diff options
Diffstat (limited to 'jpeg/jdtrans.c')
-rw-r--r-- | jpeg/jdtrans.c | 140 |
1 files changed, 140 insertions, 0 deletions
diff --git a/jpeg/jdtrans.c b/jpeg/jdtrans.c new file mode 100644 index 0000000..22dd47f --- /dev/null +++ b/jpeg/jdtrans.c @@ -0,0 +1,140 @@ +/* + * jdtrans.c + * + * Copyright (C) 1995-1997, Thomas G. Lane. + * Modified 2000-2009 by Guido Vollbeding. + * This file is part of the Independent JPEG Group's software. + * For conditions of distribution and use, see the accompanying README file. + * + * This file contains library routines for transcoding decompression, + * that is, reading raw DCT coefficient arrays from an input JPEG file. + * The routines in jdapimin.c will also be needed by a transcoder. + */ + +#define JPEG_INTERNALS +#include "jinclude.h" +#include "jpeglib.h" + + +/* Forward declarations */ +LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); + + +/* + * Read the coefficient arrays from a JPEG file. + * jpeg_read_header must be completed before calling this. + * + * The entire image is read into a set of virtual coefficient-block arrays, + * one per component. The return value is a pointer to the array of + * virtual-array descriptors. These can be manipulated directly via the + * JPEG memory manager, or handed off to jpeg_write_coefficients(). + * To release the memory occupied by the virtual arrays, call + * jpeg_finish_decompress() when done with the data. + * + * An alternative usage is to simply obtain access to the coefficient arrays + * during a buffered-image-mode decompression operation. This is allowed + * after any jpeg_finish_output() call. The arrays can be accessed until + * jpeg_finish_decompress() is called. (Note that any call to the library + * may reposition the arrays, so don't rely on access_virt_barray() results + * to stay valid across library calls.) + * + * Returns NULL if suspended. This case need be checked only if + * a suspending data source is used. + */ + +GLOBAL(jvirt_barray_ptr *) +jpeg_read_coefficients (j_decompress_ptr cinfo) +{ + if (cinfo->global_state == DSTATE_READY) { + /* First call: initialize active modules */ + transdecode_master_selection(cinfo); + cinfo->global_state = DSTATE_RDCOEFS; + } + if (cinfo->global_state == DSTATE_RDCOEFS) { + /* Absorb whole file into the coef buffer */ + for (;;) { + int retcode; + /* Call progress monitor hook if present */ + if (cinfo->progress != NULL) + (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); + /* Absorb some more input */ + retcode = (*cinfo->inputctl->consume_input) (cinfo); + if (retcode == JPEG_SUSPENDED) + return NULL; + if (retcode == JPEG_REACHED_EOI) + break; + /* Advance progress counter if appropriate */ + if (cinfo->progress != NULL && + (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { + if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { + /* startup underestimated number of scans; ratchet up one scan */ + cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; + } + } + } + /* Set state so that jpeg_finish_decompress does the right thing */ + cinfo->global_state = DSTATE_STOPPING; + } + /* At this point we should be in state DSTATE_STOPPING if being used + * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access + * to the coefficients during a full buffered-image-mode decompression. + */ + if ((cinfo->global_state == DSTATE_STOPPING || + cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { + return cinfo->coef->coef_arrays; + } + /* Oops, improper usage */ + ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); + return NULL; /* keep compiler happy */ +} + + +/* + * Master selection of decompression modules for transcoding. + * This substitutes for jdmaster.c's initialization of the full decompressor. + */ + +LOCAL(void) +transdecode_master_selection (j_decompress_ptr cinfo) +{ + /* This is effectively a buffered-image operation. */ + cinfo->buffered_image = TRUE; + + /* Compute output image dimensions and related values. */ + jpeg_core_output_dimensions(cinfo); + + /* Entropy decoding: either Huffman or arithmetic coding. */ + if (cinfo->arith_code) + jinit_arith_decoder(cinfo); + else { + jinit_huff_decoder(cinfo); + } + + /* Always get a full-image coefficient buffer. */ + jinit_d_coef_controller(cinfo, TRUE); + + /* We can now tell the memory manager to allocate virtual arrays. */ + (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); + + /* Initialize input side of decompressor to consume first scan. */ + (*cinfo->inputctl->start_input_pass) (cinfo); + + /* Initialize progress monitoring. */ + if (cinfo->progress != NULL) { + int nscans; + /* Estimate number of scans to set pass_limit. */ + if (cinfo->progressive_mode) { + /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ + nscans = 2 + 3 * cinfo->num_components; + } else if (cinfo->inputctl->has_multiple_scans) { + /* For a nonprogressive multiscan file, estimate 1 scan per component. */ + nscans = cinfo->num_components; + } else { + nscans = 1; + } + cinfo->progress->pass_counter = 0L; + cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; + cinfo->progress->completed_passes = 0; + cinfo->progress->total_passes = 1; + } +} |