diff options
Diffstat (limited to 'rspl/smtnd.c')
-rw-r--r-- | rspl/smtnd.c | 398 |
1 files changed, 222 insertions, 176 deletions
diff --git a/rspl/smtnd.c b/rspl/smtnd.c index cdef0a2..f105429 100644 --- a/rspl/smtnd.c +++ b/rspl/smtnd.c @@ -26,12 +26,12 @@ #include "rspl.h" #include "numlib.h" #include "xicc.h" /* For mpp support */ -#include "plot.h" #include "rspl_imp.h" #include "counters.h" /* Counter macros */ +#include "plot.h" +#include "ui.h" -/* rspl flags */ -#define MXCHPARAMS 8 +#define MXCHPARAMS 10 /* Input channel curve parameters */ #define PLOTRES 256 @@ -48,14 +48,15 @@ typedef struct { /* Setup a random function in the given dimensions */ static void setup_func(funcp *p, int di) { double mn,mx; + double ax[MXDI][2]; int i, j; p->di = di; - /* Setup random input parameters */ + /* Setup random input curve parameters */ /* (This is the one that effects smoothness of function the most) */ for (j = 0; j < di; j++) { - for (mx = 3.0, i = 0; i < MXCHPARAMS; i++, mx *= 0.6) { + for (mx = 4.0, i = 0; i < MXCHPARAMS; i++, mx *= 0.6) { p->ip[j][i] = d_rand(-mx, mx); } } @@ -63,15 +64,32 @@ static void setup_func(funcp *p, int di) { /* Setup random shape parameters */ for (j = 0; j < di; j++) { for (i = 0; i < (1 << di); i++) { /* Initially random */ - p->shape[j][i] = d_rand(-1.0, 1.0); + p->shape[j][i] = d_rand(-0.1, 0.1); } } - /* Setup the random output parameters */ - mn = 2.0; - mx = -1.0; + /* Setup the random output value parameters */ + + /* First some axis dominant values */ + for (i = 0; i < di; i++) { + ax[i][0] = d_rand(0.0, 1.0); + ax[i][1] = ax[i][0] + d_rand(-1.0, 1.0); + } + + /* Sum them orthogonally and add indepent terms */ + mn = 5.0; + mx = -5.0; for (i = 0; i < (1 << di); i++) { /* Initially random */ - p->op[i] = d_rand(0.0, 1.0); + p->op[i] = 0.0; + + for (j = 0; j < di; j++) { + if ((1 << j) & i) + p->op[i] += ax[j][1]; + else + p->op[i] += ax[j][0]; + } + p->op[i] += d_rand(-0.3, 0.3); + if (p->op[i] < mn) mn = p->op[i]; if (p->op[i] > mx) @@ -100,7 +118,7 @@ static double lookup_func(funcp *p, double *v) { for (m = 0; m < di; m++) ww[m] = 0.0; - /* Lookup the shape values */ + /* Interpolate the shape values */ for (k = 0; k < (1 << di); k++) { /* For each interp vertex */ double vv; for (vv = 1.0, m = 0; m < di; m++) { /* Compute weighting */ @@ -156,8 +174,8 @@ static void do_test( double noise, /* Sample point noise volume */ int unif, /* NZ if uniform rather than standard deistribution noise */ double smooth, /* Smoothness to test */ - int twopass, /* Two pass flag */ - int extra /* Extra fit flag */ + int autosm, /* Use auto smoothing */ + int seed /* Random seed value offset */ ); /* Compute smoothness of function */ @@ -176,10 +194,10 @@ static double do_stest( /* Return the optimal smoothness value, based on the */ /* minimum RMS value. */ static double best(int n, double *rmse, double *smv) { - int i; + int i, bi; rspl *curve; co *tps = NULL; - int ns = 500; /* Number of samples */ + int ns = 2000; /* Number of samples */ datai low,high; int gres[1]; datai dlow,dhigh; @@ -214,7 +232,7 @@ static double best(int n, double *rmse, double *smv) { n, /* Number of test points */ NULL, NULL, gres, /* Low, high, resolution of grid */ NULL, NULL, /* Default data scale */ - -0.00001, /* Underlying smoothing */ + -0.0007, /* Underlying smoothing */ avgdev, /* Average deviation */ NULL); /* iwidth */ @@ -228,6 +246,45 @@ static double best(int n, double *rmse, double *smv) { printf("Point %d at %f, should be %f is %f\n",i,log10(smv[i]),rmse[i],tp.v[0]); } +#endif + + /* Choose a solution */ + brmse = 1e38; + + /* Find lowest rms error point */ + for (i = ns-1; i >= 0; i--) { + co tp; + double vi; + + vi = i/(ns-1.0); + tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi; + curve->interp(curve, &tp); + + if (tp.v[0] < brmse) { + blsmv = tp.p[0]; + brmse = tp.v[0]; + bi = i; + } + } + + /* Then increase smoothness until fit error is 1% higher */ + for (i = bi+1; i < ns; i++) { + co tp; + double vi; + + vi = i/(ns-1.0); + tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi; + curve->interp(curve, &tp); + + if (tp.v[0] >= (1.01 * brmse)) { + blsmv = tp.p[0]; + brmse = tp.v[0]; + break; + } + } + rv = pow(10.0, blsmv); + +#ifdef NEVER #define TPRES 100 /* Plot the result */ @@ -243,27 +300,11 @@ static double best(int n, double *rmse, double *smv) { xx[i] = tp.p[0]; yy[i] = tp.v[0]; } + printf("Best at %f\n",blsmv); do_plot(xx,yy,NULL,NULL,TPRES); } #endif - /* Choose a solution */ - brmse = 1e38; - for (i = 0; i < ns ; i++) { - co tp; - double vi; - - vi = i/(ns-1.0); - tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi; - curve->interp(curve, &tp); - - if (tp.v[0] < brmse) { - blsmv = tp.p[0]; - brmse = tp.v[0]; - } - } - - rv = pow(10.0, blsmv); return rv; } @@ -274,7 +315,7 @@ static double best(int n, double *rmse, double *smv) { /* If tdi != 0, just do the given dimension */ /* If tntps != 0, just do the given number of points */ /* If tnlev != 0, just do the given noise level */ -static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, int extra) { +static void do_series_1(int unif, int tdi, int tntps, int tnlev, int autosm, int seed) { int verb = 0; int plot = 0; int sdi = 1, edi = 4, di; @@ -288,10 +329,10 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in /* Number of trials to do for each dimension */ int trials[4] = { + 12, + 10, 8, - 6, - 4, - 3 + 5 }; /* Resolution of grid for each dimension */ @@ -302,79 +343,52 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in { 33, 17, 9, 5 } }; +#ifndef NEVER /* Set of sample points to explore */ int nset[4][20] = { { - 5, 10, 20, 50, 100, 200, /* di = 1 */ + 5, 10, 20, 50, 100, 200, 400, 800 /* di = 1 */ }, { - 25, 100, 400, 2500, 10000, 40000, /* di = 2 */ + 10, 25, 50, 100, 200, 400, 1000, 2500, 10000, 40000 /* di = 2 */ }, { - 25, 50, 75, 125, 250, 500, 1000, 2000, 8000, 125000, /* di = 3 */ + 10, 25, 75, 125, 250, 500, 1000, 2000, 4000, 8000, 16000, 30000, 100000 /* di = 3 */ }, { - 50, 100, 200, 450, 625, 900, 1800, 3600, 10000, 160000, 1000000, /* di = 4 */ + 100, 200, 450, 625, 900, 1200, 1800, 3600, 10000, 200000, 500000 /* di = 4 */ } }; - - /* Set of smoothnesses to explore */ - double smset[4][20] = { +#else + /* Set of sample points to explore */ + int nset[4][20] = { { - -0.0000001, - -0.0000010, - -0.0000100, - -0.0001000, - -0.0010000, - -0.0100000, - -0.1000000, - -1.0000000, - 0.0 + 20, 50, 100, 200 /* di = 1 */ }, { - -0.0000001, - -0.0000010, - -0.0000100, - -0.0001000, - -0.0010000, - -0.0100000, - -0.1000000, - -1.0000000, - 0.0 + 100, 400, 2500, 10000 /* di = 2 */ }, { - -0.0000010, - -0.0000100, - -0.0001000, - -0.0010000, - -0.0100000, - -0.1000000, - -1.0000000, - 0.0 + 500, 1000, 2000, 8000 /* di = 3 */ }, { - -0.0000100, - -0.0001000, - -0.0010000, - -0.0100000, - -0.1000000, - -1.0000000, - -10.000000, - 0.0 + 50, 900, 1800, 3600, 10000 /* di = 4 */ } }; - - /* Set of smoothnesses for twopass smoothing */ - double smset2[4][20] = { +#endif + + /* Set of smoothnesses to explore */ + double smset[4][20] = { { - -0.0000001, - -0.0000010, - -0.0000100, - -0.0001000, - -0.0010000, - -0.0100000, - -0.1000000, - -1.0000000, + -0.00000001, + -0.00000010, + -0.00000100, + -0.00001000, + -0.00010000, + -0.00100000, + -0.01000000, + -0.10000000, + -1.00000000, 0.0 }, { @@ -410,53 +424,79 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in } }; +#ifndef NEVER /* Set of noise levels to explore (average deviation * 4) */ double noiseset[4][20] = { { 0.0, /* Perfect data */ + 0.005, /* 0.5 % */ 0.01, /* 1.0 % */ 0.02, /* 2.0 % */ 0.05, /* 5.0 % */ 0.10, /* 10.0 % */ - 0.20, /* 20.0 % */ - -1.0, +// 0.20, /* 20.0 % */ + -1.0 }, { 0.0, /* Perfect data */ + 0.005, /* 0.5 % */ 0.01, /* 1.0 % */ 0.02, /* 2.0 % */ 0.05, /* 5.0 % */ 0.10, /* 10.0 % */ - 0.20, /* 20.0 % */ - -1.0, +// 0.20, /* 20.0 % */ + -1.0 }, { 0.0, /* Perfect data */ + 0.005, /* 0.5 % */ 0.01, /* 1.0 % */ 0.02, /* 2.0 % */ 0.05, /* 5.0 % */ 0.10, /* 10.0 % */ - 0.20, /* 20.0 % */ - -1.0, +// 0.20, /* 20.0 % */ + -1.0 }, { 0.0, /* Perfect data */ + 0.005, /* 0.5 % */ 0.01, /* 1.0 % */ 0.02, /* 2.0 % */ - 0.03, /* 3.0 % */ 0.05, /* 5.0 % */ 0.10, /* 10.0 % */ - 0.20, /* 20.0 % */ - -1.0, +// 0.20, /* 20.0 % */ + -1.0 }, }; +#else + + /* Set of noise levels to explore (average deviation * 4) */ + double noiseset[4][20] = { + { + -1.0 + }, + { + -1.0 + }, + { + -1.0 + }, + { + 0.0, /* Perfect data */ + 0.005, /* 0.2 % */ + 0.01, /* 1.0 % */ + 0.02, /* 2.0 % */ + 0.05, /* 5.0 % */ + 0.10, /* 10.0 % */ +// 0.20, /* 20.0 % */ + -1.0 + }, + }; +#endif + printf("Testing effect of underlying smoothness factors\n"); - if (twopass) - printf("Two Pass smoothing\n"); - if (extra) - printf("Extra fitting\n"); /* For dimensions */ if (tdi != 0) @@ -472,50 +512,47 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in printf("Dimensions %d\n",di); printf("RSPL resolution %d\n",res); - /* For noise levels */ - for (j = tnlev; j < 20; j++) { // All noise levels - double smv[20]; - double rmse[20]; - double bfit; + /* For number of sample points */ + for (i = 0; i < 20; i++) { // All test points + int rpts; + ntps = nset[di-1][i]; - if (tnlev != 0 && j != tnlev) + if (ntps == 0) break; - noise = noiseset[di-1][j]; - if (noise < 0.0) - break; - printf("\nNoise volume %f%%, average deviation %f%%\n",noise * 100.0, noise * 25.0); + if (tntps != 0 && ntps != tntps) /* Skip any not requested */ + continue; + + /* Make sure at least 100 points are tested */ + rpts = 1 + 100/ntps; + if (rpts > 5) + rpts = 5; + + printf("\nNo. Sample points %d, norm %8.2f, total its %d\n",ntps, pow((double)ntps, 1.0/di),its * rpts); - /* For number of sample points */ - for (i = 0; i < 20; i++) { // All test points - int rpts; - ntps = nset[di-1][i]; + /* For noise levels */ + for (j = tnlev; j < 20; j++) { // All noise levels + double smv[20]; + double rmse[20]; + double bfit; - if (ntps == 0) + if (tnlev != 0 && j != tnlev) break; - if (tntps != 0 && ntps != tntps) /* Skip any not requested */ - continue; - - /* Make sure at least 100 points are tested */ - rpts = 1 + 100/ntps; - if (rpts > 5) - rpts = 5; - - printf("\nNo. Sample points %d, norm %8.2f, total its %d\n",ntps, pow((double)ntps, 1.0/di),its * rpts); + noise = noiseset[di-1][j]; + if (noise < 0.0) + break; + printf("\nNoise volume %f%%, average deviation %f%% Log ADev %f\n",noise * 100.0, noise * 25.0, noise > 0.0 ? log10(0.25 * noise) : -9.0); /* For smooth factors */ for (k = 0; k < 20; k++) { // All smoothing levels - if (twopass) - smooth = smset2[di-1][k]; - else - smooth = smset[di-1][k]; + smooth = smset[di-1][k]; if (smooth == 0.0) break; printf("Underlying smooth %9.7f, ",-smooth); fflush(stdout); - do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its * rpts, res, ntps, noise, unif,smooth, twopass, extra); + do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its * rpts, res, ntps, noise, unif, smooth, autosm, seed); smv[k] = -smooth; rmse[k] = trmse; printf("maxerr %f%%, avgerr %f%%, rmserr %f%%\n", @@ -523,7 +560,7 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in } bfit = best(k, rmse, smv); - printf("Best smoothness = %9.7f, log10 = %4.1f\n",bfit,log10(bfit)); + printf("Best smoothness = %9.7f, log10 = %4.2f\n",bfit,log10(bfit)); } } } @@ -532,7 +569,7 @@ static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, in } /* Explore performance of "optimised" smoothness over test point number and noise volume */ -static void do_series_2(int unif, int twopass, int extra) { +static void do_series_2(int unif, int autosm, int seed) { int verb = 0; int plot = 0; int di = 0; @@ -643,7 +680,7 @@ static void do_series_2(int unif, int twopass, int extra) { double bfit; noise = noiseset[j]; - printf("Noise volume %f%%, average deviation %f%%\n",noise * 100.0, noise * 25.0); + printf("Noise volume %f%%, average deviation %f%% Log ADev %f\n",noise * 100.0, noise * 25.0, noise > 0.0 ? log10(0.25 * noise) : -9.0); /* For smooth factors */ for (k = 0; k < 5; k++) { @@ -651,14 +688,14 @@ static void do_series_2(int unif, int twopass, int extra) { printf("Extra smooth %f, ",smooth); fflush(stdout); - do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, twopass, extra); + do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, autosm, seed); rmse[k] = trmse; printf("maxerr %f%%, avgerr %f%%, rmserr %f%%\n", tmaxe * 100.0, tavge * 100.0, trmse * 100.0); } bfit = best(5, rmse, smset); - printf("Best smoothness = %9.7f, log10 = %4.1f\n",bfit,log10(bfit)); + printf("Best smoothness = %9.7f, log10 = %4.2f\n",bfit,log10(bfit)); } } printf("\n"); @@ -676,17 +713,17 @@ void usage(void) { fprintf(stderr," 1 = Underlying smoothness\n"); fprintf(stderr," 2 = Verify optimised smoothness\n"); fprintf(stderr," -S Compute smoothness factor instead\n"); - fprintf(stderr," -u Use uniformly distributed noise\n"); - fprintf(stderr," -d n Test ""d"" dimension, 1-4 (default 1)\n"); + fprintf(stderr," -u Use uniformly distributed noise rather than normal\n"); + fprintf(stderr," -d n Test ""d"" dimension only, 1-4 (default 1)\n"); fprintf(stderr," -t n Test ""n"" random functions (default 1)\n"); fprintf(stderr," -r res Rspl resolution (defaults 129, 65, 33, 17)\n"); fprintf(stderr," -n no Test ""no"" sample points (default 20, 40, 80, 100)\n"); fprintf(stderr," -a amnt Add total randomness to function value (default 0.0)\n"); fprintf(stderr," -A n Just do the n'th noise level of series\n"); - fprintf(stderr," -2 Use two pass smoothing\n"); - fprintf(stderr," -x Use extra fitting\n"); fprintf(stderr," -s smooth RSPL extra smoothness factor to test (default 1.0)\n"); fprintf(stderr," -g smooth RSPL underlying smoothness factor to test\n"); + fprintf(stderr," -x Use auto smoothing\n"); + fprintf(stderr," -Z seed Random seed value\n"); exit(1); } @@ -695,7 +732,7 @@ int main(int argc, char *argv[]) { int verb = 0; int plot = 0; int series = 0; - int unif = 0; + int unif = 0; /* default normal noise distribution */ int di = 0; int its = 1; int res = -1; @@ -704,10 +741,10 @@ int main(int argc, char *argv[]) { int nlev = 0; double smooth = 1.0; double gsmooth = 0.0; - int twopass = 0; - int extra = 0; + int autosm = 0; int smfunc = 0; double trmse, tavge, tmaxe; + int seed = 0; error_program = "smtnd"; @@ -747,17 +784,17 @@ int main(int argc, char *argv[]) { if (argv[fa][1] == '?') { usage(); - } else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') { + } else if (argv[fa][1] == 'v' ) { verb = 1; - } else if (argv[fa][1] == 'p' || argv[fa][1] == 'P') { + } else if (argv[fa][1] == 'p') { plot = 1; - } else if (argv[fa][1] == 'u' || argv[fa][1] == 'U') { + } else if (argv[fa][1] == 'u') { unif = 1; /* Test series */ - } else if (argv[fa][1] == 'z' || argv[fa][1] == 'Z') { + } else if (argv[fa][1] == 'z') { fa = nfa; if (na == NULL) usage(); series = atoi(na); @@ -768,29 +805,28 @@ int main(int argc, char *argv[]) { smfunc = 1; /* Dimension */ - } else if (argv[fa][1] == 'd' || argv[fa][1] == 'D') { + } else if (argv[fa][1] == 'd') { fa = nfa; if (na == NULL) usage(); di = atoi(na); if (di <= 0 || di > 4) usage(); -printf("~1 Got -d %s = %d\n",na,di); /* Number of tests */ - } else if (argv[fa][1] == 't' || argv[fa][1] == 'T') { + } else if (argv[fa][1] == 't') { fa = nfa; if (na == NULL) usage(); its = atoi(na); if (its <= 0) usage(); /* Resolution */ - } else if (argv[fa][1] == 'r' || argv[fa][1] == 'R') { + } else if (argv[fa][1] == 'r') { fa = nfa; if (na == NULL) usage(); res = atoi(na); if (res <= 0) usage(); /* Number of sample points */ - } else if (argv[fa][1] == 'n' || argv[fa][1] == 'N') { + } else if (argv[fa][1] == 'n') { fa = nfa; if (na == NULL) usage(); ntps = atoi(na); @@ -810,12 +846,6 @@ printf("~1 Got -d %s = %d\n",na,di); nlev = atoi(na); if (noise < 0) usage(); - } else if (argv[fa][1] == '2') { - twopass = 1; - - } else if (argv[fa][1] == 'x' || argv[fa][1] == 'X') { - extra = 1; - /* Extra smooth factor */ } else if (argv[fa][1] == 's') { fa = nfa; @@ -827,9 +857,18 @@ printf("~1 Got -d %s = %d\n",na,di); } else if (argv[fa][1] == 'g') { fa = nfa; if (na == NULL) usage(); - smooth = atof(na); + gsmooth = atof(na); if (gsmooth < 0.0) usage(); + } else if (argv[fa][1] == 'x') { + autosm = 1; + + /* Random seed offset */ + } else if (argv[fa][1] == 'Z') { + fa = nfa; + if (na == NULL) usage(); + seed = atoi(na); + } else usage(); } else @@ -838,9 +877,9 @@ printf("~1 Got -d %s = %d\n",na,di); if (series > 0) { if (series == 1) - do_series_1(unif, di, ntps, nlev, twopass, extra); + do_series_1(unif, di, ntps, nlev, autosm, seed); else if (series == 2) - do_series_2(unif, twopass, extra); + do_series_2(unif, autosm, seed); else error("Unknown series %d\n",series); return 0; @@ -899,9 +938,9 @@ printf("~1 Got -d %s = %d\n",na,di); } if (gsmooth > 0.0) - do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, -gsmooth, twopass, extra); + do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, -gsmooth, autosm, seed); else - do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, twopass, extra); + do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, autosm, seed); printf("Results: maxerr %f%%, avgerr %f%%, rmserr %f%%\n", tmaxe * 100.0, tavge * 100.0, trmse * 100.0); @@ -924,8 +963,8 @@ static void do_test( double noise, /* Sample point noise volume (total = 4 x average deviation) */ int unif, /* NZ if uniform rather than standard deistribution noise */ double smooth, /* Smoothness to test, +ve for extra, -ve for underlying */ - int twopass, /* Two pass flag */ - int extra /* Extra fit flag */ + int autosm, /* Use auto smoothing */ + int seed /* Random seed value offset */ ) { funcp fp; /* Function parameters */ sobol *so; /* Sobol sequence generator */ @@ -937,6 +976,9 @@ static void do_test( int i, j, it; int flags = RSPL_NOFLAGS; + if (autosm) + flags |= RSPL_AUTOSMOOTH; + *trmse = 0.0; *tmaxe = 0.0; *tavge = 0.0; @@ -947,20 +989,15 @@ static void do_test( gres[j] = res; } - if (twopass) - flags |= RSPL_2PASSSMTH; - - if (extra) - flags |= RSPL_EXTRAFIT2; - if ((so = new_sobol(di)) == NULL) error("Creating sobol sequence generator failed"); for (it = 0; it < its; it++) { double rmse, avge, maxe; + double tnoise = 0.0; /* Make repeatable by setting random seed before a test set. */ - rand32(0x12345678 + 0x1000 * it); + rand32(0x12345678 + seed + 0x1000 * it); /* New function */ setup_func(&fp, di); @@ -977,16 +1014,24 @@ static void do_test( if (verb) printf("Generating the sample points\n"); for (i = 0; i < ntps; i++) { + double out, n; so->next(so, tps[i].p); - tps[i].v[0] = lookup_func(&fp, tps[i].p); + out = lookup_func(&fp, tps[i].p); if (unif) - tps[i].v[0] += d_rand(-0.5 * noise, 0.5 * noise); + n = d_rand(-0.5 * noise, 0.5 * noise); else - tps[i].v[0] += noise * 0.25 * 1.2533 * norm_rand(); + n = noise * 0.25 * 1.2533 * norm_rand(); + + tps[i].v[0] = out + n; +//printf("~1 data %d: %f %f %f -> %f, inc noise %f\n", i, tps[i].p[0], tps[i].p[1], tps[i].p[2], out, tps[i].v[0]); + + tnoise += fabs(n); } + tnoise /= (double) ntps; + if (verb) printf("Measured noise average deviation = %f%%\n",tnoise * 100.0); /* Fit to scattered data */ - if (verb) printf("Fitting the scattered data\n"); + if (verb) printf("Fitting the scattered data, smooth = %f, avgdev = %f\n",smooth,avgdev != NULL ? avgdev[0] : 0.0); avgdev[0] = 0.25 * noise; rss->fit_rspl(rss, flags, /* Non-mon and clip flags */ @@ -1026,6 +1071,7 @@ static void do_test( printf("Slice along diagonal\n"); } + /* Start point and step increment */ for (j = 0; j < di; j++) { ss[j] = (p2[j] - p1[j])/n; pp[j] = p1[j]; |