summaryrefslogtreecommitdiff
path: root/numlib/ludecomp.c
diff options
context:
space:
mode:
authorJörg Frings-Fürst <debian@jff-webhosting.net>2018-07-11 22:20:14 +0200
committerJörg Frings-Fürst <debian@jff-webhosting.net>2018-07-11 22:20:14 +0200
commit7beb00cd8d28c3d5893ce3db907a828d64afdea9 (patch)
tree395a3dee2fe197b8284dee02c5f527889df78413 /numlib/ludecomp.c
parente2d30e0583c047a4bedf4c8d0c86320f1b3fd8ed (diff)
parenta0442ed58dee48a521ea053083ea967894507898 (diff)
Update upstream source from tag 'upstream/2.0.1+repack'
Update to upstream version '2.0.1+repack' with Debian dir 6edb5dd2df9aca152662fc4a8f72bd6d86f8552e
Diffstat (limited to 'numlib/ludecomp.c')
-rwxr-xr-xnumlib/ludecomp.c73
1 files changed, 66 insertions, 7 deletions
diff --git a/numlib/ludecomp.c b/numlib/ludecomp.c
index b756bfe..06fc6a8 100755
--- a/numlib/ludecomp.c
+++ b/numlib/ludecomp.c
@@ -163,6 +163,7 @@ int n /* Dimensionality */
/* Decompose the square matrix A[][] into lower and upper triangles */
/* NOTE that it returns transposed inverse by normal convention. */
+/* NOTE that rows get swaped by swapping matrix pointers! */
/* Use sym_matrix_trans() to fix this. */
/* Return 1 if the matrix is singular. */
int
@@ -260,14 +261,14 @@ double *rip /* Row interchange parity, +/- 1.0, used for determinant */
return 0;
}
-/* Solve a set of simultaneous equations from the */
+/* Solve a set of simultaneous equations A.x = b from the */
/* LU decomposition, by back substitution. */
void
lu_backsub(
double **a, /* A[][] LU decomposed matrix */
int n, /* Dimensionality */
int *pivx, /* Pivoting row permutations record */
-double *b /* Input B[] vecor, return X[] */
+double *b /* Input B[] vector, return X[] */
) {
int i, j;
int nvi; /* When >= 0, indicates non-vanishing B[] index */
@@ -441,15 +442,13 @@ int n /* Dimensionality */
}
/* Pseudo-Invert matrix A using lu decomposition */
-/* NOTE that it returns transposed inverse by normal convention. */
-/* Use matrix_trans() to fix this, or use matrix_trans_mult(). */
/* Return 1 if the matrix is singular, 0 if OK */
int
lu_psinvert(
double **out, /* Output[0..N-1][0..M-1] */
double **in, /* Input[0..M-1][0..N-1] input matrix */
-int m, /* Rows */
-int n /* Columns */
+int m, /* In Rows */
+int n /* In Columns */
) {
int rv = 0;
double **tr; /* Transpose */
@@ -490,13 +489,73 @@ int n /* Columns */
}
free_dmatrix(sq, 0, m-1, 0, m-1);
}
-
free_dmatrix(tr, 0, n-1, 0, m-1);
return rv;
}
+/* ----------------------------------------------------------------- */
+
+// ~~~ Hmm. Need to verify this code is correct...
+
+/* Use Cholesky decomposition on a symetric positive-definite matrix. */
+/* Only the upper triangle of the matrix A is accessed. */
+/* L returns the decomposition */
+/* Return nz if A is not positive-definite */
+int llt_decomp(double **L, double **A, int n) {
+ int i, j, k;
+ double sum;
+
+ /* Scan though upper triangle */
+ for (i = 0; i < n; i++) {
+
+ for (j = i; j < n; j++) {
+
+ sum = A[i][j];
+ for (k = i-1; k >= 0; k--) {
+ sum -= A[i][k] * A[j][k];
+ }
+
+ if (i != j) {
+ L[j][i] = sum/L[i][i];
+ } else {
+ if (sum <= 0.0)
+ return 1;
+ L[i][i] = sqrt(sum);
+ }
+ }
+ }
+ return 0;
+}
+
+/* Solve a set of simultaneous equations A.x = b from the */
+/* LLt decomposition, by back substitution. */
+void llt_backsub(
+double **L, /* A[][] LLt decomposition in lower triangle */
+int n, /* Dimensionality */
+double *b, /* Input B[] */
+double *x /* Return X[] (may be same as B[]) */
+) {
+ int i, k;
+ double sum;
+
+ /* Solve L.y = b, storing y in x. */
+ for (i = 0; i < n; i++) {
+ sum = b[i];
+ for (k = i-1; k >= 0; k--)
+ sum -= L[i][k] * x[k];
+ x[i] = sum/L[i][i];
+ }
+
+ /* Solve Lt.x = y */
+ for (i = n; i >= 0; i--) {
+ sum = x[i];
+ for (k = i+1 ; k < n; k++)
+ sum -= L[k][i] * x[k];
+ x[i] = sum/L[i][i];
+ }
+}