diff options
Diffstat (limited to 'gamut/nearsmth.c')
-rw-r--r-- | gamut/nearsmth.c | 1803 |
1 files changed, 667 insertions, 1136 deletions
diff --git a/gamut/nearsmth.c b/gamut/nearsmth.c index c65704e..c0bd2be 100644 --- a/gamut/nearsmth.c +++ b/gamut/nearsmth.c @@ -52,7 +52,6 @@ #include <fcntl.h> #include <string.h> #include <math.h> -#include "counters.h" #include "icc.h" #include "numlib.h" #include "rspl.h" @@ -61,14 +60,12 @@ #include "vrml.h" #undef SAVE_VRMLS /* [Und] Save various vrml's */ -#undef PLOT_SMOOTHING_CHANGE /* [Und] Dest point change due to smoothing in "dst_smvec.wrl" */ #undef PLOT_MAPPING_INFLUENCE /* [Und] Plot sci_gam colored by dominant guide influence: */ /* Absolute = red, Relative = yellow, Radial = blue, Depth = green */ #undef PLOT_AXES /* [Und] */ #undef PLOT_EVECTS /* [Und] Create VRML of error correction vectors */ #undef VERB /* [Und] [0] If <= 1, print progress headings */ /* if > 1, print information about everything */ -#undef SHOW_NEIGB /* [Und] Show the neighborhood point group in src */ #undef SHOW_NEIGB_WEIGHTS /* [Und] Show the weighting for each point of neighbours in turn */ #undef DIAG_POINTS /* [Und] Short circuite mapping and show vectors of various */ @@ -81,8 +78,9 @@ #define DARK_L 5.0 /* "dark" L/J value */ #define NEUTRAL_C 20.0 /* "neutral" C value */ #define NO_TRIALS 6 /* [6] Number of random trials */ -#define VECADJPASSES 8 /* [8] Vector smoothing and adjust passes. */ -#define RSPLPASSES 4 /* [4] Number of rspl smoothing & adjustment passes */ +#define VECSMOOTHING /* [Def] Enable vector smoothing */ +#define VECADJPASSES 3 /* [3] Adjust vectors after smoothing to be on dest gamut */ +#define RSPLPASSES 4 /* [4] Number of rspl adjustment passes */ #define RSPLSCALE 1.8 /* [1.8] Offset within gamut for rspl smoothing to aim for */ #define SHRINK 5.0 /* [5.0] Shrunk destination evect surface factor */ #define CYLIN_SUBVEC /* [Def] Make sub-vectors always cylindrical direction */ @@ -116,7 +114,7 @@ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE) -static void create_influence_plot(nearsmth *smp, int nmpts, int mapres); +static void create_influence_plot(nearsmth *smp, int nmpts); #endif /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ @@ -196,7 +194,7 @@ double sumpow /* Sum power. 0.0 == 2.0 */ /* Compute the LCh differences squared of in1 - in2 */ /* (This is like the CIE DE94) */ -static void diffLChsq( +static void diffLCh( double out[3], double in1[3], /* Destination location */ double in2[3] /* Source location */ @@ -260,7 +258,7 @@ double dcratio, /* Depth compression ratio of mapping */ double dxratio /* Depth expansion ratio of mapping */ ) { double a_o; - double va, vr, vd, vv = 0.0; + double va, vr = 0.0, vl, vd, vv = 0.0; /* Absolute, Delta E^2 between test point and destination closest */ /* aodv is already positioned acording to the LCh weights, */ @@ -269,7 +267,7 @@ double dxratio /* Depth expansion ratio of mapping */ va = wdesq(dtp, aodv, a_o, a_o, a_o, SUM_POW); /* Radial. Delta E^2 between test point and source mapped radially to dest gamut */ - vr = wdesq(dtp, drv, w->rl.l, w->rl.c, w->rl.h, SUM_POW); + vl = wdesq(dtp, drv, w->rl.l, w->rl.c, w->rl.h, SUM_POW); /* Depth ratio error^2. */ vd = w->d.co * dcratio * dcratio @@ -278,16 +276,17 @@ double dxratio /* Depth expansion ratio of mapping */ /* Diagnostic values */ p->dbgv[0] = va; p->dbgv[1] = vr; - p->dbgv[2] = vd; + p->dbgv[2] = vl; + p->dbgv[3] = vd; - vv = va + vr + vd; /* Sum of squares */ -// vv = sqrt(va) + sqrt(vr) + sqrt(vd); /* Linear sum is better ? */ -// vv = pow(va, 0.7) + pow(vr, 0.7) + pow(vd, 0.7); /* Linear sum is better ? */ + vv = va + vr + vl + vd; /* Sum of squares */ +// vv = sqrt(va) + sqrt(vr) + sqrt(vl) + sqrt(vd); /* Linear sum is better ? */ +// vv = pow(va, 0.7) + pow(vr, 0.7) + pow(vl, 0.7) + pow(vd, 0.7); /* Linear sum is better ? */ #ifdef NEVER printf("~1 dtp %f %f %f\n", dtp[0], dtp[1], dtp[2]); printf("~1 va = %f from aodv %f %f %f, weight %f\n", va, aodv[0], aodv[1], aodv[2], a_o); - printf("~1 vr = %f from drv %f %f %f, weights %f %f %f\n", vr, drv[0], drv[1], drv[2], w->rl.l, w->rl.c, w->rl.h); + printf("~1 vl = %f from drv %f %f %f, weights %f %f %f\n", vl, drv[0], drv[1], drv[2], w->rl.l, w->rl.c, w->rl.h); printf("~1 vd = %f from d.co %f d.xo %f, weights %f %f\n", vd, w->d.co,w->d.xo,dcratio * dcratio,dxratio * dxratio); printf("~1 return vv = %f\n", vv); #endif /* NEVER */ @@ -301,13 +300,12 @@ double dxratio /* Depth expansion ratio of mapping */ /* and cusp mapping function. */ struct _smthopt { /* optimisation */ - int debug; /* debug flag */ int pass; /* Itteration round */ int ix; /* Index of point being optimized */ nearsmth *p; /* Point being optimised */ int useexp; /* Flag indicating whether expansion is permitted */ - double *wn; /* Target of weighted nearest */ - gamut *wngam; /* for optfunc1 and optfunc1a */ + int debug; /* debug flag */ + gamut *shgam; /* for optfunc1a */ /* Setup state */ int isJab; /* Flag indicating Jab rather than Lab space */ @@ -336,7 +334,7 @@ struct _smthopt { }; typedef struct _smthopt smthopt; -static void init_ce(smthopt *s, gamut *sc_gam, gamut *si_gam, gamut *d_gam, int src_kbp, int dst_kbp, double d_bp[3]); +static void init_ce(smthopt *s, gamut *sc_gam, gamut *d_gam, int src_kbp, int dst_kbp, double d_bp[3]); static void comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt); static void inv_comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt); static double comp_naxbf(smthopt *s, double in[3]); @@ -359,97 +357,84 @@ static void spow3(double *out, double *in, double ex) { } } -/* Absolute error function, used by optfunc1() & optfunc1a() */ -static double aerrf( - nearsmth *p, - double *dv, - double *sv +/* Powell optimisation function for setting minimal absolute error target point. */ +/* We get a 2D plane in the 3D space, of the destination point, */ +/* who's location we are optimizing. */ +static double optfunc1( +void *fdata, +double *_dv ) { - double delch[3], rv; + smthopt *s = (smthopt *)fdata; + nearsmth *p = s->p; /* Point being optimised */ + int i, j, k; + double dv[3]; /* 3D point in question */ + double ddv[3]; /* Point in question mapped to dst surface */ + double delch[3]; + double rv; /* Out of gamut, return value */ + + /* Convert from 2D to 3D. */ + dv[2] = _dv[1]; + dv[1] = _dv[0]; + dv[0] = 50.0; + icmMul3By3x4(dv, p->m3d, dv); + +//printf("~1 optfunc1 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]); + p->dgam->radial(p->dgam, ddv, dv); /* Map to dst surface to check current location */ +//printf("~1 optfunc1 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]); + + if (p->swap) { + /* This is actually a point on the real source gamut, so */ + /* convert to cusp mapped rotated source gamut value */ + comp_ce(s, ddv, ddv, &p->wt); +//printf("~1 after cusp rot got %f %f %f\n",ddv[0],ddv[1],ddv[2]); + } #ifdef NEVER /* Absolute weighted delta E between source and dest test point */ - rv = wdesq(dv, sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW); + rv = wdesq(ddv, p->sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW); #else { - double ppp = p->wt.a.lxpow; /* Extra power when L de is over thr */ + double ppp = p->wt.a.lxpow; double thr = p->wt.a.lxthr; /* Xover between normal and power */ double sumpow = SUM_POW; - double del; - diffLChsq(delch, dv, sv); - del = sqrt(delch[0]); /* delta L */ + diffLCh(delch, ddv, p->sv); if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */ #ifdef LINEAR_HUE_SUM double ll, cc, hh; - ll = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr)); + ll = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp); cc = p->wt.ra.c * delch[1]; hh = p->wt.ra.h * delch[2]; rv = sqrt(ll + cc) + sqrt(hh); rv *= rv; #else - rv = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr)) + rv = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp) + p->wt.ra.c * delch[1] + p->wt.ra.h * delch[2]; #endif } else { sumpow *= 0.5; - rv = p->wt.ra.l * pow(delch[0], (1.0 + (ppp - 1.0) * del/(del + thr)) * sumpow) + + rv = p->wt.ra.l * pow(delch[0], ppp * sumpow) * thr/pow(thr, ppp * sumpow) + p->wt.ra.c * pow(delch[1], sumpow) + p->wt.ra.h * pow(delch[2], sumpow); } } #endif - return rv; -} - -/* Powell optimisation function for setting minimal absolute error target point, */ -/* with a correction for swap. */ -/* We get a 2D plane in the 3D space, of the destination point, */ -/* who's location we are optimizing to wngam. */ -static double optfunc1( -void *fdata, -double *_dv -) { - smthopt *s = (smthopt *)fdata; - nearsmth *p = s->p; /* Point being optimised */ - int i, j, k; - double dv[3]; /* 3D point in question */ - double ddv[3]; /* Point in question mapped to wngam surface */ - double rv; /* Out of gamut, return value */ - - /* Convert from 2D to 3D. */ - dv[2] = _dv[1]; - dv[1] = _dv[0]; - dv[0] = 50.0; - icmMul3By3x4(dv, p->m3d, dv); - -//printf("~1 optfunc1 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]); - s->wngam->radial(s->wngam, ddv, dv); /* Map to dst surface to check current location */ -//printf("~1 optfunc1 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]); - - if (p->swap) { - /* This is actually a point on the real source gamut, so */ - /* convert to cusp mapped rotated source gamut value */ - comp_ce(s, ddv, ddv, &p->wt); -//printf("~1 after cusp rot got %f %f %f\n",ddv[0],ddv[1],ddv[2]); - } - - rv = aerrf(p, ddv, s->wn); if (s->debug) - printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]); + printf("debug: rv = %f from %f %f %f\n",rv, ddv[0], ddv[1], ddv[2]); -//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]); +//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]); //printf("~1 rv = %f\n",rv); return rv; } /* Powell optimisation function for setting minimal absolute error target point, */ -/* with no correction for swap. */ +/* from dest gamut to shrunk destination gamut. */ /* We get a 2D plane in the 3D space, of the destination point, */ -/* who's location we are optimizing to wngam. */ +/* who's location we are optimizing. */ static double optfunc1a( void *fdata, double *_dv @@ -458,8 +443,9 @@ double *_dv nearsmth *p = s->p; /* Point being optimised */ int i, j, k; double dv[3]; /* 3D point in question */ - double ddv[3]; /* Point in question mapped to wngam surface */ - double rv; /* Out of gamut, return value */ + double ddv[3]; /* Point in question mapped to shgam surface */ + double delch[3]; + double rv; /* Out of gamut, return value */ /* Convert from 2D to 3D. */ dv[2] = _dv[1]; @@ -467,16 +453,48 @@ double *_dv dv[0] = 50.0; icmMul3By3x4(dv, p->m3d, dv); -//if (s->debug) printf("~1 optfunc1a got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]); - s->wngam->radial(s->wngam, ddv, dv); /* Map to shgam surface to check current location */ -//if (s->debug) printf("~1 optfunc1a got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]); +//printf("~1 optfunc1a got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]); + s->shgam->radial(s->shgam, ddv, dv); /* Map to shgam surface to check current location */ +//printf("~1 optfunc1a got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]); + +#ifdef NEVER + /* Absolute weighted delta E between source and dest test point */ + rv = wdesq(ddv, p->sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW); +#else + { + double ppp = p->wt.a.lxpow; + double thr = p->wt.a.lxthr; /* Xover between normal and power */ + double sumpow = SUM_POW; + + diffLCh(delch, ddv, p->dv); - rv = aerrf(p, ddv, s->wn); + if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */ +#ifdef LINEAR_HUE_SUM + double ll, cc, hh; + ll = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp); + cc = p->wt.ra.c * delch[1]; + hh = p->wt.ra.h * delch[2]; + rv = sqrt(ll + cc) + sqrt(hh); + rv *= rv; +#else + rv = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp) + + p->wt.ra.c * delch[1] + + p->wt.ra.h * delch[2]; +#endif + } else { + sumpow *= 0.5; + + rv = p->wt.ra.l * pow(delch[0], ppp * sumpow) * thr/pow(thr, ppp * sumpow) + + p->wt.ra.c * pow(delch[1], sumpow) + + p->wt.ra.h * pow(delch[2], sumpow); + } + } +#endif if (s->debug) - printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]); + printf("debug: rv = %f from %f %f %f\n",rv, ddv[0], ddv[1], ddv[2]); -//if (s->debug) printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]); +//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]); //printf("~1 rv = %f\n",rv); return rv; } @@ -545,7 +563,7 @@ double *dv /* 3D Location being evaluated */ } } -/* Powell optimisation function for overall non-relative smoothed error optimization. */ +/* Powell optimisation function for non-relative error optimization. */ /* We get a 2D point in the 3D space. */ static double optfunc2( void *fdata, @@ -564,8 +582,8 @@ double *_dv //printf("~1 optfunc2 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]); p->dgam->radial(p->dgam, ddv, dv); /* Map to dst surface to check current location */ - //printf("~1 optfunc2 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]); + //printf("~1 optfunc2 sv %4.2f %4.2f %4.2f, dv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]); /* Compute available depth errors p->dcratio and p->dxratio */ @@ -579,13 +597,12 @@ double *_dv printf("~1 dv = %f %f %f\n", ddv[0], ddv[1], ddv[2]); printf("~1 aodv = %f %f %f\n", p->aodv[0], p->aodv[1], p->aodv[2]); printf("~1 drv = %f %f %f\n", p->drv[0], p->drv[1], p->drv[2]); - printf("~1 va = %f, vr = %f, vd = %f\n", p->dbgv[0], p->dbgv[1], p->dbgv[2]); printf("debug:%d: rv = %f from %f %f %f\n",s->ix, rv, dv[0], dv[1], dv[2]); } //printf("~1 rv = %f from %f %f\n",rv, _dv[0], _dv[1]); -//printf("~1 rv = %f\n\n",rv); +//printf("~1 rv = %f\n\n",rv); return rv; } @@ -595,7 +612,6 @@ double *_dv static void init_ce( smthopt *s, /* Context for cusp mapping being set. */ gamut *sc_gam, /* Source colorspace gamut */ -gamut *si_gam, /* Source image gamut */ gamut *d_gam, /* Destination colorspace gamut */ int src_kbp, /* Use K only black point as src gamut black point */ int dst_kbp, /* Use K only black point as dst gamut black point */ @@ -624,9 +640,9 @@ double d_bp[3] /* Override destination target black point (may be NULL) */ /* Set some default values for src white/black/grey */ - /* Get the colorspace white and black point info */ + /* Get the white and black point info */ if (src_kbp) { - if (sc_gam->getwb(sc_gam, s->cusps[0][6], NULL, s->cusps[0][7], NULL, NULL, NULL) != 0) { + if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s->cusps[0][6], NULL, s->cusps[0][7]) != 0) { VB(("getting src wb points failed\n")); s->cusps[0][6][0] = 100.0; s->cusps[0][7][0] = 0.0; @@ -634,7 +650,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */ s->donaxis = 0; } } else { - if (sc_gam->getwb(sc_gam, s->cusps[0][6], s->cusps[0][7], NULL, NULL, NULL, NULL) != 0) { + if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s->cusps[0][6], s->cusps[0][7], NULL) != 0) { VB(("getting src wb points failed\n")); s->cusps[0][6][0] = 100.0; s->cusps[0][7][0] = 0.0; @@ -644,7 +660,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */ } if (dst_kbp) { - if (d_gam->getwb(d_gam, s->cusps[1][6], NULL, s->cusps[1][7], NULL, NULL, NULL) != 0) { + if (d_gam->getwb(d_gam, NULL, NULL, NULL, s->cusps[1][6], NULL, s->cusps[1][7]) != 0) { VB(("getting dest wb points failed\n")); s->cusps[1][6][0] = 100.0; s->cusps[1][7][0] = 0.0; @@ -652,7 +668,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */ s->donaxis = 0; } } else { - if (d_gam->getwb(d_gam, s->cusps[1][6], s->cusps[1][7], NULL, NULL, NULL, NULL) != 0) { + if (d_gam->getwb(d_gam, NULL, NULL, NULL, s->cusps[1][6], s->cusps[1][7], NULL) != 0) { VB(("getting dest wb points failed\n")); s->cusps[1][6][0] = 100.0; s->cusps[1][7][0] = 0.0; @@ -664,21 +680,6 @@ double d_bp[3] /* Override destination target black point (may be NULL) */ icmCpy3(s->cusps[1][7], d_bp); } -#ifdef NEVER - { - double iwp[3] = { -1, -1, -1}, ibp[3] = { -1, -1, -1}; - if (src_kbp) { - si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, NULL, ibp); - } else { - si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, ibp, NULL); - } - printf("~1 src white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]); - printf("~1 img white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]); - printf("~1 dst white = %f, black = %f\n",s->cusps[1][6][0],s->cusps[1][7][0]); - } - -#endif /* NEVER */ - /* Get the cusp info */ if (sc_gam->getcusps(sc_gam, s->cusps[0]) != 0 || d_gam->getcusps(d_gam, s->cusps[1]) != 0) { int isJab; @@ -1165,7 +1166,6 @@ gammapweights *src NSCOPY(r.rdl); NSCOPY(r.rdh); - NSCOPY(r.dsm); NSCOPY(d.co); NSCOPY(d.xo); @@ -1207,50 +1207,6 @@ gammapweights *src2, double wgt2 NSBLEND(r.rdl); NSBLEND(r.rdh); - NSBLEND(r.dsm); - - NSBLEND(d.co); - NSBLEND(d.xo); - - NSBLEND(f.x); -#undef NSBLEND -} - -/* Blend a three groups of individual weights into one, given three weightings */ -void near_wblend3( -gammapweights *dst, -gammapweights *src1, double wgt1, -gammapweights *src2, double wgt2, -gammapweights *src3, double wgt3 -) { - -#define NSBLEND(xxx) dst->xxx = wgt1 * src1->xxx + wgt2 * src2->xxx + wgt3 * src3->xxx - - NSBLEND(c.w.l); - NSBLEND(c.w.c); - NSBLEND(c.w.h); - NSBLEND(c.tw); - NSBLEND(c.cx); - - NSBLEND(l.o); - NSBLEND(l.h); - NSBLEND(l.l); - - NSBLEND(a.o); - NSBLEND(a.h); - NSBLEND(a.wl); - NSBLEND(a.gl); - NSBLEND(a.bl); - - NSBLEND(a.wlth); - NSBLEND(a.blpow); - - NSBLEND(a.lxpow); - NSBLEND(a.lxthr); - - NSBLEND(r.rdl); - NSBLEND(r.rdh); - NSBLEND(r.dsm); NSBLEND(d.co); NSBLEND(d.xo); @@ -1393,9 +1349,8 @@ void tweak_weights(gammapweights out[14], int dst_cmymap, int rel_oride) { } if (rel_oride == 1) { /* A high saturation "clip" like mapping */ - out[i].r.rdl = 1.0; /* No relative neighbourhood/smoothing */ - out[i].r.rdh = 1.0; /* No relative neighbourhood/smoothing */ - out[i].r.dsm = 0.0; /* No relative neighbourhood/smoothing */ + out[i].r.rdl = 1.0; /* No relative neighbourhood */ + out[i].r.rdh = 1.0; /* No relative neighbourhood */ out[i].d.co = 0.0; /* No depth weighting */ out[i].d.xo = 0.0; /* No depth weighting */ @@ -1406,7 +1361,7 @@ void tweak_weights(gammapweights out[14], int dst_cmymap, int rel_oride) { } } -/* Blend two expanded groups of individual weights into one */ +/* Blend a two expanded groups of individual weights into one */ void near_xwblend( gammapweights *dst, gammapweights *src1, double wgt1, @@ -1417,18 +1372,6 @@ gammapweights *src2, double wgt2 near_wblend(&dst[i], &src1[i], wgt1, &src2[i], wgt2); } -/* Blend three expanded groups of individual weights into one */ -void near_xwblend3( -gammapweights *dst, -gammapweights *src1, double wgt1, -gammapweights *src2, double wgt2, -gammapweights *src3, double wgt3 -) { - int i; - for (i = 0; i < 14; i++) - near_wblend3(&dst[i], &src1[i], wgt1, &src2[i], wgt2, &src3[i], wgt3); -} - /* Convert overall, hue dom & l dom to iweight */ static void comp_iweight(iweight *iw, double o, double h, double l) { double c, lc; @@ -1593,15 +1536,14 @@ void interp_xweights(gamut *gam, gammapweights *out, double pos[3], } } -/* Callback used by expdstbysrcmdst() to establish the expected compression */ -/* mapping direction. p2 should be the center point, so depth from the center */ -/* can be computed. We return a point on the neutral axis. */ +/* Callback used by compdstgamut() to establish the expected compression */ +/* mapping direction. */ static void cvect( void *cntx, /* smthopt * */ double *p2, /* Return point displaced from p1 in desired direction */ double *p1 /* Given point */ ) { - double vv, lv[3]; + double vv, gv[3], lv[3]; smthopt *s = (smthopt *)cntx; gammapweights out; @@ -1617,26 +1559,18 @@ double *p1 /* Given point */ /* Parameter along neutral axis black to white */ vv = (p1[0] - s->cusps[0][7][0])/(s->cusps[0][6][0] - s->cusps[0][7][0]); - /* lv is point at same L on neutral axis */ lv[0] = p1[0]; lv[1] = vv * (s->cusps[0][6][1] - s->cusps[0][7][1]) + s->cusps[0][7][1]; lv[2] = vv * (s->cusps[0][6][2] - s->cusps[0][7][2]) + s->cusps[0][7][2]; + icmSub3(lv, lv, p1); /* Vector */ + icmNormalize3(lv, lv, out.ra.l); - /* Normalise l * c weight to sum to 1.0 */ - vv = fabs(out.ra.l + out.ra.c); - if (vv < 1e-7) { /* Hmm. */ - out.ra.l = out.ra.c = 0.5; - } else { - out.ra.l /= vv; - out.ra.c /= vv; - } + icmSub3(gv, s->cusps[0][8], p1); /* Grey vector */ + icmNormalize3(gv, gv, out.ra.c); - /* Make p2 the weighted sum of equivalent L value and grey value on */ - /* the neutral axis. */ - icmScale3(lv, lv, out.ra.l); - icmScale3(p2, s->cusps[0][8], out.ra.c); - icmAdd3(p2, p2, lv); + icmAdd3(p2, gv, p1); + icmAdd3(p2, lv, p2); /* Combined destination */ //printf("~1 p2 %f %f %f\n", p2[0], p2[1], p2[2]); } @@ -1753,23 +1687,18 @@ double p1[3] /* Point */ /* ============================================ */ /* Return the maximum number of points that will be generated */ -/* (This isn't accurate due to manipulation of the gamuts in nearsmth!) */ int near_smooth_np( - gamut **pp_gam, /* Return gamut that was used for points */ gamut *sc_gam, /* Source colorspace gamut */ gamut *si_gam, /* Source image gamut (== sc_gam if none) */ - gamut *dc_gam, /* Destination colorspace gamut */ - double xvra, /* Extra vertex ratio */ - int gmult, /* Guide point multiplier, typically 4 */ - int surfgres /* surface grid point resolution, 0 for none */ + gamut *d_gam, /* Destination colorspace gamut */ + double xvra /* Extra vertex ratio */ ) { gamut *p_gam; /* Gamut used for points - either source colorspace or image */ int ntpts, nmpts, nspts, nipts, ndpts; - int hsurfgres = (surfgres + 1)/2; /* near_smooth uses half */ nspts = sc_gam->nverts(sc_gam); nipts = si_gam->nverts(si_gam); - ndpts = dc_gam->nverts(dc_gam); + ndpts = d_gam->nverts(d_gam); p_gam = sc_gam; /* Target number of points is max of any gamut */ @@ -1785,16 +1714,6 @@ int near_smooth_np( xvra = ntpts/(double)nspts; nmpts = p_gam->nssverts(p_gam, xvra); /* Stratified Sampling source points */ - nmpts *= gmult; /* Allow for sub-surface points etc. */ - - if (hsurfgres >= 4) { - nmpts += hsurfgres * hsurfgres * hsurfgres - - (hsurfgres -4) * (hsurfgres -4) * (hsurfgres -4); - } - - if (pp_gam != NULL) - *pp_gam = p_gam; - return nmpts; } @@ -1807,7 +1726,7 @@ int verb, /* Verbose flag */ int *npp, /* Return the actual number of points returned */ gamut *sc_gam, /* Source colorspace gamut - uses cusp info if availablle */ gamut *si_gam, /* Source image gamut (== sc_gam if none), just used for surface. */ -gamut *dc_gam, /* Destination colorspace gamut */ +gamut *d_gam, /* Destination colorspace gamut */ int src_kbp, /* Use K only black point as src gamut black point */ int dst_kbp, /* Use K only black point as dst gamut black point */ double d_bp[3], /* Override destination target black point - may be NULL */ @@ -1819,22 +1738,22 @@ int useexp, /* Flag indicating whether smoothed expanded value will be used double xvra, /* Extra number of vertexes ratio */ int mapres, /* Grid res for 3D RSPL */ double mapsmooth, /* Target smoothing for 3D RSPL */ -double gexp, /* Grid expansion ratio, none = 1.0 */ -int surfpnts, /* Flag - add surface grid points */ -datai map_il, /* Return expanded input range */ +datai map_il, /* Preliminary rspl input range */ datai map_ih, -datao map_ol, /* Return expanded output range */ +datao map_ol, /* Preliminary rspl output range */ datao map_oh ) { smthopt opts; /* optimisation and cusp mapping context */ int ix, i, j, k; - gamut *p_gam; /* Gamut used for points == either source colorspace or image */ - gamut *src_gam; /* Intersection of src and img gamut gamut */ - gamut *dst_gam; /* Modified destination gamut suitable for mapping from src_gam. */ - /* If compression, this is the intersection of src_gam and dc_gam. */ - /* If expansion, this is the src_gam expanded by dc_gam - sc_gam. */ - gamut *nedst_gam;/* Same as above, but not expanded. */ - int mxnmpts; /* Allocated number of mapping points */ + gamut *p_gam; /* Gamut used for points - either source colorspace or image */ + gamut *sci_gam; /* Intersection of src and img gamut gamut */ + gamut *di_gam; /* Modified destination gamut suitable for mapping from sci_gam. */ + /* If just compression, this is the smaller of sci_gam and d_gam. */ + /* If just expansion, this is the sci_gam expanded by d_gam - sc_gam. */ + /* If both exp & comp, then where + d_gam is outside sci_gam this is sci_gam expanded by d_gam - sc_gam + else it is the smaller of sci_gam and d_gam */ + gamut *nedi_gam;/* Same as above, but not expanded. */ int nmpts; /* Number of mapping gamut points */ nearsmth *smp; /* Absolute delta E weighting */ int pass; @@ -1843,21 +1762,39 @@ datao map_oh double codf; /* Itteration overshoot/damping factor */ double mxmv; /* Maximum a point gets moved */ int nmxmv; /* Number of maxmoves less than stopping threshold */ - int dmapres = 1; /* Change in mapres when applying gexp */ - int hmapres; /* Half mapres */ - int hdmapres; /* Half change in mapres */ - rspl *lastmap = NULL; /* Last gamut mapping map created, if any */ /* Check gamuts are compatible */ - if (sc_gam->compatible(sc_gam, dc_gam) == 0 + if (sc_gam->compatible(sc_gam, d_gam) == 0 || (si_gam != NULL && sc_gam->compatible(sc_gam, si_gam) == 0)) { fprintf(stderr,"gamut map: Gamuts aren't compatible\n"); *npp = 0; return NULL; } - mxnmpts = near_smooth_np(&p_gam, sc_gam, si_gam, dc_gam, xvra, 1, surfpnts ? mapres : 0); - nmpts = 0; + { + int ntpts, nspts, nipts, ndpts; + + nspts = sc_gam->nverts(sc_gam); + nipts = si_gam->nverts(si_gam); + ndpts = d_gam->nverts(d_gam); + p_gam = sc_gam; + + /* Target number of points is max of any gamut */ + ntpts = nspts > nipts ? nspts : nipts; + ntpts = ntpts > ndpts ? ntpts : ndpts; + ntpts = (int)(ntpts * xvra + 0.5); + + /* Use image gamut if it exists */ + if (nspts < nipts || si_gam != sc_gam) { + nspts = nipts; /* Use image gamut instead */ + p_gam = si_gam; + } + xvra = ntpts/(double)nspts; + nmpts = p_gam->nssverts(p_gam, xvra); /* Stratified Sampling source points */ + + if (verb) printf("Vertex count: mult. = %f, src %d, img %d dst %d, target %d\n", + xvra,nspts,nipts,ndpts,nmpts); + } /* Setup opts structure */ opts.useexp = useexp; /* Expansion used ? */ @@ -1868,106 +1805,80 @@ datao map_oh /* Setup source & dest neutral axis transform if white/black available. */ /* If cusps are available, also figure out the transformations */ /* needed to map source cusps to destination cusps */ - init_ce(&opts, sc_gam, si_gam, dc_gam, src_kbp, dst_kbp, d_bp); + init_ce(&opts, sc_gam, d_gam, src_kbp, dst_kbp, d_bp); /* Allocate our guide points */ - if ((smp = (nearsmth *)calloc(mxnmpts, sizeof(nearsmth))) == NULL) { + if ((smp = (nearsmth *)calloc(nmpts, sizeof(nearsmth))) == NULL) { fprintf(stderr,"gamut map: Malloc of near smooth points failed\n"); *npp = 0; return NULL; } - /* Create a source gamut surface that is the image gamut intersected */ - /* with the source colorspace gamut, in case something strange with the */ - /* image gamut. (gammap.c may have already done this) */ - src_gam = sc_gam; /* Alias to source space gamut */ + /* Create a source gamut surface that is the intersection of the src colorspace */ + /* and image gamut, in case (for some strange reason) the image gamut. */ + /* exceeds the source colorspace size. */ + sci_gam = sc_gam; /* Alias to source space gamut */ if (si_gam != sc_gam) { - if ((src_gam = new_gamut(0.0, 0, 0)) == NULL) { + if ((sci_gam = new_gamut(0.0, 0, 0)) == NULL) { fprintf(stderr,"gamut map: new_gamut failed\n"); free_nearsmth(smp, nmpts); *npp = 0; return NULL; } - src_gam->intersect(src_gam, si_gam, sc_gam); + sci_gam->intersect(sci_gam, sc_gam, si_gam); #ifdef SAVE_VRMLS { - char src_gam_name[40] = "si_gam"; - - printf("###### gamut/nearsmth.c: writing diagnostic si_gam%s, src_gam%s\n",vrml_ext(),vrml_ext()); - - strcat(src_gam_name, vrml_ext()); - src_gam->write_vrml(si_gam, src_gam_name, 1, 0); - - strcpy(src_gam_name, "src_gam"); - strcat(src_gam_name, vrml_ext()); - src_gam->write_vrml(src_gam, src_gam_name, 1, 0); + char sci_gam_name[40] = "sci_gam"; + strcat(sci_gam_name, vrml_ext()); + printf("###### gamut/nearsmth.c: writing diagnostic sci_gam%s and di_gam%s\n",vrml_ext(),vrml_ext()); + sci_gam->write_vrml(sci_gam, sci_gam_name, 1, 0); } #endif } - dst_gam = src_gam; /* Default no compress or expand */ - - /* non-expanded dst_gam for testing double back img points against: */ - nedst_gam = src_gam; /* Default same as dst_gam */ - - /* Convert dst_gam to compress and/or expand target for mapping src_gam to. */ + di_gam = sci_gam; /* Default no compress or expand */ if (usecomp || useexp) { - - if ((nedst_gam = dst_gam = new_gamut(0.0, 0, 0)) == NULL) { + if ((di_gam = new_gamut(0.0, 0, 0)) == NULL) { fprintf(stderr,"gamut map: new_gamut failed\n"); - if (src_gam != sc_gam) - src_gam->del(src_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; } - /* For compression only, nedst_gam and dst_gam are smaller of src_gam and dc_gam space. */ - /* Augment the dst_gam with neutral axis points in case the source gamut */ - /* has a "spike" that separates it from the neutral axis, allowing */ - /* mapping. */ - nedst_gam->nexpintersect(nedst_gam, dc_gam, src_gam); - if (useexp) { - /* No image gamut - dest colorspace is target */ - if (si_gam == sc_gam) { - dst_gam = dc_gam; /* Expanded dest is colorspace dest */ - - /* There is an image gamut, so */ - /* Expand nedst_gam to create dst_gam expanded in proportion to where */ - /* dc_gam is outside sc_gam */ - } else { - if ((dst_gam = new_gamut(0.0, 0, 0)) == NULL) { - fprintf(stderr,"gamut map: new_gamut failed\n"); - if (src_gam != sc_gam) - src_gam->del(src_gam); - free_nearsmth(smp, nmpts); - *npp = 0; - return NULL; - } - - /* Initialise this gamut with the nedst_gam expanded by ((dc_gam - sc_gam) > 0) */ - dst_gam->expdstbysrcmdst(dst_gam, nedst_gam, sc_gam, dc_gam, cvect, &opts); + /* Non-expand di_gam for testing double back img points against */ + if ((nedi_gam = new_gamut(0.0, 0, 0)) == NULL) { + fprintf(stderr,"gamut map: new_gamut failed\n"); + di_gam->del(di_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + free_nearsmth(smp, nmpts); + *npp = 0; + return NULL; } + } else { + nedi_gam = di_gam; } + + /* Initialise this gamut with a destination mapping gamut. */ + /* This will be the smaller of the image and destination gamut if compressing, */ + /* and will be expanded by the (dst - src) if expanding. */ + di_gam->compdstgamut(di_gam, sci_gam, sc_gam, d_gam, usecomp, useexp, nedi_gam, + cvect, &opts); } #ifdef SAVE_VRMLS { - char dst_gam_name[30] = "dst_gam"; - - printf("###### gamut/nearsmth.c: writing diagnostic dst_gam%s, nedst_gam%s\n",vrml_ext(),vrml_ext()); - strcat(dst_gam_name, vrml_ext()); - dst_gam->write_vrml(dst_gam, dst_gam_name, 1, 0); - - strcpy(dst_gam_name, "nedst_gam"); - strcat(dst_gam_name, vrml_ext()); - nedst_gam->write_vrml(nedst_gam, dst_gam_name, 1, 0); + char di_gam_name[30] = "di_gam"; + strcat(di_gam_name, vrml_ext()); + di_gam->write_vrml(di_gam, di_gam_name, 1, 0); } #endif /* Create a list of the mapping guide points, setup for a null mapping */ VA(("Creating the mapping guide point list\n")); - for (ix = i = 0; i < mxnmpts; i++) { + for (ix = i = 0; i < nmpts; i++) { double imv[3], imr; /* Image gamut source point and radius */ double inorm[3]; /* Normal of image gamut surface at src point */ @@ -1979,12 +1890,12 @@ datao map_oh //printf("~1 got point %d out of %d\n",i+1,nmpts); if (p_gam != sc_gam) { /* If src colorspace point, map to img gamut surface */ - imr = src_gam->radial(src_gam, imv, imv); + imr = sci_gam->radial(sci_gam, imv, imv); } /* If point is within non-expanded modified destination gamut, */ - /* then it is a "double back"/convex image point, and should be ignored. */ - if (nedst_gam->radial(nedst_gam, NULL, imv) > (imr + 1e-4)) { + /* then it is a "double back" image point, and should be ignored. */ + if (nedi_gam->radial(nedi_gam, NULL, imv) > (imr + 1e-4)) { VB(("Rejecting point %d because it's inside destination\n",i)); i--; continue; @@ -1992,18 +1903,17 @@ datao map_oh /* Lookup radialy equivalent point on modified destination gamut, */ /* in case we need it for compression or expansion */ - smp[i].drr = dst_gam->radial(dst_gam, smp[i].drv, imv); + smp[i].drr = di_gam->radial(di_gam, smp[i].drv, imv); /* Default setup a null mapping of source image space point to source image point */ - smp[i].uflag = smp[i].vflag = smp[i].gflag = 0; + smp[i].vflag = smp[i].gflag = 0; smp[i].dr = smp[i].sr = smp[i]._sr = imr; smp[i].dv[0] = smp[i].sv[0] = smp[i]._sv[0] = imv[0]; smp[i].dv[1] = smp[i].sv[1] = smp[i]._sv[1] = imv[1]; smp[i].dv[2] = smp[i].sv[2] = smp[i]._sv[2] = imv[2]; - smp[i].w1 = 1.0; - smp[i].sgam = src_gam; - smp[i].dgam = src_gam; - smp[i].dcgam = dc_gam; + smp[i].sgam = sci_gam; + smp[i].dgam = sci_gam; + smp[i].mapres = mapres; VB(("In Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2])); @@ -2017,7 +1927,7 @@ datao map_oh double mv[3], ml; /* Radial inward mapping vector */ double dir; - icmSub3(mv, src_gam->cent, smp[i].sv); /* Vector to center */ + icmSub3(mv, sci_gam->cent, smp[i].sv); /* Vector to center */ ml = icmNorm3(mv); /* It's length */ if (ml > 0.001) { @@ -2037,7 +1947,6 @@ datao map_oh smp[i].anv[0] = smp[i].aodv[0] = smp[i].dv[0]; smp[i].anv[1] = smp[i].aodv[1] = smp[i].dv[1]; smp[i].anv[2] = smp[i].aodv[2] = smp[i].dv[2]; - smp[i].w1 = 1.01; /* Use 1.01 as marker value */ VB(("Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2])); VB(("Dst %d = %f %f %f\n",i,smp[i].dv[0],smp[i].dv[1],smp[i].dv[2])); @@ -2046,17 +1955,17 @@ datao map_oh *npp = nmpts; /* Don't need this anymore */ - if (nedst_gam != src_gam && nedst_gam != dst_gam) - nedst_gam->del(nedst_gam); - nedst_gam = NULL; + if (nedi_gam != di_gam) + nedi_gam->del(nedi_gam); + nedi_gam = NULL; /* If nothing to be compressed or expanded, then return */ if (usecomp == 0 && useexp == 0) { VB(("Neither compression nor expansion defined\n")); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); return smp; } @@ -2069,15 +1978,6 @@ datao map_oh interp_xweights(opts.sgam, &smp[i].wt, smp[i]._sv, opts.xwh, &opts, 0); } - /* ~~ would be nice to eliminate the need for dst_gam that is the intersection - * of dc_gam and sc/img_gam here. Problem is determining expansion vector - * direction in a way that is consistent with the absolute error weighting. - * - * For the moment leave the current appoach of using the dst_gam that has been - * expanded in proportion to dc_gam - sc_gam in cvec() direction, since - * the absolute error weighting is use to map the sv to that surface. - */ - VA(("Setting up cusp rotated compression or expansion mappings\n")); VB(("rimv = Cusp rotated cspace/image gamut source point\n")); VB(("imv = cspace/image gamut source point\n")); @@ -2100,7 +2000,7 @@ datao map_oh /* Compute the cusp rotated version of the cspace/image points */ comp_ce(&opts, rimv, imv, &smp[i].wt); VB(("%f de, ix %d: cusp mapped %f %f %f -> %f %f %f\n", icmNorm33(rimv,imv), i, imv[0], imv[1], imv[2], rimv[0], rimv[1], rimv[2])); - rimr = icmNorm33(rimv, src_gam->cent); + rimr = icmNorm33(rimv, sci_gam->cent); /* Default setup a no compress or expand mapping of */ /* source space/image point to modified destination gamut. */ @@ -2108,8 +2008,8 @@ datao map_oh smp[i].sv[0] = rimv[0]; /* Temporary rotated src point */ smp[i].sv[1] = rimv[1]; smp[i].sv[2] = rimv[2]; - smp[i].sgam = src_gam; - smp[i].dgam = dst_gam; + smp[i].sgam = sci_gam; + smp[i].dgam = di_gam; VB(("\n")); VB(("point %d:, rimv = %f %f %f, rimr = %f\n",i,rimv[0],rimv[1],rimv[2],rimr)); @@ -2143,7 +2043,7 @@ datao map_oh double tc[3] = { 0.0, 0.0, 0.0 }; for (ix = 0; ix < nmpts; ix++) { - /* Compute a rotation that brings the target point location to 50,0,0 */ + /* Coompute a rotation that brings the target point location to 50,0,0 */ icmVecRotMat(smp[ix].m2d, smp[ix].sv, sc_gam->cent, ta, tc); /* And inverse */ @@ -2152,149 +2052,171 @@ datao map_oh } /* Figure out which neighbors of the source values to use */ - /* for the relative error & smoothing calculations. */ + /* for the relative error calculations. */ /* Locate the neighbor within the radius for this point, */ /* and weight them with a Gausian filter weight. */ /* The radius is computed on the normalised surface for this point. */ VA(("Establishing filter neighbourhoods\n")); { + double mm[3][4]; /* Tangent alignment rotation */ + double m2[2][2]; /* Additional matrix to alight a with L axis */ + double ta[3] = { 50.0, 0.0, 0.0 }; + double tc[3] = { 0.0, 0.0, 0.0 }; double avgnd = 0.0; /* Total the average number of neighbours */ int minnd = 1e6; /* Minimum number of neighbours */ for (ix = 0; ix < nmpts; ix++) { - int sit; - double rr; - double rrdl, rrdh; + double tt[3], rrdl, rrdh, rrdc, dd; + double msv[3], ndx[4]; /* Midpoint source value, quadrant distance */ + double pr; /* Average point radius */ //printf("~1 computing neigbourhood for point %d at %f %f %f\n",ix, smp[ix].sv[0], smp[ix].sv[1], smp[ix].sv[2]); + /* Compute a rotation that brings the target point location to 50,0,0 */ + icmNormalize33(tt, smp[ix].sv, smp[ix].sgam->cent, 1.0); + icmVecRotMat(mm, tt, smp[ix].sgam->cent, ta, tc); + + /* Add another rotation to orient it so that [1] corresponds */ + /* with the L direction, and [2] corresponds with the */ + /* hue direction. */ + m2[0][0] = m2[1][1] = 1.0; + m2[0][1] = m2[1][0] = 0.0; + tt[0] = smp[ix].sv[0] + 1.0; + tt[1] = smp[ix].sv[1]; + tt[2] = smp[ix].sv[2]; + icmNormalize33(tt, tt, smp[ix].sgam->cent, 1.0); + icmMul3By3x4(tt, mm, tt); + dd = tt[1] * tt[1] + tt[2] * tt[2]; + if (dd > 1e-6) { /* There is a sense of L direction */ + + /* Create the 2x2 rotation matrix */ + dd = sqrt(dd); + tt[1] /= dd; + tt[2] /= dd; + + m2[0][0] = m2[1][1] = tt[1]; + m2[0][1] = tt[2]; + m2[1][0] = -tt[2]; + } + /* Make rr inversely proportional to radius, so that */ + /* filter scope is constant delta E */ rrdl = smp[ix].wt.r.rdl; rrdh = smp[ix].wt.r.rdh; -//printf("~1 rdl %f, rdh %f\n",rrdl, rrdh); - +//printf("~1 rdl %f, rdh %f\n",smp[ix].wt.r.rdl,smp[ix].wt.r.rdh); if (rrdl < 1e-3) rrdl = 1e-3; if (rrdh < 1e-3) rrdh = 1e-3; - rr = sqrt(smp[ix].sv[1] * smp[ix].sv[1] + smp[ix].sv[2] * smp[ix].sv[2]); - - if (rr < 5.0) - rr = 5.0; - rr = sqrt(rr / 50.0); - - // Scale radius aprox. by cylindrical distance ?? */ - //rrdh *= rr; - - rrdl = 1.0/rrdl; - rrdh = 1.0/rrdh; - - smp[ix].nnd = 0; - - /* Until we get a minimum number of neighbors */ - for (sit = 0; smp[ix].nnd < 8 && sit < 10; sit++) { - - smp[ix].nnd = 0; - - /* Search for points within the radius */ - for (i = 0; i < nmpts; i++) { - double tt, dd, tv; - - /* Dot of neighbor color and point */ - tv = smp[i].sv[1] * smp[ix].sv[1] + smp[i].sv[2] * smp[ix].sv[2]; - - /* Ignore if of the opposote hue */ - if (tv < 0.0) - continue; - - dd = 0.0; - tt = rrdl * (smp[i].sv[0] - smp[ix].sv[0]); - dd += tt * tt; - tt = rrdh * (smp[i].sv[1] - smp[ix].sv[1]); - dd += tt * tt; - tt = rrdh * (smp[i].sv[2] - smp[ix].sv[2]); - dd += tt * tt; - - /* If we're within the filtering radius, */ - /* and not of the opposite hue */ - if (dd <= 1.0) { - double w; - - dd = sqrt(dd); /* Convert to radius <= 1.0 */ - - /* Add this point into the list */ - if (smp[ix].nnd >= smp[ix]._nnd) { - neighb *nd; - int _nnd; - _nnd = 5 + smp[ix]._nnd * 2; - if ((nd = (neighb *)realloc(smp[ix].nd, _nnd * sizeof(neighb))) == NULL) { - VB(("realloc of neighbs at vector %d failed\n",ix)); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); - free_nearsmth(smp, nmpts); - *npp = 0; - return NULL; - } - smp[ix].nd = nd; - smp[ix]._nnd = _nnd; + /* Average radius of source and destination */ + pr = 0.5 * (smp[ix]._sr + smp[ix].dr); + +//printf("~1 pr = %f from _sr %f & dr %f\n",pr,smp[ix]._sr,smp[ix].dr); + if (pr < 5.0) + pr = 5.0; + rrdl *= 50.0/pr; + rrdh *= 50.0/pr; + rrdc = 0.5 * (rrdl + rrdh); /* Chrominance radius */ + + /* Scale the filter radius by the L/C value, */ + /* so that the filters are largest at the equator, and smallest */ + /* at the white & black points. This allows the wt.a.lx wt.a.cx to work. */ + pr = smp[ix].naxbf + 0.1; /* "spherical" type weighting, 0.707 at 45 degrees */ + rrdl *= pr; + rrdh *= pr; + rrdc *= pr; +//printf("~1 at %f %f %f, rrdl = %f, rrdh = %f\n",smp[ix]._sv[0], smp[ix]._sv[1], smp[ix]._sv[2], rrdl, rrdh); + + smp[ix].nnd = 0; /* Nothing in lists */ + + /* Search for points within the gausian radius */ + for (i = 0; i < nmpts; i++) { + double x, y, z, tv[3]; + + /* compute tangent alignment rotated location */ + icmNormalize33(tt, smp[i].sv, smp[ix].sgam->cent, 1.0); + icmMul3By3x4(tv, mm, tt); + icmMulBy2x2(&tv[1], m2, &tv[1]); + + x = tv[1]/rrdl; + y = tv[2]/rrdh; + z = (tv[0] - 50.0)/rrdc; + + /* Compute normalized delta normalized tangent surface */ + dd = x * x + y * y + z * z; + + /* If we're within the direction filtering radius, */ + /* and not of the opposite hue */ + if (dd <= 1.0 && tv[0] > 0.0) { + double w; + + dd = sqrt(dd); /* Convert to radius <= 1.0 */ + + /* Add this point into the list */ + if (smp[ix].nnd >= smp[ix]._nnd) { + neighb *nd; + int _nnd; + _nnd = 5 + smp[ix]._nnd * 2; + if ((nd = (neighb *)realloc(smp[ix].nd, _nnd * sizeof(neighb))) == NULL) { + VB(("realloc of neighbs at vector %d failed\n",ix)); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); + free_nearsmth(smp, nmpts); + *npp = 0; + return NULL; } - smp[ix].nd[smp[ix].nnd].n = &smp[i]; + smp[ix].nd = nd; + smp[ix]._nnd = _nnd; + } + smp[ix].nd[smp[ix].nnd].n = &smp[i]; - /* Box filter */ -// w = 1.0; + /* Box filter */ +// w = 1.0; - /* Triangle filter */ -// w = 1.0 - dd; + /* Triangle filter */ +// w = 1.0 - dd; -// /* Cubic spline filter (default) */ - w = 1.0 - dd; - w = w * w * (3.0 - 2.0 * w); +// /* Cubic spline filter */ +// w = 1.0 - dd; +// w = w * w * (3.0 - 2.0 * w); - /* Gaussian filter */ -// w = exp(-9.0 * dd/2.0); + /* Gaussian filter (default) */ + w = exp(-9.0 * dd/2.0); - /* Sphere filter */ -// w = sqrt(1.0 - dd * dd); + /* Sphere filter */ +// w = sqrt(1.0 - dd * dd); - /* Sinc^2 filter */ -// w = 3.1415926 * dd; -// if (w < 1e-9) -// w = 1e-9; -// w = sin(w)/w; -// w = w * w; + /* Sinc^2 filter */ +// w = 3.1415926 * dd; +// if (w < 1e-9) +// w = 1e-9; +// w = sin(w)/w; +// w = w * w; - /* Save weighting */ - smp[ix].nd[smp[ix].nnd].w = w; /* Will be normalized to sum to 1.0 */ + smp[ix].nd[smp[ix].nnd].w = w; /* Will be normalized to sum to 1.0 */ -// /* Sphere filter for depth */ -// w = sqrt(1.0 - dd * dd); +// /* Sphere filter for depth */ +// w = sqrt(1.0 - dd * dd); - /* Cubic spline filter for depth (default) */ -// w = 1.0 - dd; -// w = w * w * (3.0 - 2.0 * w); + /* Cubic spline filter for depth */ +// w = 1.0 - dd; +// w = w * w * (3.0 - 2.0 * w); -// /* Gaussian filter for depth */ -// w = exp(-9.0 * dd/2.0); + /* Gaussian filter for depth (default) */ + w = exp(-9.0 * dd/2.0); - /* Save weighting */ - smp[ix].nd[smp[ix].nnd].rw = w; /* Won't be normalized */ + smp[ix].nd[smp[ix].nnd].rw = w; /* Won't be normalized */ //printf("~1 adding %d at %f %f %f, rad %f L %f, w %f dir.\n",i, smp[i].sv[0], smp[i].sv[1], smp[i].sv[2],sqrt(dd),tv[0],smp[ix].nd[smp[ix].nnd].w); - smp[ix].nnd++; - } + smp[ix].nnd++; } - /* Increase radius in case we haven't found enough neighbors */ - rrdl /= 1.5; - rrdh /= 1.5; } - -//if (smp[ix].nnd < 8) printf("~1 point %d has %d neighbors\n",ix,smp[ix].nnd); - if (smp[ix].nnd < minnd) minnd = smp[ix].nnd; avgnd += (double)smp[ix].nnd; -//printf("~1 total of %d dir neigbours after try %d\n",smp[ix].nnd, sit); +//printf("~1 total of %d dir neigbours\n\n",smp[ix].nnd); + } avgnd /= (double)nmpts; @@ -2311,44 +2233,16 @@ datao map_oh for (j = 0; j < smp[i].nnd; j++) { smp[i].nd[j].w /= tw; } - } - } - -#ifdef SHOW_NEIGB - { - vrml *wrl = NULL; - double yellow[3] = { 1.0, 1.0, 0.0 }; - double red[3] = { 1.0, 0.0, 0.0 }; - double green[3] = { 0.0, 1.0, 0.0 }; - double magenta[3] = { 1.0, 0.0, 1.0 }; - double pp[3]; - for (i = 0; i < nmpts; i++) { - - if ((wrl = new_vrml("neigb", 1, vrml_lab)) == NULL) - error("New %s failed for '%s%s'",vrml_format(),"neigb",vrml_ext()); - for (j = 0; j < smp[i].nnd; j++) { - if (smp[i].nd[j].n == &smp[i]) - continue; - wrl->add_col_vertex(wrl, 0, smp[i].sv, yellow); - wrl->add_col_vertex(wrl, 0, smp[i].nd[j].n->sv, yellow); - } - wrl->make_lines(wrl, 0, 2); - - wrl->add_marker(wrl, smp[i].sv, red, 0.5); - - wrl->del(wrl); - printf("Waiting for input after writing 'neigb%s' for point %d:\n",vrml_ext(),i); - getchar(); } } -#endif /* SHOW_NEIGB */ #ifdef SHOW_NEIGB_WEIGHTS { vrml *wrl = NULL; double yellow[3] = { 1.0, 1.0, 0.0 }; double red[3] = { 1.0, 0.0, 0.0 }; + double green[3] = { 0.0, 1.0, 0.0 }; double pp[3]; for (i = 0; i < nmpts; i++) { @@ -2364,7 +2258,7 @@ datao map_oh } for (j = 0; j < smp[i].nnd; j++) { wrl->add_col_vertex(wrl, 0, smp[i].sgam->cent, smp[i].nd[j].n == &smp[i] ? red : yellow); - icmNormalize33(pp, smp[i].nd[j].n->sv, smp[i].sgam->cent, smp[i].nd[j].w * 50.0/maxw); + icmNormalize33(pp, smp[i].nd[j].n->_sv, smp[i].sgam->cent, smp[i].nd[j].w * 50.0/maxw); wrl->add_col_vertex(wrl, 0, pp, smp[i].nd[j].n == &smp[i] ? red : yellow); } wrl->make_lines(wrl, 0, 2); @@ -2421,8 +2315,6 @@ datao map_oh smp[i].sv[1] = smp[i].drv[1]; smp[i].sv[2] = smp[i].drv[2]; } - opts.wngam = smp[i].dgam; /* Nearest to dgam */ - opts.wn = smp[i].sv; /* minimize optfunc1 sv -> dgam */ /* Convert our start value from 3D to 2D for speed. */ icmMul3By3x4(iv, smp[i].m2d, smp[i].dv); @@ -2458,10 +2350,10 @@ datao map_oh nv[1] = iv[1] = iv[2]; powell(NULL, 2, nv, s, 0.01, 1000, optfunc1, (void *)(&opts), NULL, NULL); #endif - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; @@ -2499,12 +2391,14 @@ datao map_oh smp[i].aodv[2] = smp[i].drv[2]; } } + if (verb) { + printf("."); fflush(stdout); + } } - VA(("Locating weighted mapping vectors without smoothing\n")); - + VA(("Locating weighted mapping vectors without smoothing:\n")); /* Second pass to locate the optimized overall weighted point nrdv[], */ - /* which is a balance of absolute error, radial error, depth room weighting */ + /* not counting relative error. */ { double s[2] = { 20.0, 20.0 }; /* 2D search area */ double iv[3]; /* Initial start value */ @@ -2561,10 +2455,10 @@ datao map_oh nv[1] = iv[1] = iv[2]; powell(NULL, 2, nv, s, 0.01, 1000, optfunc2, (void *)(&opts), NULL, NULL); #endif - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; @@ -2579,90 +2473,37 @@ datao map_oh /* Remap it to the destinaton gamut surface */ smp[i].dgam->radial(smp[i].dgam, tp, tp); - icmCpy3(smp[i].dv, tp); /* Default current solution */ icmCpy3(smp[i].nrdv, tp); /* Non smoothed result */ icmCpy3(smp[i].anv, tp); /* Starting point for smoothing */ + icmCpy3(smp[i].dv, tp); /* Default current solution */ smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); //printf("~1 %d: dv %f %f %f\n", i, smp[i].dv[0], smp[i].dv[1], smp[i].dv[2]); } - } - - /* Make sure the input and output ranges encompas the points */ - for (i = 0; i < nmpts; i++) { - for (j = 0; j < 3; j++) { - if (smp[i]._sv[j] < map_il[j]) - map_il[j] = smp[i]._sv[j];; - if (smp[i]._sv[j] > map_ih[j]) - map_ih[j] = smp[i]._sv[j]; - - if (smp[i].sv[j] < map_il[j]) - map_il[j] = smp[i].sv[j];; - if (smp[i].sv[j] > map_ih[j]) - map_ih[j] = smp[i].sv[j]; - - if (smp[i].dv[j] < map_ol[j]) - map_ol[j] = smp[i].dv[j];; - if (smp[i].dv[j] > map_oh[j]) - map_oh[j] = smp[i].dv[j]; - } - } - -#ifdef NEVER - if (verb) { - printf("Input bounding box:\n"); - printf(" %f -> %f, %f -> %f, %f -> %f\n", - map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]); - } -#endif - - /* Expand the bounding box by gexp so that our surface grid points */ - /* establish the extrapolation behaviour. Ensure that boundary */ - /* lands on the new grid though. */ - { - double scale; - - dmapres = (int)(((mapres-1) - (mapres-1)/gexp)/2.0 + 0.5); - if (dmapres < 1) - dmapres = 1; - - scale = (double)(mapres-1-dmapres)/(double)(mapres-1 - 2 * dmapres); - - for (j = 0; j < 3; j++) { - double low, high; - high = map_ih[j]; - low = map_il[j]; - map_ih[j] = (scale * (high - low)) + low; - map_il[j] = (scale * (low - high)) + high; - } -#ifdef NEVER if (verb) { - printf("After scaling up by %f, input bounding box:\n",scale); - printf(" %f -> %f, %f -> %f, %f -> %f\n", - map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]); + printf("."); fflush(stdout); } -#endif - - /* Values for grid surface points */ - hmapres = (mapres+1)/2; - hdmapres = (dmapres+1)/2; } -#if RSPLPASSES > 0 || VECADJPASSES > 0 - - VA(("Computing fine tuning correction direction:\n")); - - /* We need inward pointing correction vectors to be able */ - /* to do clipping and fine tuning. We create a shrunken */ - /* version of the dst_gamut and a mapping based on the */ - /* weighted minimum absolute error metric, and then */ - /* create a rspl to represent that mapping. */ +#ifdef DIAG_POINTS + /* Show just the closest vectors etc. */ + for (i = 0; i < nmpts; i++) { /* Move all the points */ +// icmCpy3(smp[i].dv, smp[i].drv); /* Radial */ + icmCpy3(smp[i].dv, smp[i].aodv); /* Nearest */ +// icmCpy3(smp[i].dv, smp[i].nrdv); /* No smoothed weighted */ +// icmCpy3(smp[i].dv, smp[i].dv); /* pre-filter smooothed */ + smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); + } +#else + /* The smoothed direction and raw depth is a single pass, */ + /* but we use multiple passes to determine the extra depth that */ + /* needs to be added so that the smoothed result lies within */ + /* the destination gamut. */ - /* This sort of clipping direction helps preserve the */ - /* mapping shape (hence smoothness), while minimizing the */ - /* loss of saturation and change in dest. mapping location. */ +#if VECADJPASSES > 0 || RSPLPASSES > 0 + /* We will need inward pointing correction vectors */ { - gamut *shgam; /* Shrunken dst_gam */ + gamut *shgam; /* Shrunken di_gam */ double cusps[6][3]; double wp[3], bp[3], kp[3]; double p[3], p2[3], rad; @@ -2682,13 +2523,14 @@ datao map_oh double avgdev[MXDO]; /* Create a gamut that is a shrunk version of the destination */ - if ((shgam = new_gamut(dst_gam->getsres(dst_gam), dst_gam->getisjab(dst_gam), - dst_gam->getisrast(dst_gam))) == NULL) { + + if ((shgam = new_gamut(di_gam->getsres(di_gam), di_gam->getisjab(di_gam), + di_gam->getisrast(di_gam))) == NULL) { fprintf(stderr, "new_gamut failed\n"); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; @@ -2700,14 +2542,14 @@ datao map_oh for (i = 0;;) { double len; - if ((i = dst_gam->getrawvert(dst_gam, p, i)) < 0) + if ((i = di_gam->getrawvert(di_gam, p, i)) < 0) break; doshrink(&opts, p, p, SHRINK); shgam->expand(shgam, p); } /* Translate cusps */ - if (dst_gam->getcusps(dst_gam, cusps) == 0) { + if (di_gam->getcusps(di_gam, cusps) == 0) { shgam->setcusps(shgam, 0, NULL); for (i = 0; i < 6; i++) { doshrink(&opts, p, cusps[i], SHRINK); @@ -2716,7 +2558,7 @@ datao map_oh shgam->setcusps(shgam, 2, NULL); } /* Translate white and black points */ - if (dst_gam->getwb(dst_gam, wp, bp, kp, NULL, NULL, NULL) == 0) { + if (di_gam->getwb(di_gam, wp, bp, kp, NULL, NULL, NULL) == 0) { doshrink(&opts, wp, wp, SHRINK); doshrink(&opts, bp, bp, SHRINK); doshrink(&opts, kp, kp, SHRINK); @@ -2726,10 +2568,10 @@ datao map_oh if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) { fprintf(stderr,"gamut map: Malloc of near smooth points failed\n"); shgam->del(shgam); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; @@ -2737,7 +2579,7 @@ datao map_oh /* Now locate the closest points on the shrunken gamut */ /* and set them up for creating a rspl */ - opts.wngam = shgam; + opts.shgam = shgam; for (i = 0; i < nmpts; i++) { /* Move all the points */ gtri *ctri = NULL; double tmp[3]; @@ -2749,10 +2591,9 @@ datao map_oh opts.pass = 0; /* Itteration pass */ opts.ix = i; /* Point to optimise */ opts.p = &smp[i]; - opts.wn = smp[i].dv; /* minimize optfunc1a dv -> shgam */ /* Convert our start value from 3D to 2D for speed. */ - icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv); + icmMul3By3x4(iv, smp[i].m2d, smp[i].dv); nv[0] = iv[0] = iv[1]; nv[1] = iv[1] = iv[2]; @@ -2778,16 +2619,16 @@ datao map_oh #ifdef DEBUG_POWELL_FAILS /* Optimise the point with debug on */ opts.debug = 1; - icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv); + icmMul3By3x4(iv, smp[i].m2d, smp[i].dv); nv[0] = iv[0] = iv[1]; nv[1] = iv[1] = iv[2]; powell(NULL, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL); #endif shgam->del(shgam); /* Done with this */ - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; @@ -2803,11 +2644,12 @@ datao map_oh shgam->radial(shgam, tp, tp); /* Compute mapping vector from dst to shdst */ - icmSub3(smp[i].temp, tp, smp[i].nrdv); + icmSub3(smp[i].temp, tp, smp[i].dv); + /* In case shrunk vector is very short, add a small part */ /* of the nearest normal. */ - smp[i].dgam->nearest_tri(smp[i].dgam, NULL, smp[i].nrdv, &ctri); + smp[i].dgam->nearest_tri(smp[i].dgam, NULL, smp[i].dv, &ctri); icmScale3(tmp, ctri->pe, 0.1); /* Scale to small inwards */ icmAdd3(smp[i].temp, smp[i].temp, tmp); @@ -2815,12 +2657,13 @@ datao map_oh icmNormalize3(smp[i].temp, smp[i].temp, 1.0); /* Place it in rspl setup array */ - icmCpy3(gpnts[i].p, smp[i].nrdv); + icmCpy3(gpnts[i].p, smp[i].dv); icmCpy3(gpnts[i].v, smp[i].temp); gpnts[i].w = 1.0; } for (j = 0; j < 3; j++) { /* Set resolution for all axes */ +// gres[j] = (mapres+1)/2; /* Half resolution */ gres[j] = mapres; /* Full resolution */ avgdev[j] = GAMMAP_RSPLAVGDEV; } @@ -2829,6 +2672,7 @@ datao map_oh evectmap->fit_rspl_w(evectmap, GAMMAP_RSPLFLAGS, gpnts, nmpts, map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL); +// ~~999 #ifdef PLOT_EVECTS /* Create VRML of error correction vectors */ { vrml *wrl = NULL; @@ -2846,7 +2690,7 @@ datao map_oh printf("###### gamut/nearsmth.c: writing diagnostic evects%s\n",vrml_ext()); if ((wrl = new_vrml("evects", doaxes, vrml_lab)) == NULL) error("new_vrml failed for '%s%s'","evects",vrml_ext()); - wrl->make_gamut_surface_2(wrl, dst_gam, 0.6, 0, cc); + wrl->make_gamut_surface_2(wrl, di_gam, 0.6, 0, cc); cc[0] = -1.0; wrl->make_gamut_surface(wrl, shgam, 0.2, cc); @@ -2854,16 +2698,16 @@ datao map_oh wrl->start_line_set(wrl, 0); for (i = 0; i < nmpts; i++) { - wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red); + wrl->add_col_vertex(wrl, 0, smp[i].dv, red); #ifdef NEVER /* Plot created vectors */ icmScale3(tmp, smp[i].temp, 4.0); - icmSub3(tmp, smp[i].nrdv, tmp); + icmSub3(tmp, smp[i].dv, tmp); #else /* Plot interpolated vectors */ - icmCpy3(cp.p, smp[i].nrdv); + icmCpy3(cp.p, smp[i].dv); evectmap->interp(evectmap, &cp); icmScale3(tmp, cp.v, 4.0); - icmSub3(tmp, smp[i].nrdv, tmp); + icmSub3(tmp, smp[i].dv, tmp); #endif wrl->add_col_vertex(wrl, 0, tmp, green); } @@ -2874,265 +2718,267 @@ datao map_oh shgam->del(shgam); /* Done with this */ free(gpnts); } +#endif /* VECADJPASSES > 0 || RSPLPASSES > 0 */ -#endif /* RSPLPASSES > 0 */ +#ifdef VECSMOOTHING + VA(("Smoothing guide vectors:\n")); + + /* Compute the neighbourhood smoothed anv[] from dv[] */ + for (i = 0; i < nmpts; i++) { + double anv[3]; /* new anv[] */ + double tmp[3]; + + /* Compute filtered value */ + anv[0] = anv[1] = anv[2] = 0.0; + for (j = 0; j < smp[i].nnd; j++) { + nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ + double nw = smp[i].nd[j].w; /* Weight */ + double tmp[3]; + + icmSub3(tmp, smp[i].sv, np->sv); /* Vector from neighbour src to src */ + icmAdd3(tmp, tmp, np->dv); /* Neigbour dst + vector */ + + icmScale3(tmp, tmp, nw); /* weight for filter */ + icmAdd3(anv, anv, tmp); /* sum filtered value */ + } + + /* Blend to un-smoothed value on neutral axis */ + icmBlend3(anv, smp[i].dv, anv, smp[i].naxbf); + + icmCpy3(smp[i].dv, anv); + icmCpy3(smp[i].anv, anv); + smp[i].rext = 0.0; /* No correction */ + } #if VECADJPASSES > 0 /* Fine tune vectors to compensate for side effects of vector smoothing */ - /* Lookup correction vectors */ - VA(("Smoothing guide vectors:\n")); - { - int pncliped = nmpts; - double delta; + VA(("Fine tuning out of gamut guide vectors:\n")); + + /* Loopkup correction vectors */ + VA(("Computing fine tuning direction:\n")); + for (i = 0; i < nmpts; i++) { + co cp; + double nd, id, tmp[3]; + + icmCpy3(cp.p, smp[i].dv); + evectmap->interp(evectmap, &cp); + icmNormalize3(smp[i].evect, cp.v, 1.0); + + /* ~~99 ?? should we deal with white & black direction here ?? */ + + /* Use closest as a default */ + smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv); + nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */ - /* Compute the source to destination neighborhood scale factors */ + /* Compute intersection with dest gamut as tdst */ + if (!vintersect2(smp[i].dgam, NULL, tmp, smp[i].evect, smp[i].dv)) { + /* Got an intersection */ + id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */ + if (id <= (nd + 5.0)) /* And it seems sane */ + icmCpy3(smp[i].tdst, tmp); + } + + smp[i].rext = 0.0; + } + + VA(("Fine tuning guide vectors:\n")); + for (it = 0; it < VECADJPASSES; it++) { + double avgog = 0.0, maxog = 0.0, nog = 0.0; + double avgig = 0.0, maxig = 0.0, nig = 0.0; + + /* Filter the level of out/in gamut, and apply correction vector */ for (i = 0; i < nmpts; i++) { - double tmp[3]; - double sav[3], dav[3]; /* Average center locations */ - double sdev[3], ddev[3]; /* Average devation in each direction from center */ - double scev, dcev; /* Average spherical deviation */ + double cvec[3], clen; + double minext = 1e80; + double maxext = -1e80; /* Max weighted depth extension */ + double dext, gain; - for (j = 0; j < 3; j++) - sav[j] = dav[j] = sdev[j] = ddev[j] = 0.0; - scev = dcev = 0.0; + minext = -20.0; - /* Compute center average values */ - for (j = 0; j < smp[i].nnd; j++) { - nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ - double nw = smp[i].nd[j].w; /* Weight */ - - icmScale3(tmp, np->sv, nw); - icmAdd3(sav, sav, tmp); - icmScale3(tmp, np->dv, nw); - icmAdd3(dav, dav, tmp); - } - - /* Compute average deviation in each direction */ + /* Compute filtered value */ for (j = 0; j < smp[i].nnd; j++) { nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ - double nw = smp[i].nd[j].w; /* Weight */ - double tt; - - icmSub3(tmp, sav, np->sv); - icmAbs3(tmp, tmp); - icmScale3(tmp, tmp, nw); - icmAdd3(sdev, sdev, tmp); - - tt = icmNorm33(sav, np->sv); - tt *= nw; - scev += tt; - - icmSub3(tmp, dav, np->dv); - icmAbs3(tmp, tmp); - icmScale3(tmp, tmp, nw); - icmAdd3(ddev, ddev, tmp); - - tt = icmNorm33(dav, np->dv); - tt *= nw; - dcev += tt; - } - -//printf("~1 %d: sdev %f %f %f, scev %f\n",i,sdev[0],sdev[1],sdev[2],scev); -//printf("~1 %d: ddev %f %f %f, dcev %f\n",i,ddev[0],ddev[1],ddev[2],dcev); + double nw = smp[i].nd[j].rw; /* Weight */ + double tmpl; - /* Try and protect against silliness */ - if (scev < 1e-3 || dcev < 1e-3) - scev = dcev = 1e-3; + icmSub3(cvec, np->tdst, np->anv); /* Vector needed to target for neighbour */ + clen = icmDot3(smp[i].evect, cvec); /* Error in this direction */ - for (j = 0; j < 3; j++) { - if (sdev[j] < 1e-3 || ddev[j] < 1e-3) { - sdev[j] = scev; - ddev[j] = dcev; - } + tmpl = nw * (clen - minext); /* Track maximum weighted extra depth */ + if (tmpl < 0.0) + tmpl = 0.0; + if (tmpl > maxext) + maxext = tmpl; } + maxext += minext; - /* Compute scale factors */ - icmDiv3(smp[i].nscale, ddev, sdev); /* Scale = ddev/sdev */ - -#ifdef NEVER -if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 - || smp[i].nscale[1] > 1.5 || smp[i].nscale[1] < 0.01 - || smp[i].nscale[2] > 1.5 || smp[i].nscale[2] < 0.01) { - printf("~1 %d: scale factors %f %f %f\n",i,smp[i].nscale[0], smp[i].nscale[1], smp[i].nscale[2]); - printf("~1 %d: from sdev %f %f %f\n",i,sdev[0], sdev[1], sdev[2]); - printf("~1 %d: from ddev %f %f %f\n",i,ddev[0], ddev[1], ddev[2]); -} -#endif /* NEVER */ + if (it == 0) + gain = 1.2; + else + gain = 0.8; - } + /* Accumulate correction with damping */ + smp[i].rext += gain * maxext; - /* Itterate smoothing until we're happy */ - for (it = 0; it < VECADJPASSES; it++) { - int ncliped = 0; - double maxclipby = 0.0; - double avgclipby = 0.0; - - /* Compute the neighbourhood smoothed anv[] from dv[] */ - for (i = 0; i < nmpts; i++) { - double sav[3], dav[3]; /* Average locations */ - double tmp[3], c1[3], c2[3]; - double rdsm; - - /* Compute average values */ - sav[0] = sav[1] = sav[2] = 0.0; - dav[0] = dav[1] = dav[2] = 0.0; - for (j = 0; j < smp[i].nnd; j++) { - nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ - double nw = smp[i].nd[j].w; /* Weight */ - - icmScale3(tmp, np->sv, nw); /* weight for filter */ - icmAdd3(sav, sav, tmp); /* sum filtered value */ - - /* weight for filter */ - tmp[0] = nw * np->dv[0]; /* Don't itterate J */ - tmp[1] = nw * np->anv[1]; - tmp[2] = nw * np->anv[2]; - icmAdd3(dav, dav, tmp); /* sum filtered value */ - } - - /* Compute filtered value with source to dest scaling */ - icmSub3(tmp, smp[i].sv, sav); /* Vector from average to src */ - icmMul3(tmp, tmp, smp[i].nscale); /* Scale */ - icmAdd3(tmp, tmp, dav); /* average dst + vector */ + /* Error for just this point */ + icmSub3(cvec, smp[i].tdst, smp[i].anv); + clen = icmDot3(smp[i].evect, cvec); - rdsm = 1.0 - sqrt(smp[i].wt.r.dsm); /* To degree of blending with unchanged */ + /* Blend to individual correction on neutral axis */ + dext = smp[i].naxbf * smp[i].rext + (1.0 - smp[i].naxbf) * clen; - icmBlend3(tmp, tmp, smp[i].dv, rdsm); /* Less than full imprint */ - -#if VECADJPASSES > 1 - /* Clip to gamut */ - if (dc_gam->nradial(dc_gam, c1, tmp) > (1.0 + 1e-6)) { - co cp; - double cvec[3]; - - /* Lookup "shrunk gamut" cliping direction */ - icmCpy3(cp.p, tmp); - evectmap->interp(evectmap, &cp); - icmNormalize3(cvec, cp.v, 1.0); - - if (!vintersect2(dc_gam, NULL, c2, cvec, tmp)) { /* Got an intersection */ - double id; - -//printf("~1 clipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c2[0], c2[1], c2[2]); - id = icmNorm33(c2, tmp); /* Dist to intersection */ - icmCpy3(tmp, c2); - - ncliped++; - if(id > maxclipby) - maxclipby = id; - avgclipby += id; - } else { -//printf("~1 rclipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c1[0], c1[1], c1[2]); - icmCpy3(tmp, c1); /* Use radial clip */ - } - } -#endif - - /* Blend to un-smoothed value on neutral axis */ - icmBlend3(tmp, smp[i].dv, tmp, smp[i].naxbf); - - /* Updated value for next itteration */ - icmCpy3(smp[i].anv, tmp); - } + /* Apply integrated correction */ + icmScale3(cvec, smp[i].evect, dext); + icmAdd3(smp[i].anv, smp[i].dv, cvec); - if (ncliped > 0) - avgclipby /= (double)ncliped; + if (clen > 0.0) { /* Compression */ + if (clen > maxog) + maxog = clen; + avgog += clen; + nog++; - delta = (pncliped - ncliped)/(double)nmpts; - - if (verb) { - printf("It %d: No clip %d/%d delta %f max by %f, avg by %f\n",it,ncliped, nmpts+1, delta, maxclipby, avgclipby); + } else { /* Expansion */ + if (-clen > maxig) + maxig = -clen; + avgig += -clen; + nig++; } - pncliped = ncliped; - } - - /* Copy final results */ - for (i = 0; i < nmpts; i++) { - icmCpy3(smp[i].dv, smp[i].anv); - smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); } + if (verb) + printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f\n", + nog,maxog,nog > 1 ? avgog/nog : 0.0, nig,maxig,nig > 1 ? avgig/nig : 0.0); } -#endif /* VECADJPASSES > 0 */ - -#ifdef DIAG_POINTS - /* Show just the closest vectors etc. */ - for (i = 0; i < nmpts; i++) { /* Move all the points */ -// icmCpy3(smp[i].dv, smp[i].drv); /* Radial */ - icmCpy3(smp[i].dv, smp[i].aodv); /* Nearest */ -// icmCpy3(smp[i].dv, smp[i].nrdv); /* No smoothed weighted */ - smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); /* Vector smoothed */ + /* Copy final results */ + for (i = 0; i < nmpts; i++) { + icmCpy3(smp[i].dv, smp[i].anv); + smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); } -#else - /* The smoothed direction and raw depth is a single pass, */ - /* but we use multiple passes to determine the extra depth that */ - /* needs to be added so that the smoothed result lies within */ - /* the destination gamut. */ -#if RSPLPASSES > 0 + if (verb) { + double avgog = 0.0, maxog = 0.0, nog = 0.0; + double avgig = 0.0, maxig = 0.0, nig = 0.0; - VA(("Fine tuning vectors to allow for rspl smoothing:\n")); + /* Check the result */ + for (i = 0; i < nmpts; i++) { + double cvec[3], clen; + + /* Error for just this point, for stats */ + icmSub3(cvec, smp[i].tdst, smp[i].anv); + clen = icmDot3(smp[i].evect, cvec); + + if (clen > 0.0) { /* Compression */ + if (clen > maxog) + maxog = clen; + avgog += clen; + nog++; + + } else { /* Expansion */ + if (-clen > maxig) + maxig = -clen; + avgig += -clen; + nig++; + } + } + printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f\n", + nog,maxog,nog > 1 ? avgog/nog : 0.0, nig,maxig,nig > 1 ? avgig/nig : 0.0); + } +#endif /* VECADJUST */ +#endif /* VECADJPASSES > 0 */ +#if RSPLPASSES > 0 /* We need to adjust the vectors with extra depth to compensate for */ /* for the effect of rspl smoothing. */ { cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */ rspl *map = NULL; /* Test map */ + datai il, ih; + datao ol, oh; int gres[MXDI]; double avgdev[MXDO]; double icgain, ixgain; /* Initial compression, expansion gain */ double fcgain, fxgain; /* Final compression, expansion gain */ + VA(("Fine tuning vectors to allow for rspl smoothing:\n")); + + for (j = 0; j < 3; j++) { /* Copy ranges */ + il[j] = map_il[j]; + ih[j] = map_ih[j]; + ol[j] = map_ol[j]; + oh[j] = map_oh[j]; + } + + /* Adjust the input ranges for guide vectors */ + for (i = 0; i < nmpts; i++) { + for (j = 0; j < 3; j++) { + if (smp[i]._sv[j] < il[j]) + il[j] = smp[i]._sv[j]; + if (smp[i]._sv[j] > ih[j]) + ih[j] = smp[i]._sv[j]; + } + } + + /* Now expand the bounding box by aprox 5% margin, but scale grid res */ + /* to match, so that the natural or given boundary still lies on the grid. */ + /* (This duplicates code in gammap applied after near_smooth() returns) */ + /* (We are assuming that our changes to the giude vectprs won't expand the ranges) */ + { + int xmapres; + double scale; + + xmapres = (int) ((mapres-1) * 0.05 + 0.5); + if (xmapres < 1) + xmapres = 1; + + scale = (double)(mapres-1 + xmapres)/(double)(mapres-1); + + for (j = 0; j < 3; j++) { + double low, high; + high = ih[j]; + low = il[j]; + ih[j] = (scale * (high - low)) + low; + il[j] = (scale * (low - high)) + high; + } + + mapres += 2 * xmapres; + } + if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) { fprintf(stderr,"gamut map: Malloc of near smooth points failed\n"); if (evectmap != NULL) evectmap->del(evectmap); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); free_nearsmth(smp, nmpts); *npp = 0; return NULL; } - /* Lookup correction vectors */ - VA(("Computing fine tuning target for vectors:\n")); + /* Loopkup correction vectors */ + VA(("Computing fine tuning direction for vectors:\n")); for (i = 0; i < nmpts; i++) { + co cp; double nd, id, tmp[3]; - /* If the sv and dv are within dc_gam, then this point doesn't need */ - /* to be fine tuned to make it land on the gamut surface - this point */ - /* either doesn't need gamut mapping, or is being expanded, in which */ - /* case we prioritize smoothness over exactly hitting the expansion */ - /* target */ - if (dc_gam->nradial(dc_gam, NULL, smp[i].sv) <= (1.0 + 1e-6) - && dc_gam->nradial(dc_gam, NULL, smp[i].dv) <= (1.0 + 1e-6)) { - icmCpy3(smp[i].tdst, smp[i].dv); /* Target is where we are */ - smp[i].nott = 1; - - } else { - co cp; - double evect[3]; - - /* Lookup fine tuning vector direction for current location */ - icmCpy3(cp.p, smp[i].dv); - evectmap->interp(evectmap, &cp); - icmNormalize3(evect, cp.v, 1.0); - - /* Use closest as a default */ - smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv); - nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */ - - /* Compute intersection with dest gamut as tdst */ - if (!vintersect2(smp[i].dgam, NULL, tmp, evect, smp[i].dv)) { - /* Got an intersection */ - id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */ - if (id <= (nd + 5.0)) /* And it seems sane */ - icmCpy3(smp[i].tdst, tmp); - } - smp[i].nott = 0; + icmCpy3(cp.p, smp[i].dv); + evectmap->interp(evectmap, &cp); + icmNormalize3(smp[i].evect, cp.v, 1.0); + + /* ~~99 ?? should we deal with white & black direction here ?? */ + + /* Use closest as a default */ + smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv); + nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */ + + /* Compute intersection with dest gamut as tdst */ + if (!vintersect2(smp[i].dgam, NULL, tmp, smp[i].evect, smp[i].dv)) { + /* Got an intersection */ + id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */ + if (id <= (nd + 5.0)) /* And it seems sane */ + icmCpy3(smp[i].tdst, tmp); } smp[i].coff[0] = smp[i].coff[1] = smp[i].coff[2] = 0.0; @@ -3150,8 +2996,6 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 double avgrext = 0.0; double ovlen; - VA(("it %d: Creating rspl\n",it)); - /* Setup the rspl guide points for creating rspl */ for (i = 0; i < nmpts; i++) { icmCpy3(gpnts[i].p, smp[i]._sv); /* The orgininal src point */ @@ -3160,14 +3004,13 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 } for (j = 0; j < 3; j++) { /* Set resolution for all axes */ +// gres[j] = (mapres+1)/2; /* Half resolution for speed */ gres[j] = mapres; /* Full resolution */ avgdev[j] = GAMMAP_RSPLAVGDEV; } map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */ map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts, - map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL); - - VA(("it %d: Evaluate mapping\n",it)); + il, ih, gres, ol, oh, mapsmooth, avgdev, NULL); /* See what the source actually maps to via rspl, and how far from */ /* the target point they are. */ @@ -3179,20 +3022,12 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 icmCpy3(cp.p, smp[i]._sv); map->interp(map, &cp); icmCpy3(smp[i].temp, cp.v); - - /* Lookup fine tuning vector direction for that value. */ - /* (evect[] is then used in the local correction loop below) */ - icmCpy3(cp.p, smp[i].temp); - evectmap->interp(evectmap, &cp); - icmNormalize3(smp[i].evect, cp.v, 1.0); - + /* Compute the correction needed and it's signed length */ icmSub3(cvec, smp[i].tdst, smp[i].temp); smp[i].clen = icmDot3(smp[i].evect, cvec); } - VA(("it %d: Compute correction vectors\n",it)); - /* Compute local correction */ for (i = 0; i < nmpts; i++) { double minext = 1e80; @@ -3202,8 +3037,6 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 double tt; double cgain, xgain; /* This itters compression, expansion gain */ double gain; /* Gain used */ - co cp; - double evect[3]; /* See what the worst case is in the local area, and */ /* aim to lower the whole local area by enough to */ @@ -3258,7 +3091,6 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 /* Keep stats of this point */ clen = smp[i].clen; - if (clen > 0.0) { if (clen > maxog) maxog = clen; @@ -3283,32 +3115,20 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 gpnts[i].w = 1.0; } - if ((it+1) < RSPLPASSES || !surfpnts) - map->del(map); /* Not the last pass, or not doing grid surface points */ - else - lastmap = map; /* Let grid surface creation use this. */ - - VA(("it %d: Compute correction rspl\n",it)); - - /* Create rspl of corrections */ for (j = 0; j < 3; j++) { /* Set resolution for all axes */ +// gres[j] = (mapres+1)/2; /* Half resolution */ gres[j] = mapres; /* Full resolution */ avgdev[j] = GAMMAP_RSPLAVGDEV; } map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */ map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts, - map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL); - - VA(("it %d: Apply corrections\n",it)); + il, ih, gres, ol, oh, 2.0, avgdev, NULL); /* Lookup the smoothed extension vector for each point and apply it */ for (i = 0; i < nmpts; i++) { double tt; co cp; - if (smp[i].nott) /* Don't alter points within the gamut */ - continue; - icmCpy3(cp.p, smp[i].dv); map->interp(map, &cp); #ifdef RSPLUSEPOW @@ -3323,7 +3143,7 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 /* Apply accumulated offset */ icmAdd3(smp[i].anv, smp[i].dv, cp.v); } - map->del(map); /* Not the last pass, or not doing grid surface points */ + map->del(map); if (verb) printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f, avg rext %f\n", @@ -3354,15 +3174,18 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 } #endif /* RSPLPASSES > 0 */ -#endif /* !DIAG_POINTS */ +#endif /* NEVER (show debug values) */ VA(("Smoothing passes done, doing final houskeeping\n")); + if (verb) + printf("\n"); + #if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE) - create_influence_plot(smp, nmpts, mapres); + create_influence_plot(smp, nmpts); #endif - VA(("Restoring non cusp-rotated source points:\n")); + VB(("Final guide points:\n")); /* Restore the actual non cusp rotated source point */ for (i = 0; i < nmpts; i++) { @@ -3413,7 +3236,7 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 /* Compute actual depth of ray into destination gamut */ /* to determine if this is expansion or contraction. */ - if (dst_gam->vector_isect(dst_gam, smp[i].sv, smp[i].dv, + if (di_gam->vector_isect(di_gam, smp[i].sv, smp[i].dv, minv, maxv, &mint, &maxt, &mintri, &maxtri) != 0) { double wp[3], bp[3]; /* Gamut white and black points */ double p1, napoint[3] = { 50.0, 0.0, 0.0 }; /* Neutral axis point */ @@ -3426,7 +3249,7 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 /* the guide ray. We use this as a destination direction */ /* if the sub surface ray gets very long, and to compute */ /* a sanity check on the available depth. */ - if (dc_gam->getwb(dc_gam, NULL, NULL, NULL, wp, dst_kbp ? NULL : bp, dst_kbp ? bp : NULL) == 0) { + if (d_gam->getwb(d_gam, NULL, NULL, NULL, wp, dst_kbp ? NULL : bp, dst_kbp ? bp : NULL) == 0) { if (icmLineLineClosest(napoint, NULL, &p1, NULL, bp, wp, smp[i].sv, smp[i].dv) == 0) { double nalev[3]; @@ -3472,7 +3295,7 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 } #ifdef VERB else { - printf("dc_gam->getwb failed\n"); + printf("d_gam->getwb failed\n"); } #endif @@ -3621,345 +3444,54 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 #ifdef SUBVEC_SMOOTHING VB(("Smoothing sub-surface guide points:\n")); - { - double maxmv = 0.0, avgmv = 0.0, acount = 0.0; - /* Smooth the sub-surface mapping points */ - for (i = 0; i < nmpts; i++) { - double sav[3], dav[3]; /* Average locations */ - double scr, dcr; /* Cylindrical radius */ - double scf; /* Scale factor */ - double tmp[3], de; - - if (smp[i].vflag == 0) - continue; /* Sub value not valid */ - - /* Compute average values */ - sav[0] = sav[1] = sav[2] = 0.0; - dav[0] = dav[1] = dav[2] = 0.0; - for (j = 0; j < smp[i].nnd; j++) { - nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ - double nw = smp[i].nd[j].w; /* Weight */ + /* Smooth the sub-surface mapping points */ + /* dv2[] is duplicated in temp[], so use temp[] as the values to be filtered */ + for (i = 0; i < nmpts; i++) { + double tmp[3]; + double fdv2[3]; /* Filtered dv2[] */ + double tw; /* Total weight */ + int rc; + + if (smp[i].vflag == 0) + continue; + + /* Compute filtered value */ + tw = fdv2[0] = fdv2[1] = fdv2[2] = 0.0; + for (j = 0; j < smp[i].nnd; j++) { + nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */ + double nw = smp[i].nd[j].w; /* Weight */ + double tmp[3]; - icmScale3(tmp, np->sv2, nw); /* weight for filter */ - icmAdd3(sav, sav, tmp); /* sum filtered value */ + if (np->vflag) { + icmSub3(tmp, smp[i].sv2, np->sv2); /* Vector from neighbour src to src */ + icmAdd3(tmp, tmp, np->dv2); /* Neigbour dst + vector */ - icmScale3(tmp, np->dv2, nw); /* weight for filter */ - icmAdd3(dav, dav, tmp); /* sum filtered value */ + icmScale3(tmp, tmp, nw); /* weight for filter */ + icmAdd3(fdv2, fdv2, tmp); /* sum filtered value */ + tw += nw; } - - /* We want to transfer the relative location (i.e. detail) from */ - /* the source to destination, but we need to scale the features */ - /* appropriately for the mapping. */ - scr = sqrt(sav[1] * sav[1] + sav[2] * sav[2]); - dcr = sqrt(dav[1] * dav[1] + dav[2] * dav[2]); - scf = dcr/scr; - - /* Compute filtered value */ - icmSub3(tmp, smp[i].sv2, sav); /* Vector from average to src */ - tmp[1] *= scf; /* Scale */ - tmp[2] *= scf; /* Scale */ - icmAdd3(tmp, tmp, dav); /* average dst + vector */ - - de = icmNorm33(smp[i].dv2, tmp); - icmCpy3(smp[i].dv2, tmp); - - if (de > maxmv) - maxmv = de; - avgmv += de; - acount++; - - VB(("Smthd Src %d = %f %f %f\n",i,smp[i].sv2[0],smp2[i].sv[1],smp2[i].sv2[2])); - VB(("Smthd Dst %d = %f %f %f\n",i,smp[i].dv2[0],smp2[i].dv[1],smp2[i].dv2[2])); } - if (acount > 0) - avgmv /= acount; - - if (verb) - printf("Sub-surface smoothing changed by max %f, average %f\n",maxmv, avgmv); + if (tw > 0.0) { +//printf("~1 %d: moved %f %f %f -> %f %f %f de %f\n", i, smp[i].dv2[0], smp[i].dv2[1], smp[i].dv2[2], fdv2[0], fdv2[1], fdv2[2], icmNorm33(smp[i].dv2,fdv2)); + icmScale3(smp[i].dv2, fdv2, 1.0/tw); + } } #endif /* SUBVEC_SMOOTHING */ VB(("near_smooth is done\n")); -#ifdef PLOT_SMOOTHING_CHANGE - /* Plot change in destination point of un-smoothed to smoothed */ - { - vrml *wrl = NULL; - int doaxes = 0; - -#ifdef PLOT_AXES - doaxes = 1; -#endif - wrl = new_vrml("dst_smvec", doaxes, vrml_lab); - - /* Start of guide vector plot */ - wrl->start_line_set(wrl, 0); - - for (i = 0; i < nmpts; i++) { - double red[3] = { 1.0, 0.0, 0.0 }; - double green[3] = { 0.0, 1.0, 0.0 }; - - wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red); - wrl->add_col_vertex(wrl, 0, smp[i].dv, green); - } - wrl->make_lines(wrl, 0, 2); /* Change vectors */ - -#ifndef NEVER - /* Plot un-smoothed src to dst mappings */ - wrl->start_line_set(wrl, 0); - - for (i = 0; i < nmpts; i++) { - double lblue[3] = { 0.4, 0.4, 0.8 }; - double magenta[3] = { 0.8, 0.4, 0.8 }; - - wrl->add_col_vertex(wrl, 0, smp[i].sv, lblue); - wrl->add_col_vertex(wrl, 0, smp[i].nrdv, magenta); - } - wrl->make_lines(wrl, 0, 2); /* Change vectors */ -#endif - -#ifdef NEVER - /* Plot index numbers */ - for (i = 0; i < nmpts; i++) { - double cream[3] = { 0.7, 0.7, 0.5 }; - char buf[100]; - sprintf(buf, "%d", i); - wrl->add_text(wrl, buf, smp[i].dv, cream, 0.5); - } -#endif /* NEVER */ - - /* Write transparent destination space gamut surface */ - dc_gam->write_to_vrml(dc_gam, wrl, 0.5, 0); - - /* Write file */ - wrl->del(wrl); - } -#endif /* PLOT_SMOOTHING_CHANGE */ - - /* If grid surface points are requested */ - if (surfpnts) { - DCOUNT(gc, 3, 3, 0, 0, hmapres); - double cent[3]; - - VB(("Adding grid surface points:\n")); - - /* If rspl smoothing didn't leave us a map */ - if (lastmap == NULL) { - - cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */ - int gres[MXDI]; - double avgdev[MXDO]; - - VB(("Creating rspl map for grid surface points\n",it)); - - if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) { - fprintf(stderr,"gamut map: Malloc of near smooth points failed\n"); - if (evectmap != NULL) - evectmap->del(evectmap); - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); - free_nearsmth(smp, nmpts); - *npp = 0; - return NULL; - } - - /* Setup the rspl guide points for creating rspl */ - for (i = 0; i < nmpts; i++) { - icmCpy3(gpnts[i].p, smp[i].sv); - icmCpy3(gpnts[i].v, smp[i].dv); - gpnts[i].w = 1.0; - } - - for (j = 0; j < 3; j++) { /* Set resolution for all axes */ - gres[j] = mapres; /* Full resolution */ - avgdev[j] = GAMMAP_RSPLAVGDEV; - } - lastmap = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */ - lastmap->fit_rspl_w(lastmap, GAMMAP_RSPLFLAGS, gpnts, nmpts, - map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL); - free(gpnts); - } - - sc_gam->getcent(dc_gam, cent); - - DC_INIT(gc); - for (;;) { - /* If point is in the outer two layers of grid */ - if ( gc[0] == 0 || gc[0] == hdmapres - || gc[0] == (hmapres-1) || gc[0] == (hmapres-1-hdmapres) - || gc[1] == 0 || gc[1] == hdmapres - || gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres) - || gc[2] == 0 || gc[2] == hdmapres - || gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres)) - - /* Only points around gamut, not on top or underneath */ -/* - if ( gc[1] == 0 || gc[1] == hdmapres - || gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres) - || gc[2] == 0 || gc[2] == hdmapres - || gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres)) -*/ - { - double grid2gamut, gamut2cent, ww; - co cp; - - if (nmpts >= mxnmpts) { - warning("nearsmth ran out of space for points"); - break; - } - smp[nmpts].uflag = 1; - - /* Source location */ - for (j = 0; j < 3; j++) - smp[nmpts].sv[j] = map_il[j] + gc[j]/(hmapres-1.0) * (map_ih[j] - map_il[j]); - - /* If this point is within source gamut, skip it */ - if (sc_gam->nradial(sc_gam, NULL, smp[nmpts].sv) <= (1.0 + 1e-6)) { -//printf("~1 point %d %d %d = %f %f %f is inside source gamut\n", gc[0], gc[1], gc[2], smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2]); - goto next_point; - } -#ifdef NEVER - /* Clip the point to the closest location on the source */ - /* colorspace gamut. */ - sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv); -#else - /* Map grid point to weighted nearest on source space gamut */ - { - double ta[3] = { 50.0, 0.0, 0.0 }; - double tc[3] = { 0.0, 0.0, 0.0 }; - double s[2] = { 20.0, 20.0 }; /* 2D search area */ - double nv[2]; /* 2D New value */ - double tp[3]; /* Resultint value */ - double ne; /* New error */ - int notrials = NO_TRIALS; - double bnv[3]; /* Best 3d value */ - double brv; /* Best return value */ - int trial; - double mv; - - /* Determine the parameter weighting at this location */ - opts.pass = 0; /* Itteration pass */ - opts.ix = nmpts; - opts.p = &smp[nmpts]; - opts.wngam = sc_gam; /* Optimise to source colorspace gamut */ - opts.wn = smp[nmpts].sv; /* minimize optfunc1a sv -> sc_gam */ - - /* Compute weights at this point */ - interp_xweights(sc_gam, &smp[nmpts].wt, smp[nmpts].sv, opts.xwh, &opts, 0); - - /* Initial starting point */ - sc_gam->nearest(sc_gam, bnv, smp[nmpts].sv); - - /* Do several trials from different starting points to avoid */ - /* any local minima, particularly with nearest mapping. */ - brv = 1e38; - for (trial = 0; trial < notrials; trial++) { - double rv; /* Temporary */ - - /* Setup the 3D -> 2D tangent conversion and inverse for our start point */ - icmVecRotMat(smp[nmpts].m2d, bnv, sc_gam->cent, ta, tc); - icmVecRotMat(smp[nmpts].m3d, ta, tc, bnv, sc_gam->cent); - - /* Convert our start value from 3D to 2D for speed. */ - icmMul3By3x4(tp, smp[nmpts].m2d, bnv); - nv[0] = tp[1]; - nv[1] = tp[2]; - - if (trial >= 2) { - /* Use random offset to avoid local minima */ - nv[0] += d_rand(-20.0, 20.0); - nv[1] += d_rand(-20.0, 20.0); - } - - /* Optimise the point */ - if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL) == 0 - && rv < brv) { - brv = rv; -//printf("~1 point %d, trial %d, new best %f\n",i,trial,rv); - - /* Convert best result 2D -> 3D */ - tp[2] = nv[1]; - tp[1] = nv[0]; - tp[0] = 50.0; - icmMul3By3x4(tp, smp[nmpts].m3d, tp); - - /* Remap it to the source gamut surface */ - sc_gam->radial(sc_gam, bnv, tp); - } -//else printf("~1 powell failed with rv = %f\n",rv); - } - if (brv == 1e38) { /* We failed to get a result */ - fprintf(stderr, "multiple powells failed to get a result (4)\n"); - sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv); - - } else { - icmCpy3(cp.p, bnv); - } - } -#endif /* NEVER */ - -//printf("~1 grid %f %f %f -> src %f %f %f\n", smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2], cp.p[0], cp.p[1], cp.p[2]); - - /* Then lookup the gamut mapped value */ - lastmap->interp(lastmap, &cp); - -//printf("~1 src %f %f %f -> dst %f %f %f\n", cp.p[0], cp.p[1], cp.p[2], cp.v[0], cp.v[1], cp.v[2]); - - for (j = 0; j < 3; j++) - smp[nmpts].dv[j] = cp.v[j]; - - /* Compute the distance of the grid surface point to the to the */ - /* source colorspace gamut, as well as the distance from there */ - /* to the gamut center point. */ - for (grid2gamut = gamut2cent = 0.0, j = 0; j < 3; j++) { - double tt; - tt = smp[nmpts].dv[j] - cp.p[j]; - grid2gamut += tt * tt; - tt = cp.p[j] - cent[j]; - gamut2cent += tt * tt; - } - grid2gamut = sqrt(grid2gamut); - gamut2cent = sqrt(gamut2cent); - if (gamut2cent < 0.1) - gamut2cent = 0.1; - - /* Make the weighting inversely related to distance, */ - /* to reduce influence on in gamut mapping shape, */ - /* while retaining some influence at the edge of the */ - /* grid. */ - ww = grid2gamut / gamut2cent; - if (ww > 1.0) - ww = 1.0; - - /* A low weight seems to be enough ? */ - /* The lower the better in terms of geting best hull mapping fidelity */ - smp[nmpts++].w1 = 0.1 * ww; - } - next_point:; - DC_INC(gc); - if (DC_DONE(gc)) - break; - } - *npp = nmpts; /* Update returned number of points */ - - lastmap->del(lastmap); - } - if (evectmap != NULL) evectmap->del(evectmap); #ifndef PLOT_DIGAM - if (src_gam != sc_gam) - src_gam->del(src_gam); - if (dst_gam != src_gam && dst_gam != dc_gam) - dst_gam->del(dst_gam); + if (si_gam != sc_gam) + sci_gam->del(sci_gam); + if (di_gam != sci_gam && di_gam != sci_gam) + di_gam->del(di_gam); for (i = 0; i < nmpts; i++) { smp[i].sgam = NULL; smp[i].dgam = NULL; - smp[i].dcgam = NULL; } #else /* !PLOT_DIGAM */ warning("!!!!! PLOT_DIGAM defined !!!!!"); @@ -3972,7 +3504,6 @@ if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01 void free_nearsmth(nearsmth *smp, int nmpts) { int i; - /* Free contents that have been used */ for (i = 0; i < nmpts; i++) { if (smp[i].nd != NULL) free(smp[i].nd); @@ -3987,7 +3518,7 @@ void free_nearsmth(nearsmth *smp, int nmpts) { /* Create a plot indicating how the source mapping has been guided by the */ /* various weighting forces. */ -static void create_influence_plot(nearsmth *smp, int nmpts, int mapres) { +static void create_influence_plot(nearsmth *smp, int nmpts) { int i, j, k; gamut *gam; int src = 0; /* 1 = src, 0 = dst gamuts */ @@ -4061,7 +3592,7 @@ static void create_influence_plot(nearsmth *smp, int nmpts, int mapres) { /* Create the diagnostic color rspl */ for (j = 0; j < 3; j++) { /* Set resolution for all axes */ - gres[j] = mapres; + gres[j] = smp->mapres; avgdev[j] = 0.001; } swdiag = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */ |