diff options
author | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-09-01 13:56:46 +0200 |
---|---|---|
committer | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-09-01 13:56:46 +0200 |
commit | 22f703cab05b7cd368f4de9e03991b7664dc5022 (patch) | |
tree | 6f4d50beaa42328e24b1c6b56b6ec059e4ef21a5 /xicc/cam97s3.c |
Initial import of argyll version 1.5.1-8debian/1.5.1-8
Diffstat (limited to 'xicc/cam97s3.c')
-rw-r--r-- | xicc/cam97s3.c | 596 |
1 files changed, 596 insertions, 0 deletions
diff --git a/xicc/cam97s3.c b/xicc/cam97s3.c new file mode 100644 index 0000000..d75b33e --- /dev/null +++ b/xicc/cam97s3.c @@ -0,0 +1,596 @@ + +/* + * cam97s3hk + * + * Color Appearance Model, based on + * CIECAM97, "Revision for Practical Applications" + * by Mark D. Fairchild, with the addition of the Viewing Flare + * model described on page 487 of "Digital Color Management", + * by Edward Giorgianni and Thomas Madden, and the + * Helmholtz-Kohlraush effect, using the equation + * the Bradford-Hunt 96C model as detailed in Mark Fairchilds + * book "Color Appearance Models". + * + * Author: Graeme W. Gill + * Date: 5/10/00 + * Version: 1.20 + * + * Copyright 2000, 2002 Graeme W. Gill + * Please refer to COPYRIGHT file for details. + * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- + * see the License.txt file for licencing details. + */ + +/* Note that XYZ values are normalised to 1.0 consistent */ +/* with the ICC convention (not 100.0 as assumed by the CIECAM spec.) */ +/* Note that all whites are assumed to be normalised (ie. Y = 1.0) */ + +/* Various changes have been made to allow the CAM conversions to */ +/* function over a much greater range of XYZ and Jab values that */ +/* the functions are described in the above references. This is */ +/* because such values arise in the process of gamut mapping, and */ +/* in scanning through the grid of PCS values needed to fill in */ +/* the A2B table of an ICC profile. Such values have no correlation */ +/* to a real color value, but none the less need to be handled without */ +/* causing an exception, in a geometrically consistent and reversible */ +/* fashion. */ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> +#include "xcam.h" +#include "cam97s3.h" + +#undef DIAG /* Print internal value diagnostics for each conversion */ + +#define CAM_PI 3.14159265359 + +/* Utility function */ +/* Return a viewing condition enumeration from the given Ambient and */ +/* Adapting/Surround Luminance. */ +static ViewingCondition cam97_Ambient2VC( +double La, /* Ambient Luminance (cd/m^2) */ +double Lv /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */ +) { + double r; + + if (fabs(La) < 1e-10) /* Hmm. */ + r = 1.0; + else + r = La/Lv; + + if (r < 0.01) + return vc_dark; + if (r < 0.2) + return vc_dim; + return vc_average; +} + +static void cam_free(cam97s3 *s); +static int set_view(struct _cam97s3 *s, ViewingCondition Ev, double Wxyz[3], + double La, double Yb, double Lv, double Yf, double Fxyz[3], + int hk); +static int XYZ_to_cam(struct _cam97s3 *s, double *Jab, double *xyz); +static int cam_to_XYZ(struct _cam97s3 *s, double *xyz, double *Jab); + +/* Create a cam97s3 conversion object, with default viewing conditions */ +cam97s3 *new_cam97s3(void) { + cam97s3 *s; +// double D50[3] = { 0.9642, 1.0000, 0.8249 }; + + if ((s = (cam97s3 *)calloc(1, sizeof(cam97s3))) == NULL) { + fprintf(stderr,"cam97s3: malloc failed allocating object\n"); + exit(-1); + } + + /* Initialise methods */ + s->del = cam_free; + s->set_view = set_view; + s->XYZ_to_cam = XYZ_to_cam; + s->cam_to_XYZ = cam_to_XYZ; + + /* Set a default viewing condition ?? */ + /* set_view(s, vc_average, D50, 33.0, 0.2, 0.0, 0.0, D50, 0); */ + + return s; +} + +static void cam_free(cam97s3 *s) { + if (s != NULL) + free(s); +} + +/* A version of the pow() function that preserves the */ +/* sign of its first argument. */ +static double spow(double x, double y) { + return x < 0.0 ? -pow(-x,y) : pow(x,y); +} + +static int set_view( +cam97s3 *s, +ViewingCondition Ev, /* Enumerated Viewing Condition */ +double Wxyz[3], /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */ +double La, /* Adapting/Surround Luminance cd/m^2 */ +double Yb, /* Relative Luminance of Background to reference white */ +double Lv, /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */ + /* Ignored if Ev is set to other than vc_none */ +double Yf, /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */ +double Fxyz[3], /* The Flare white coordinates (typically the Ambient color) */ +int hk /* Flag, NZ to use Helmholtz-Kohlraush effect */ +) { + double tt; + + if (Ev == vc_none) /* Compute enumerated viewing condition */ + Ev = cam97_Ambient2VC(La, Lv); + /* Transfer parameters to the object */ + s->Ev = Ev; + s->Wxyz[0] = Wxyz[0]; + s->Wxyz[1] = Wxyz[1]; + s->Wxyz[2] = Wxyz[2]; + s->Yb = Yb > 0.005 ? Yb : 0.005; /* Set minimum to avoid divide by 0.0 */ + s->La = La; + s->Yf = Yf; + s->Fxyz[0] = Fxyz[0]; + s->Fxyz[1] = Fxyz[1]; + s->Fxyz[2] = Fxyz[2]; + s->hk = hk; + + /* Compute the internal parameters by category */ + switch(s->Ev) { + case vc_dark: + s->C = 0.525; + s->Nc = 0.8; + s->F = 0.9; + break; + case vc_dim: + s->C = 0.59; + s->Nc = 0.95; + s->F = 0.9; + break; + case vc_cut_sheet: + s->C = 0.41; + s->Nc = 0.8; + s->F = 0.9; + break; + default: /* average */ + s->C = 0.69; + s->Nc = 1.0; + s->F = 1.0; + break; + } + + /* Compute values that only change with viewing parameters */ + + /* Figure out the Flare contribution to the flareless XYZ input */ + tt = s->Yf * s->Wxyz[1]/s->Fxyz[1]; + s->Fsxyz[0] = tt * s->Fxyz[0]; + s->Fsxyz[1] = tt * s->Fxyz[1]; + s->Fsxyz[2] = tt * s->Fxyz[2]; + + /* Rescale so that the sum of the flare and the input doesn't exceed white */ + s->Fsc = s->Wxyz[1]/(s->Fsxyz[1] + s->Wxyz[1]); + s->Fsxyz[0] *= s->Fsc; + s->Fsxyz[1] *= s->Fsc; + s->Fsxyz[2] *= s->Fsc; + s->Fisc = 1.0/s->Fsc; + + /* Sharpened cone response white values */ + s->rgbW[0] = 0.8562 * s->Wxyz[0] + 0.3372 * s->Wxyz[1] - 0.1934 * s->Wxyz[2]; + s->rgbW[1] = -0.8360 * s->Wxyz[0] + 1.8327 * s->Wxyz[1] + 0.0033 * s->Wxyz[2]; + s->rgbW[2] = 0.0357 * s->Wxyz[0] - 0.0469 * s->Wxyz[1] + 1.0112 * s->Wxyz[2]; + + /* Degree of chromatic adaptation */ + s->D = s->F - (s->F / (1.0 + 2.0 * pow(s->La, 0.25) + s->La * s->La / 300.0) ); + + /* Chromaticaly transformed white value */ + s->rgbcW[0] = (s->D * (1.0/s->rgbW[0]) + 1.0 - s->D ) * s->rgbW[0]; + s->rgbcW[1] = (s->D * (1.0/s->rgbW[1]) + 1.0 - s->D ) * s->rgbW[1]; + s->rgbcW[2] = (s->D * (1.0/s->rgbW[2]) + 1.0 - s->D ) * s->rgbW[2]; + + /* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */ + s->rgbpW[0] = 0.6962394300923847 * s->rgbcW[0] + + 0.2492311682812913 * s->rgbcW[1] + + 0.0545394016263241 * s->rgbcW[2]; + s->rgbpW[1] = 0.3054822636273227 * s->rgbcW[0] + + 0.5921282520433844 * s->rgbcW[1] + + 0.1023894843292929 * s->rgbcW[2]; + s->rgbpW[2] = -0.0139683251072516 * s->rgbcW[0] + + 0.0278065725014340 * s->rgbcW[1] + + 0.9861617526058175 * s->rgbcW[2]; + + /* Background induction factor */ + s->n = s->Yb/ s->Wxyz[1]; + s->nn = pow((1.64 - pow(0.29, s->n)), 1.41); /* Pre computed value */ + + /* Lightness contrast factor ?? */ + { + double k; + + k = 1.0 / (5.0 * s->La + 1.0); + s->Fl = 0.2 * pow(k , 4.0) * 5.0 * s->La + + 0.1 * pow(1.0 - pow(k , 4.0) , 2.0) * pow(5.0 * s->La , 1.0/3.0); + } + + /* Background and Chromatic brightness induction factors */ + s->Nbb = 0.725 * pow(1.0/s->n, 0.2); + s->Ncb = s->Nbb; + + /* Base exponential nonlinearity */ + s->z = 1.0 + pow(s->n , 0.5); + + /* Post-adapted cone response of white */ + tt = pow(s->Fl * s->rgbpW[0], 0.73); + s->rgbaW[0] = (40.0 * tt / (tt + 2.0)) + 1.0; + tt = pow(s->Fl * s->rgbpW[1], 0.73); + s->rgbaW[1] = (40.0 * tt / (tt + 2.0)) + 1.0; + tt = pow(s->Fl * s->rgbpW[2], 0.73); + s->rgbaW[2] = (40.0 * tt / (tt + 2.0)) + 1.0; + + /* Achromatic response of white */ + s->Aw = (2.0 * s->rgbaW[0] + s->rgbaW[1] + (1.0/20.0) * s->rgbaW[2] - 3.05) * s->Nbb; + +#ifdef DIAG + printf("Scene parameters:\n"); + printf("Viewing condition Ev = %d\n",s->Ev); + printf("Ref white Wxyz = %f %f %f\n", s->Wxyz[0], s->Wxyz[1], s->Wxyz[2]); + printf("Relative liminance of background Yb = %f\n", s->Yb); + printf("Adapting liminance La = %f\n", s->La); + printf("Flare Yf = %f\n", s->Yf); + printf("Flare color Fxyz = %f %f %f\n", s->Fxyz[0], s->Fxyz[1], s->Fxyz[2]); + + printf("Internal parameters:\n"); + printf("Surround Impact C = %f\n", s->C); + printf("Chromatic Induction Nc = %f\n", s->Nc); + printf("Adaptation Degree F = %f\n", s->F); + + printf("Pre-computed values\n"); + printf("Sharpened cone white rgbW = %f %f %f\n", s->rgbW[0], s->rgbW[1], s->rgbW[2]); + printf("Degree of chromatic adaptation D = %f\n", s->D); + printf("Chromatically transformed white rgbcW = %f %f %f\n", s->rgbcW[0], s->rgbcW[1], s->rgbcW[2]); + printf("Hunter-P-E cone response white rgbpW = %f %f %f\n", s->rgbpW[0], s->rgbpW[1], s->rgbpW[2]); + printf("Background induction factor n = %f\n", s->n); + printf("Lightness contrast factor Fl = %f\n", s->Fl); + printf("Background brightness induction factor Nbb = %f\n", s->Nbb); + printf("Chromatic brightness induction factor Ncb = %f\n", s->Ncb); + printf("Base exponential nonlinearity z = %f\n", s->z); + printf("Post adapted cone response white rgbaW = %f %f %f\n", s->rgbaW[0], s->rgbaW[1], s->rgbaW[2]); + printf("Achromatic response of white Aw = %f\n", s->Aw); +#endif + return 0; +} + +/* Conversions */ +static int XYZ_to_cam( +struct _cam97s3 *s, +double Jab[3], +double XYZ[3] +) { + int i; + double xyz[3], rgb[3], rgbp[3], rgba[3], rgbc[3]; + double a, b, nab, J, C, h, e, A, ss; + double ttd, tt; + + /* Add in flare */ + xyz[0] = s->Fsc * XYZ[0] + s->Fsxyz[0]; + xyz[1] = s->Fsc * XYZ[1] + s->Fsxyz[1]; + xyz[2] = s->Fsc * XYZ[2] + s->Fsxyz[2]; + + /* Spectrally sharpened cone responses */ + rgb[0] = 0.8562 * xyz[0] + 0.3372 * xyz[1] - 0.1934 * xyz[2]; + rgb[1] = -0.8360 * xyz[0] + 1.8327 * xyz[1] + 0.0033 * xyz[2]; + rgb[2] = 0.0357 * xyz[0] - 0.0469 * xyz[1] + 1.0112 * xyz[2]; + + /* Chromaticaly transformed sample value */ + rgbc[0] = (s->D * (1.0/s->rgbW[0]) + 1.0 - s->D ) * rgb[0]; + rgbc[1] = (s->D * (1.0/s->rgbW[1]) + 1.0 - s->D ) * rgb[1]; + rgbc[2] = (s->D * (1.0/s->rgbW[2]) + 1.0 - s->D ) * rgb[2]; + + /* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */ + rgbp[0] = 0.6962394300923847 * rgbc[0] + + 0.2492311682812913 * rgbc[1] + + 0.0545394016263241 * rgbc[2]; + rgbp[1] = 0.3054822636273227 * rgbc[0] + + 0.5921282520433844 * rgbc[1] + + 0.1023894843292929 * rgbc[2]; + rgbp[2] = -0.0139683251072516 * rgbc[0] + + 0.0278065725014340 * rgbc[1] + + 0.9861617526058175 * rgbc[2]; + + /* Post-adapted cone response of sample. */ + /* rgba[] has a minimum value of 1.0 for XYZ[] = 0 and no flare. */ + /* We add linear segments at the ends of this conversion to */ + /* allow numerical handling of a wider range of values */ + for (i = 0; i < 3; i++) { + if (rgbp[i] < 0.0) { + tt = pow(s->Fl * -rgbp[i], 0.73); + if (tt < 78.0) + rgba[i] = (2.0 - 39.0 * tt) / (tt + 2.0); + else + rgba[i] = (2.0 - tt) / 2.0; + + } else { + tt = pow(s->Fl * rgbp[i], 0.73); + if (tt < 78.0) + rgba[i] = (41.0 * tt + 2.0) / (tt + 2.0); + else + rgba[i] = (tt + 2.0) / 2.0; + } + } + + /* Preliminary red-green & yellow-blue opponent dimensions */ + a = rgba[0] - 12.0 * rgba[1]/11.0 + rgba[2]/11.0; + b = (1.0/9.0) * (rgba[0] + rgba[1] - 2.0 * rgba[2]); + nab = sqrt(a * a + b * b); /* Normalised a, b */ + + /* Hue angle */ + h = (180.0/CAM_PI) * atan2(b,a); + h = (h < 0.0) ? h + 360.0 : h; + + /* Eccentricity factor */ + { + double r, e1, e2, h1, h2; + + if (h <= 20.14) + e1 = 0.8565, e2 = 0.8, h1 = 0.0, h2 = 20.14; + else if (h <= 90.0) + e1 = 0.8, e2 = 0.7, h1 = 20.14, h2 = 90.0; + else if (h <= 164.25) + e1 = 0.7, e2 = 1.0, h1 = 90.0, h2 = 164.25; + else if (h <= 237.53) + e1 = 1.0, e2 = 1.2, h1 = 164.25, h2 = 237.53; + else + e1 = 1.2, e2 = 0.8565, h1 = 237.53, h2 = 360.0; + + r = (h-h1)/(h2-h1); +#ifdef CIECAM97S3_SPLINE_E + r = r * r * (3.0 - 2.0 * r); +#endif + e = e1 + r * (e2-e1); + } + + /* Achromatic response */ + /* Note that the minimum values of rgba[] for XYZ = 0 is 1.0, */ + /* hence magic 3.05 below comes from the following weighting of rgba[], */ + /* to base A at 0.0 */ + A = (2.0 * rgba[0] + rgba[1] + (1.0/20.0) * rgba[2] - 3.05) * s->Nbb; + + /* Lightness */ + J = spow(A/s->Aw, s->C * s->z); /* J/100 - keep Sign */ + + /* Saturation */ + /* Note that the minimum values for rgba[] for XYZ = 0 is 1.0 */ + /* Hence magic 3.05 below comes from the following weighting of rgba[] */ + ttd = rgba[0] + rgba[1] + (21.0/20.0) * rgba[2]; + ttd = fabs(ttd); + if (ttd < 3.05) { /* If not physically realisable, limit denominator */ + ttd = 3.05; /* hence limit max ss value */ + } + ss = (50000.0/13.0 * s->Nc * s->Ncb * nab * e) / ttd; + + /* Chroma - Keep C +ve and make sure J doesn't force it to 0 */ + tt = fabs(J); + if (tt < 0.01) + tt = 0.01; + C = 0.7487 * pow(ss, 0.973) * pow(tt, 0.945 * s->n) * s->nn; + + /* Helmholtz-Kohlraush effect */ + if (s->hk) { + double kk = C/300.0 * sin(CAM_PI * fabs(0.5 * (h - 90.0))/180.0); + if (kk > 0.9) /* Limit kk to a reasonable range */ + kk = 0.9; + J = J + (1.0 - J) * kk; + } + + J *= 100.0; /* Scale J */ + + /* Compute Jab value */ + Jab[0] = J; + if (nab > 1e-10) { + Jab[1] = C * a/nab; + Jab[2] = C * b/nab; + } else { + Jab[1] = 0.0; + Jab[2] = 0.0; + } + +#ifdef DIAG + printf("Processing:\n"); + printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]); + printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]); + printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]); + printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]); + printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]); + printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]); + printf("Prelim red green a = %f, b = %f\n", a, b); + printf("Hue angle h = %f\n", h); + printf("Eccentricity factor e = %f\n", e); + printf("Achromatic response A = %f\n", A); + printf("Lightness J = %f\n", J); + printf("Saturation ss = %f\n", ss); + printf("Chroma C = %f\n", C); + printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]); +#endif + return 0; +} + +static int cam_to_XYZ( +struct _cam97s3 *s, +double XYZ[3], +double Jab[3] +) { + int i; + double xyz[3], rgb[3], rgbp[3], rgba[3], rgbc[3]; + double ja, jb, aa, ab, a, b, J, C, h, e, A, ss; + double tt, ttA, tte; + + J = Jab[0] * 0.01; /* J/100 */ + ja = Jab[1]; + jb = Jab[2]; + + /* Compute hue angle */ + h = (180.0/CAM_PI) * atan2(jb, ja); + h = (h < 0.0) ? h + 360.0 : h; + + /* Compute chroma value */ + C = sqrt(ja * ja + jb * jb); /* Must be Always +ve */ + + /* Helmholtz-Kohlraush effect */ + if (s->hk) { + double kk = C/300.0 * sin(CAM_PI * fabs(0.5 * (h - 90.0))/180.0); + if (kk > 0.9) /* Limit kk to a reasonable range */ + kk = 0.9; + J = (J - kk)/(1.0 - kk); + } + + /* Eccentricity factor */ + { + double r, e1, e2, h1, h2; + + if (h <= 20.14) + e1 = 0.8565, e2 = 0.8, h1 = 0.0, h2 = 20.14; + else if (h <= 90.0) + e1 = 0.8, e2 = 0.7, h1 = 20.14, h2 = 90.0; + else if (h <= 164.25) + e1 = 0.7, e2 = 1.0, h1 = 90.0, h2 = 164.25; + else if (h <= 237.53) + e1 = 1.0, e2 = 1.2, h1 = 164.25, h2 = 237.53; + else + e1 = 1.2, e2 = 0.8565, h1 = 237.53, h2 = 360.0; + + r = (h-h1)/(h2-h1); +#ifdef CIECAM97S3_SPLINE_E + r = r * r * (3.0 - 2.0 * r); +#endif + e = e1 + r * (e2-e1); + } + + /* Achromatic response */ + A = spow(J, 1.0/(s->C * s->z)) * s->Aw; /* Keep sign of J */ + + /* Saturation - keep +ve and make sure J = 0 doesn't blow it up. */ + tt = fabs(J); + if (tt < 0.01) + tt = 0.01; + ss = pow(C/(0.7487 * pow(tt, 0.945 * s->n) * s->nn), 1.0/0.973); /* keep +ve */ + + /* Compute a & b, taking care of numerical problems */ + aa = fabs(ja); + ab = fabs(jb); + ttA = (A/s->Nbb)+3.05; /* Common factor */ + tte = 50000.0/13.0 * e * s->Nc * s->Ncb; /* Common factor */ + + if (aa < 1e-10 && ab < 1e-10) { + a = ja; + b = jb; + } else if (aa > ab) { + double tanh = jb/ja; + double sign = (h > 90.0 && h <= 270.0) ? -1.0 : 1.0; + + if (ttA < 0.0) + sign = -sign; + + a = (ss * ttA) + / (sign * sqrt(1.0 + tanh * tanh) * tte + (ss * (11.0/23.0 + (108.0/23.0) * tanh))); + b = a * tanh; + + } else { /* ab > aa */ + double itanh = ja/jb; + double sign = (h > 180.0 && h <= 360.0) ? -1.0 : 1.0; + + if (ttA < 0.0) + sign = -sign; + + b = (ss * ttA) + / (sign * sqrt(1.0 + itanh * itanh) * tte + (ss * (108.0/23.0 + (11.0/23.0) * itanh))); + a = b * itanh; + } + + { /* Check if we have a limited saturation because it is non-realisable */ + double tts; + double nab = sqrt(a * a + b * b); /* Normalised a, b */ + tts = (nab * tte) / 3.05; /* Limited saturation number */ + if (tts < ss) { /* Saturation exceeds it anyway so must have limited denom. */ + a *= ss/tts; /* Rescale a & b to account for extra ss */ + b *= ss/tts; /* even though denom was limited (since nab was in numerator). */ + } + } + + /* Post-adapted cone response of sample */ + rgba[0] = (20.0/61.0) * ttA + + ((41.0 * 11.0)/(61.0 * 23.0)) * a + + ((288.0 * 1.0)/(61.0 * 23.0)) * b; + rgba[1] = (20.0/61.0) * ttA + - ((81.0 * 11.0)/(61.0 * 23.0)) * a + - ((261.0 * 1.0)/(61.0 * 23.0)) * b; + rgba[2] = (20.0/61.0) * ttA + - ((20.0 * 11.0)/(61.0 * 23.0)) * a + - ((20.0 * 315.0)/(61.0 * 23.0)) * b; + + /* Hunt-Pointer_Estevez cone space */ + /* (with linear segments at the ends0 */ + tt = 1.0/s->Fl; + for (i = 0; i < 3; i++) { + if (rgba[i] < 1.0) { + double ta = rgba[i] > -38.0 ? rgba[i] : -38.0; + rgbp[i] = -tt * pow((2.0 - 2.0 * rgba[i] )/(39.0+ ta), 1.0/0.73); + } else { + double ta = rgba[i] < 40.0 ? rgba[i] : 40.0; + rgbp[i] = tt * pow((2.0 * rgba[i] -2.0)/(41.0 - ta), 1.0/0.73); + } + } + + /* Chromaticaly transformed sample value */ + rgbc[0] = 1.7605948990728097 * rgbp[0] + - 0.7400833814121892 * rgbp[1] + - 0.0205291236096116 * rgbp[2]; + rgbc[1] = -0.9170843265341294 * rgbp[0] + + 2.0826033118941054 * rgbp[1] + - 0.1655098145167107 * rgbp[2]; + rgbc[2] = 0.0507964678367941 * rgbp[0] + - 0.0692054676442407 * rgbp[1] + + 1.0184084918427683 * rgbp[2]; + + /* Spectrally sharpened cone responses */ + rgb[0] = rgbc[0]/(s->D * (1.0/s->rgbW[0]) + 1.0 - s->D); + rgb[1] = rgbc[1]/(s->D * (1.0/s->rgbW[1]) + 1.0 - s->D); + rgb[2] = rgbc[2]/(s->D * (1.0/s->rgbW[2]) + 1.0 - s->D); + + /* XYZ values */ + xyz[0] = 0.9873999149199270 * rgb[0] + - 0.1768250198556842 * rgb[1] + + 0.1894251049357572 * rgb[2]; + xyz[1] = 0.4504351090445316 * rgb[0] + + 0.4649328977527109 * rgb[1] + + 0.0846319932027575 * rgb[2]; + xyz[2] = -0.0139683251072516 * rgb[0] + + 0.0278065725014340 * rgb[1] + + 0.9861617526058175 * rgb[2]; + + /* Subtract flare */ + XYZ[0] = s->Fisc * (xyz[0] - s->Fsxyz[0]); + XYZ[1] = s->Fisc * (xyz[1] - s->Fsxyz[1]); + XYZ[2] = s->Fisc * (xyz[2] - s->Fsxyz[2]); + +#ifdef DIAG + printf("Processing:\n"); + printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]); + printf("Chroma C = %f\n", C); + printf("Saturation ss = %f\n", ss); + printf("Lightness J = %f\n", J * 100.0); + printf("Achromatic response A = %f\n", A); + printf("Eccentricity factor e = %f\n", e); + printf("Hue angle h = %f\n", h); + printf("Prelim red green a = %f, b = %f\n", a, b); + printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]); + printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]); + printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]); + printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]); + printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]); + printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]); +#endif + return 0; +} + + + + |