadratic is minimized. */ + for (j = 0; j < n; ++j) + wa1[j] = wa1[j] / gnorm / diag[j]; + l = 0; + for (j = 0; j < n; ++j) { + sum = 0.0; + for (i = j; i < n; ++i) { + sum += r[l] * wa1[i]; + ++l; + } + wa2[j] = sum; + } + temp = denorm(n, &wa2[0]); + sgnorm = gnorm / temp / temp; + + /* Test whether the scaled gradient direction is acceptable. */ + alpha = 0.0; + if (sgnorm < delta) { + double d0,d1,d2,d3,d4, + /* The scaled gradient direction is not acceptable. */ + /* Finally, calculate the point along the dogleg */ + /* at which the quadratic is minimized. */ + bnorm = denorm(n, &qtb[0]); + d0 = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); + d1 = sgnorm / delta; + d2 = d0 - delta / qnorm; + d3 = delta / qnorm; + d4 = sgnorm / delta; + d0 = d0 - delta / qnorm * (d1 * d1) + + sqrt(d2 * d2 + (1.0 - d3 * d3) * (1.0 - d4 * d4)); + d1 = sgnorm / delta; + alpha = delta / qnorm * (1.0 - d1 * d1) / d0; + } + } + + /* Form appropriate convex combination of the gauss-newton */ + /* direction and the scaled gradient direction. */ + temp = (1.0 - alpha) * min(sgnorm,delta); + for (j = 0; j < n; ++j) + x[j] = temp * wa1[j] + alpha * x[j]; + + return 0; +} /* ddoglg */ + + +/***************************************************************/ +/***************************************************************/ + +/* + * Given an N-vector X, this function calculates the + * Euclidean norm of X. + * + * The Euclidean norm is computed by accumulating the sum of + * squares in three different sums. The sums of squares for the + * small and large components are scaled so that no overflows + * occur. Non-destructive underflows are permitted. Underflows + * and overflows do not occur in the computation of the unscaled + * sum of squares for the intermediate components. + * The definitions of small, intermediate and large components + * depend on two constants, RDWARF and RGIANT. The main + * restrictions on these constants are that RDWARF**2 not + * underflow and RGIANT**2 not overflow. The constants + * given here are suitable for every known computer. + * + */ + +static double denorm( + int n, /* Size of x[] */ + double x[]) /* Input vector */ +{ + if (n < 8) { /* Make it simple and fast */ + double ss = 0.0; + switch (n) { + case 8: + ss += x[7] * x[7]; + case 7: + ss += x[6] * x[6]; + case 6: + ss += x[5] * x[5]; + case 5: + ss += x[4] * x[4]; + case 4: + ss += x[3] * x[3]; + case 3: + ss += x[2] * x[2]; + case 2: + ss += x[1] * x[1]; + case 1: + ss += x[0] * x[0]; + } + return sqrt(ss); + } else { + /* Initialized data */ + static double rdwarf = 3.834e-20; + static double rgiant = 1.304e19; + + /* Local variables */ + static double xabs, x1max, x3max; + static int i; + static double s1, s2, s3, agiant, floatn; + double ret_val, td; + + s1 = 0.0; /* Large component */ + s2 = 0.0; /* Intermedate component */ + s3 = 0.0; /* Small component */ + x1max = 0.0; + x3max = 0.0; + floatn = (double) (n + 1); + agiant = rgiant / floatn; + for (i = 0; i < n; i++) { + xabs = (td = x[i], fabs(td)); + + /* Sum for intermediate components. */ + if (xabs > rdwarf && xabs < agiant) { + td = xabs; /* Computing 2nd power */ + s2 += td * td; + + /* Sum for small components. */ + } else if (xabs <= rdwarf) { + if (xabs <= x3max) { + if (xabs != 0.0) { /* Computing 2nd power */ + td = xabs / x3max; + s3 += td * td; + } + } else { /* Computing 2nd power */ + td = x3max / xabs; + s3 = 1.0 + s3 * (td * td); + x3max = xabs; + } + + /* Sum for large components. */ + } else { + if (xabs <= x1max) { /* Computing 2nd power */ + td = xabs / x1max; + s1 += td * td; + } else { /* Computing 2nd power */ + td = x1max / xabs; + s1 = 1.0 + s1 * (td * td); + x1max = xabs; + } + } + } + + /* Calculation of norm. */ + if (s1 != 0.0) { /* Large is present */ + ret_val = x1max * sqrt(s1 + s2 / x1max / x1max); + } else { /* Medium and small are present */ + if (s2 == 0.0) { + ret_val = x3max * sqrt(s3); /* Small only */ + } else { + if (s2 >= x3max) { /* Medium larger than small */ + ret_val = sqrt(s2 * (1.0 + x3max / s2 * (x3max * s3))); + } else { /* Small large than medium */ + ret_val = sqrt(x3max * (s2 / x3max + x3max * s3)); + } + } + } + return ret_val; + } +} + +/***************************************************************/ +/***************************************************************/ + +/* + * This subroutine computes a forward-difference approximation + * to the N by N Jacobian matrix associated with a specified + * problem of N functions in N variables. If the Jacobian has + * a banded form, then function evaluations are saved by only + * approximating the nonzero terms. + * + */ + +static int dfdjc1( /* Return < 0 if fcn() aborts */ + void *fdata, /* Opaque data pointer to pass to fcn() */ + int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag), + /* Pointer to function we are solving */ + int n, /* Number of functions and variables */ + double x[], /* Input array size n */ + double fvec[], /* array of length n which must contain the functions evaluated at x[] */ + double fjac[], /* output n by n array containing approximation to the Jacobian matrix at x[] */ + int ldfjac, /* stride of fjac[] */ + int ml, /* Number of subdiagonals within the band of the Jacobian matrix */ + int mu, /* Number of superdiagonals within the band of the Jacobian matrix */ + double epsfcn, /* Step length for the forward-difference approximation */ + double *wa1, /* Working arrays of length n */ + double *wa2) +{ + /* Local variables */ + int iflag = 0; + double temp; + int msum; + double h; + int i, j, k; + double eps; + int nm1 = n-1; + + /* M_DIVER is the machine precision. */ + eps = sqrt((max(epsfcn,M_DIVER))); + msum = ml + mu + 1; + if (msum >= n) { + /* Computation of dense approximate jacobian. */ + for (j = 0; j < n; ++j) { + temp = x[j]; + h = eps * fabs(temp); + if (h == 0.0) + h = eps; + x[j] = temp + h; + if ((iflag = (*fcn)(fdata,n, &x[0], &wa1[0], 1)) < 0) + break; + x[j] = temp; + for (i = 0; i < n; ++i) + fjac[i + j * ldfjac] = (wa1[i] - fvec[i]) / h; + } + } else { + /* Computation of banded approximate jacobian. */ + for (k = 0; k < msum; ++k) { + for (j = k; msum < 0 ? j >= nm1 : j <= nm1; j += msum) { + wa2[j] = x[j]; + h = eps * fabs(wa2[j]); + if (h == 0.0) + h = eps; + x[j] = wa2[j] + h; + } + if ((iflag = (*fcn)(fdata, n, &x[0], &wa1[0], 1)) < 0) + break; + for (j = k; msum < 0 ? j >= nm1 : j <= nm1; j += msum) { + x[j] = wa2[j]; + h = eps * fabs(wa2[j]); + if (h == 0.0) + h = eps; + for (i = 0; i < n; ++i) { + fjac[i + j * ldfjac] = 0.0; + if (i >= j - mu && i <= j + ml) + fjac[i + j * ldfjac] = (wa1[i] - fvec[i]) / h; + } + } + } + } + return iflag; +} /* dfdjc1_ */ + +/***************************************************************/ +/***************************************************************/ + +/* + * This subroutine proceeds from the computed QR factorization of + * an M by N matrix A to accumulate the M by M orthogonal matrix + * Q from its factored form. + * + */ + +static int dqform( + int m, /* No of rows of A and the order of Q. */ + int n, /* No of columns of A. */ + double *q, /* m by m array */ + int ldq, /* stride of q[][] */ + double *wa) /* Working aray length m */ +{ + int i, j, k, l, minmn; + double sum; + + /* Zero out upper triangle of q in the first min(m,n) columns. */ + minmn = min(m,n); + if (minmn >= 2) { + for (j = 1; j < minmn; ++j) { + for (i = 0; i < j; ++i) + q[i + j * ldq] = 0.0; + } + } + + /* Initialize remaining columns to those of the identity matrix. */ + if (m > n) { + for (j = n; j < m; ++j) { + for (i = 0; i < m; ++i) { + q[i + j * ldq] = 0.0; + } + q[j + j * ldq] = 1.0; + } + } + + /* Accumulate q from its factored form. */ + for (l = 0; l < minmn; ++l) { + k = minmn - l - 1; + for (i = k; i < m; ++i) { + wa[i] = q[i + k * ldq]; + q[i + k * ldq] = 0.0; + } + q[k + k * ldq] = 1.0; + if (wa[k] != 0.0) { + for (j = k; j < m; ++j) { + double temp; + sum = 0.0; + for (i = k; i < m; ++i) + sum += q[i + j * ldq] * wa[i]; + temp = sum / wa[k]; + for (i = k; i < m; ++i) + q[i + j * ldq] -= temp * wa[i]; + } + } + } + return 0; +} /* dqform_ */ + +/***************************************************************/ +/***************************************************************/ + +/* + * This subroutine uses Householder transformations with column + * pivoting (optional) to compute a QR factorization of the + * M by N matrix A. That is, DQRFAC determines an orthogonal + * matrix Q, a permutation matrix P, and an upper trapezoidal + * matrix R with diagonal elements of nonincreasing magnitude, + * such that A*P = Q*R. The Householder transformation for + * column K, K = 1,2,...,MIN(M,N), is of the form + * + * T + * I - (1/U(K))*U*U + * + * where U has zeros in the first K-1 positions. The form of + * this transformation and the method of pivoting first + * appeared in the corresponding LINPACK subroutine. + * + */ + +static int dqrfac( + int m, /* Number of rows of a[] */ + int n, /* Number of columns of a[] */ + double *a, /* m by n array */ + int lda, /* stride of a[][] */ + bool pivot, /* TRUE to enforce column pivoting */ + int *ipvt, /* Pivot output array, size n */ + double *sigma, /* Output diagonal elements of R, length n */ + double *acnorm, /* Output norms of A, length n */ + double *wa) /* Working array size n */ +{ + /* Local variables */ + int kmax; + int i, j, k, minmn; + double ajnorm; + int jp1; + double sum; + + /* Compute the initial column norms and initialize several arrays. */ + for (j = 0; j < n; ++j) { + acnorm[j] = denorm(m, &a[j * lda]); + sigma[j] = acnorm[j]; + wa[j] = sigma[j]; + if (pivot) + ipvt[j] = j; + } + + /* Reduce a to r with householder transformations. */ + minmn = min(m,n); + for (j = 0; j < minmn; ++j) { + if (pivot) { + /* Bring the column of largest norm into the pivot position. */ + kmax = j; + for (k = j; k < n; ++k) { + if (sigma[k] > sigma[kmax]) { + kmax = k; + } + } + if (kmax != j) { + for (i = 0; i < m; ++i) { + double temp; + temp = a[i + j * lda]; + a[i + j * lda] = a[i + kmax * lda]; + a[i + kmax * lda] = temp; + } + sigma[kmax] = sigma[j]; + wa[kmax] = wa[j]; + k = ipvt[j]; + ipvt[j] = ipvt[kmax]; + ipvt[kmax] = k; + } + } + + /* Compute the householder transformation to reduce the */ + /* j-th column of a to a multiple of the j-th unit vector. */ + ajnorm = denorm(m - j, &a[j + j * lda]); + if (ajnorm != 0.0) { + if (a[j + j * lda] < 0.0) + ajnorm = -ajnorm; + for (i = j; i < m; ++i) + a[i + j * lda] /= ajnorm; + a[j + j * lda] += 1.0; + + /* Apply the transformation to the remaining columns */ + /* and update the norms. */ + jp1 = j + 1; + if (n > jp1) { + for (k = jp1; k < n; ++k) { + double temp; + sum = 0.0; + for (i = j; i < m; ++i) + sum += a[i + j * lda] * a[i + k * lda]; + temp = sum / a[j + j * lda]; + for (i = j; i < m; ++i) + a[i + k * lda] -= temp * a[i + j * lda]; + if (pivot && sigma[k] != 0.0) { + temp = a[j + k * lda] / sigma[k]; + temp = 1.0 - temp * temp; + sigma[k] *= sqrt((max(0.0,temp))); + temp = sigma[k] / wa[k]; + if (0.05 * (temp * temp) <= M_DIVER) { + sigma[k] = denorm(m - jp1, &a[jp1 + k * lda]); + wa[k] = sigma[k]; + } + } + } + } + } + sigma[j] = -ajnorm; + } + return 0; +} /* dqrfac_ */ + +/***************************************************************/ +/***************************************************************/ + |