diff options
author | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2017-11-25 10:16:00 +0100 |
---|---|---|
committer | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2017-11-25 10:16:00 +0100 |
commit | f6b8e0eae4374f339487a33e3e4fe5462d5816e1 (patch) | |
tree | 5f5f764fd6cda404b2ad6e85762c03fce3a335db /numlib/varmet.c | |
parent | 615ab5513e79c4abc5bbe5c993587785b6a1738b (diff) |
New upstream version 2.0.0upstream/2.0.0
Diffstat (limited to 'numlib/varmet.c')
-rwxr-xr-x | numlib/varmet.c | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/numlib/varmet.c b/numlib/varmet.c new file mode 100755 index 0000000..3c4b61a --- /dev/null +++ b/numlib/varmet.c @@ -0,0 +1,290 @@ + +/* Multi-dimentional minizer using Variable Metric method */ +/* This is good for smoother, well behaved functions. */ + +/* Code is an original expression of the algorithms decsribed in */ +/* "Numerical Recipes in C", by W.H.Press, B.P.Flannery, */ +/* S.A.Teukolsky & W.T.Vetterling. */ + +/* + * Copyright 2000, 2006, 2007, 2017 Graeme W. Gill + * All rights reserved. + * + * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- + * see the License.txt file for licencing details. + */ + +/* TTBD: + Fix error handling to return status (malloc, excessive itters) + Create to "safe" library ? + Make standalone - ie remove numsup ? + */ + +/* Note that all arrays are indexed from 0 */ + +#include "numsup.h" +#include "powell.h" +#include "varmet.h" + +#undef DEBUG /* Debug */ + +#if defined(PDEBUG) || defined(CDEBUG) +# undef DBG +# define DBG(xxx) printf xxx ; +#else +# undef DBG +# define DBG(xxx) +#endif + +#define FMAX(A,B) ((A) > (B) ? (A) : (B)) +#define EPS 1.0e-10 /* Machine precision. */ +#define TOLX (4 * EPS) /* X value stop value */ +#define MAXLEN 100.0 /* Maximum step length */ + +void linesearch(int di, double cpold[], double fpold, double g[], double p[], double cpnew[], + double *pfp, double maxstep, double (*func)(void *fdata, double tp[]), void *fdata); + +/* return 0 on sucess, 1 on failure due to excessive itterions */ +/* Result will be in cp */ +/* Note that we could use gradient in line minimiser, */ +/* but haven't bothered yet. */ +int varmet( +double *rv, /* If not NULL, return the residual error */ +int di, /* Dimentionality */ +double cp[], /* Initial starting point */ +double s[], /* Size of initial search area */ +double ftol, /* Tollerance of error change to stop on */ +int maxit, /* Maximum iterations allowed */ +double (*func)(void *fdata, double tp[]), /* Error function to evaluate */ +double (*dfunc)(void *fdata, double dp[], double tp[]), /* Gradient function to evaluate */ +void *fdata /* Opaque data needed by function */ +) { + int iter; + double fp, sumsq, maxstep; + double *sdir, sumsdir; /* Search direction */ + double *dp, *lastdp; + double **hessian; /* Hessian matrix */ + double *hlastdp; /* Hessian times lastdp */ + double *cpnew; /* new cp value from linemin */ + double test; + + double den, fac, fad, fae; + double sumdg; + int i, j; + + sdir = dvector(0, di-1); + dp = dvector(0, di-1); + lastdp = dvector(0, di-1); + hessian = dmatrix(0, di-1, 0, di-1); + hlastdp = dvector(0, di-1); + cpnew = dvector(0, di-1); + + fp = (*dfunc)(fdata, dp, cp); + + /* Initial line direction and pde squared */ + sumsq = 0.0; + for (i = 0; i < di ;i++) { + sdir[i] = -dp[i]; + sumsq += cp[i] * cp[i]; + } + + DBG((" initial fp %f dp %s\n", fp, debPdv(di, dp))); + + /* Initialize inverse Hessian to unity */ + for (i = 0; i < di ;i++) { + for (j = 0; j < di ; j++) { + if (i == j) + hessian[i][j] = 1.0; + else + hessian[i][j] = 0.0; + } + } + + /* Maximum line search step size */ + maxstep = MAXLEN * FMAX(sqrt(sumsq), (double)di); + + /* Until we give up */ + for (iter = 0; iter < maxit; iter++) { + + /* Search in direction sdir */ + linesearch(di, cp, fp, dp, sdir, cpnew, &fp, maxstep, func, fdata); + + for (i = 0; i < di; i++) { + sdir[i] = cpnew[i] - cp[i]; /* Update the line direction, */ + cp[i] = cpnew[i]; /* and the current point. */ + } + + /* Test for convergence on x */ + test = 0.0; + for (i = 0 ; i < di; i++) { + double tt = fabs(sdir[i]) / FMAX(fabs(cp[i]), 1.0); + if (tt > test) + test = tt; + } + + if (test < TOLX) { + break; + } + + for (i = 0; i < di; i++) /* Save previous partial deriv. */ + lastdp[i] = dp[i]; + + (*dfunc)(fdata, dp, cp); /* and get the new gradient. */ + + test = 0.0; /* Test for convergence on zero gradient. */ + den = FMAX(fp, 1.0); + + for (i = 0; i < di; i++) { + double tt = fabs(dp[i]) * FMAX(fabs(cp[i]),1.0) / den; + if (tt > test) + test = tt; + } + + if (test < ftol) { + break; + } + + for (i = 0 ; i < di; i++) + lastdp[i] = dp[i] - lastdp[i]; /* Compute diference of gradients, */ + + for (i = 0; i < di; i++) { /* and difernce times current matrix. */ + hlastdp[i] = 0.0; + for (j = 0; j < di; j++) + hlastdp[i] += hessian[i][j] * lastdp[j]; + } + + /* Calculate dot products for the denominator */ + fac = fae = sumdg = sumsdir = 0.0; + for (i = 0; i < di; i++) { + fac += lastdp[i] * sdir[i]; + fae += lastdp[i] * hlastdp[i]; + sumdg += lastdp[i] * lastdp[i]; + sumsdir += sdir[i] * sdir[i]; + } + if (fac > sqrt(EPS * sumdg * sumsdir)) { /* Skip update if fac not sufficiently posive */ + fac = 1.0/fac; + fad = 1.0/fae; + /* The vector that makes BFGS diferent from DFP: */ + for (i = 0; i < di;i++) + lastdp[i] = fac * sdir[i] - fad * hlastdp[i]; + for (i = 0; i < di;i++) { /* The BFGS updating formula: */ + for (j = i; j < di; j++) { + hessian[i][j] += fac * sdir[i] * sdir[j] + - fad * hlastdp[i] * hlastdp[j] + fae * lastdp[i] * lastdp[j]; + hessian[j][i] = hessian[i][j]; + } + } + } + for (i = 0; i < di; i++) { /* Now calculate the next direction to go, */ + sdir[i] = 0.0; + for (j = 0; j < di; j++) + sdir[i] -= hessian[i][j] * dp[j]; + } + } + + free_dvector(cpnew, 0, di-1); + free_dvector(hlastdp, 0, di-1); + free_dmatrix(hessian, 0, di-1, 0, di-1); + free_dvector(lastdp, 0, di-1); + free_dvector(dp, 0, di-1); + free_dvector(sdir, 0, di-1); + if (rv != NULL) + *rv = fp; + return 0; +} + +#define ALPHA 1.0e-4 /* Ensures sucesscient decrease in function value. */ +#define LTOLX 1.0e-7 /* Convergence criterion on linesearch. */ + +void linesearch( +int di, +double cpold[], +double fpold, +double dp[], /* Partial derivative */ +double sdir[], /* Current value */ +double cpnew[], +double *pfp, /* Return value */ +double maxstep, +double (*func)(void *fdata, double tp[]), +void *fdata +) { + double sum, slope; + double slen, slen_min; + double test, fval; + int i; + + for (sum = 0.0, i = 0; i < di; i++) + sum += sdir[i] * sdir[i]; + sum = sqrt(sum); + + if (sum > maxstep) { + for (i = 0; i < di; i++) + sdir[i] *= maxstep/sum; /* Scale if attempted step is too big. */ + } + for (slope = 0.0, i = 0; i < di; i++) + slope += dp[i] * sdir[i]; + + if (slope >= 0.0) + error("Roundoff problem in linesearch."); + + test = 0.0; + for (i = 0;i < di; i++) { + double tt = fabs(sdir[i])/FMAX(fabs(cpold[i]), 1.0); + if (tt > test) + test = tt; + } + + slen_min = TOLX/test; + slen = 1.0; /* Try full step */ + + /* Start of iteration loop. */ + for (;;) { + double slen_2 = slen, slen_t; + + for (i = 0; i < di;i++) + cpnew[i] = cpold[i] + slen * sdir[i]; + + *pfp = (*func)(fdata, cpnew); + + if (slen < slen_min) { + for (i = 0; i < di; i++) + cpnew[i] = cpold[i]; + return; + + } else if (*pfp <= (fpold + ALPHA * slen * slope)) + return; + + /* Backtracking */ + else { + /* First time through */ + if (slen == 1.0) + slen_t = -slope/(2.0 * (*pfp - fpold - slope)); + /* 2nd and subsequent times through */ + else { + double aa, bb; + double rhs_1, rhs_2; + + rhs_1 = *pfp - fpold - slen * slope; + rhs_2 = fval - fpold - slen_2 * slope; + aa = (rhs_1/(slen * slen) - rhs_2/(slen_2 * slen_2))/(slen - slen_2); + bb = (-slen_2 * rhs_1/(slen * slen)+slen * rhs_2/(slen_2 * slen_2))/(slen - slen_2); + if (aa == 0.0) + slen_t = -slope/(2.0 * bb); + else { + double dd = bb * bb - 3.0 * aa * slope; + if (dd < 0.0) + slen_t = 0.5 * slen; + else if (bb <= 0.0) + slen_t = (-bb + sqrt(dd))/(3.0 * aa); + else + slen_t = -slope/(bb + sqrt(dd)); + } + if (slen_t > 0.5 * slen) + slen_t = 0.5 * slen; + } + } + slen_2 = slen; + fval = *pfp; + slen = FMAX(slen_t, 0.1 * slen); + } +} |