summaryrefslogtreecommitdiff
path: root/rspl/smtnd.c
diff options
context:
space:
mode:
Diffstat (limited to 'rspl/smtnd.c')
-rw-r--r--rspl/smtnd.c1171
1 files changed, 1171 insertions, 0 deletions
diff --git a/rspl/smtnd.c b/rspl/smtnd.c
new file mode 100644
index 0000000..cdef0a2
--- /dev/null
+++ b/rspl/smtnd.c
@@ -0,0 +1,1171 @@
+
+/*****************************************************/
+/* Smoothness factor tuning of RSPL in N Dimensions. */
+/*****************************************************/
+
+/* Author: Graeme Gill
+ * Date: 28/11/2005
+ * Derived from cmatch.c
+ * Copyright 1995 - 2005 Graeme W. Gill
+ *
+ * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
+ * see the License.txt file for licencing details.
+ *
+ * Test set for tuning smoothness factor for optimal interpolation
+ * with respect to dimension, number of sample points, and uncertainty
+ * of the sample points.
+ */
+
+
+#undef DEBUG
+#undef DETAILED
+
+#include <stdio.h>
+#include <fcntl.h>
+#include <math.h>
+#include "rspl.h"
+#include "numlib.h"
+#include "xicc.h" /* For mpp support */
+#include "plot.h"
+#include "rspl_imp.h"
+#include "counters.h" /* Counter macros */
+
+/* rspl flags */
+#define MXCHPARAMS 8
+
+#define PLOTRES 256
+
+/* Function being modeled by rspl */
+/* Similar to MPP model */
+typedef struct {
+ int di; /* Number of dimensions */
+ double ip[MXDI][MXCHPARAMS]; /* Input channel parameters */
+ double shape[MXDI][1 << MXDI]; /* Channel interaction shape parameters */
+ double op[1 << MXDI]; /* Output channel combination parameters */
+} funcp;
+
+
+/* Setup a random function in the given dimensions */
+static void setup_func(funcp *p, int di) {
+ double mn,mx;
+ int i, j;
+
+ p->di = di;
+
+ /* Setup random input parameters */
+ /* (This is the one that effects smoothness of function the most) */
+ for (j = 0; j < di; j++) {
+ for (mx = 3.0, i = 0; i < MXCHPARAMS; i++, mx *= 0.6) {
+ p->ip[j][i] = d_rand(-mx, mx);
+ }
+ }
+
+ /* Setup random shape parameters */
+ for (j = 0; j < di; j++) {
+ for (i = 0; i < (1 << di); i++) { /* Initially random */
+ p->shape[j][i] = d_rand(-1.0, 1.0);
+ }
+ }
+
+ /* Setup the random output parameters */
+ mn = 2.0;
+ mx = -1.0;
+ for (i = 0; i < (1 << di); i++) { /* Initially random */
+ p->op[i] = d_rand(0.0, 1.0);
+ if (p->op[i] < mn)
+ mn = p->op[i];
+ if (p->op[i] > mx)
+ mx = p->op[i];
+ }
+ for (i = 0; i < (1 << di); i++) { /* Then scale to between 0.0 and 1.0 */
+ p->op[i] = (p->op[i] - mn)/(mx - mn);
+ }
+}
+
+/* Lookup the function value */
+static double lookup_func(funcp *p, double *v) {
+ int m, k;
+ int di = p->di;
+ double tcnv[MPP_MXINKS]; /* Transfer curve corrected device values */
+ double tcnv1[MPP_MXINKS]; /* 1.0 - Transfer curve corrected device values */
+ double ww[MPP_MXINKS]; /* Interpolated tweak params for each channel */
+ double ov; /* Output value */
+
+ /* Input curve lookup */
+ for (m = 0; m < di; m++) {
+ tcnv[m] = icxTransFunc(p->ip[m],MXCHPARAMS,v[m]);
+ tcnv1[m] = 1.0 - tcnv[m];
+ }
+
+ for (m = 0; m < di; m++)
+ ww[m] = 0.0;
+
+ /* Lookup the shape values */
+ for (k = 0; k < (1 << di); k++) { /* For each interp vertex */
+ double vv;
+ for (vv = 1.0, m = 0; m < di; m++) { /* Compute weighting */
+ if (k & (1 << m))
+ vv *= tcnv[m];
+ else
+ vv *= tcnv1[m];
+ }
+ for (m = 0; m < di; m++) {
+ ww[m] += p->shape[m][k & ~(1<<m)] * vv; /* Apply weighting to shape vertex value */
+ }
+ }
+
+ /* Apply the shape values to adjust the primaries */
+ for (m = 0; m < di; m++) {
+ double gg = ww[m]; /* Curve adjustment */
+ double vv = tcnv[m]; /* Input value to be tweaked */
+ if (gg >= 0.0) {
+ vv = vv/(gg - gg * vv + 1.0);
+ } else {
+ vv = (vv - gg * vv)/(1.0 - gg * vv);
+ }
+ tcnv[m] = vv;
+ tcnv1[m] = 1.0 - vv;
+ }
+
+ /* Compute the primary combination values */
+ for (ov = 0.0, k = 0; k < (1 << di); k++) {
+ double vv = p->op[k];
+ for (m = 0; m < di; m++) {
+ if (k & (1 << m))
+ vv *= tcnv[m];
+ else
+ vv *= tcnv1[m];
+ }
+ ov += vv;
+ }
+
+ return ov;
+}
+
+/* Do one set of tests and return the results */
+static void do_test(
+ double *trmse, /* RETURN total RMS error */
+ double *tmaxe, /* RETURN total maximum error */
+ double *tavge, /* RETURN total average error */
+ int verb, /* Verbosity */
+ int plot, /* Plot graphs */
+ int di, /* Dimensions */
+ int its, /* Number of function tests */
+ int res, /* RSPL grid resolution */
+ int ntps, /* Number of sample points */
+ double noise, /* Sample point noise volume */
+ int unif, /* NZ if uniform rather than standard deistribution noise */
+ double smooth, /* Smoothness to test */
+ int twopass, /* Two pass flag */
+ int extra /* Extra fit flag */
+);
+
+/* Compute smoothness of function */
+static double do_stest(
+ int verb, /* Verbosity */
+ int di, /* Dimensions */
+ int its, /* Number of function tests */
+ int res /* RSPL grid resolution */
+);
+
+/* ---------------------------------------------------------------------- */
+/* Locate minimum of smoothness series result */
+
+#define MXMSS 50 /* Maximum smoothness series */
+
+/* Return the optimal smoothness value, based on the */
+/* minimum RMS value. */
+static double best(int n, double *rmse, double *smv) {
+ int i;
+ rspl *curve;
+ co *tps = NULL;
+ int ns = 500; /* Number of samples */
+ datai low,high;
+ int gres[1];
+ datai dlow,dhigh;
+ double avgdev[1];
+ double brmse; /* best solution value */
+ double blsmv = 0.0; /* best solution location */
+ double rv; /* Return value */
+
+ /* Create interpolated curve */
+ if ((curve = new_rspl(RSPL_NOFLAGS,1, 1)) == NULL)
+ error ("New rspl failed");
+
+ /* Create the list of sampling points */
+ if ((tps = (co *)malloc(n * sizeof(co))) == NULL)
+ error ("malloc failed");
+
+ for (i = 0; i < n; i++) {
+ tps[i].p[0] = log10(smv[i]);
+ tps[i].v[0] = rmse[i];
+ }
+
+ gres[0] = 100;
+ low[0] = log10(smv[0]);
+ high[0] = log10(smv[n-1]);
+ dlow[0] = 0.0;
+ dhigh[0] = 1.0;
+ avgdev[0] = 0.0;
+
+ curve->fit_rspl(curve,
+ 0, /* Non-mon and clip flags */
+ tps, /* Test points */
+ n, /* Number of test points */
+ NULL, NULL, gres, /* Low, high, resolution of grid */
+ NULL, NULL, /* Default data scale */
+ -0.00001, /* Underlying smoothing */
+ avgdev, /* Average deviation */
+ NULL); /* iwidth */
+
+#ifdef NEVER
+ /* Check the fit */
+ for (i = 0; i < n; i++) {
+ co tp;
+
+ tp.p[0] = log10(smv[i]);
+ curve->interp(curve, &tp);
+
+ printf("Point %d at %f, should be %f is %f\n",i,log10(smv[i]),rmse[i],tp.v[0]);
+ }
+
+#define TPRES 100
+ /* Plot the result */
+ {
+ double xx[TPRES], yy[TPRES];
+
+ for (i = 0; i < TPRES; i++) {
+ co tp;
+ double vi = i/(TPRES-1.0);
+
+ tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi;
+ curve->interp(curve, &tp);
+ xx[i] = tp.p[0];
+ yy[i] = tp.v[0];
+ }
+ do_plot(xx,yy,NULL,NULL,TPRES);
+ }
+#endif
+
+ /* Choose a solution */
+ brmse = 1e38;
+ for (i = 0; i < ns ; i++) {
+ co tp;
+ double vi;
+
+ vi = i/(ns-1.0);
+ tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi;
+ curve->interp(curve, &tp);
+
+ if (tp.v[0] < brmse) {
+ blsmv = tp.p[0];
+ brmse = tp.v[0];
+ }
+ }
+
+ rv = pow(10.0, blsmv);
+ return rv;
+}
+
+/* ---------------------------------------------------------------------- */
+/* Test series */
+
+/* Explore ideal smoothness change with test point number and noise volume */
+/* If tdi != 0, just do the given dimension */
+/* If tntps != 0, just do the given number of points */
+/* If tnlev != 0, just do the given noise level */
+static void do_series_1(int unif, int tdi, int tntps, int tnlev, int twopass, int extra) {
+ int verb = 0;
+ int plot = 0;
+ int sdi = 1, edi = 4, di;
+ int its;
+ int res = 0;
+ int ntps = 0;
+ double noise = 0.0;
+ double smooth = 0.0;
+ double trmse, tavge, tmaxe;
+ int m, i, j, k;
+
+ /* Number of trials to do for each dimension */
+ int trials[4] = {
+ 8,
+ 6,
+ 4,
+ 3
+ };
+
+ /* Resolution of grid for each dimension */
+ int reses[4][4] = {
+ { 257, 129, 65, 33 },
+ { 128, 65, 33, 17 },
+ { 65, 33, 17, 9 },
+ { 33, 17, 9, 5 }
+ };
+
+ /* Set of sample points to explore */
+ int nset[4][20] = {
+ {
+ 5, 10, 20, 50, 100, 200, /* di = 1 */
+ },
+ {
+ 25, 100, 400, 2500, 10000, 40000, /* di = 2 */
+ },
+ {
+ 25, 50, 75, 125, 250, 500, 1000, 2000, 8000, 125000, /* di = 3 */
+ },
+ {
+ 50, 100, 200, 450, 625, 900, 1800, 3600, 10000, 160000, 1000000, /* di = 4 */
+ }
+ };
+
+ /* Set of smoothnesses to explore */
+ double smset[4][20] = {
+ {
+ -0.0000001,
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000001,
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ -10.000000,
+ 0.0
+ }
+ };
+
+ /* Set of smoothnesses for twopass smoothing */
+ double smset2[4][20] = {
+ {
+ -0.0000001,
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000001,
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000010,
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ 0.0
+ },
+ {
+ -0.0000100,
+ -0.0001000,
+ -0.0010000,
+ -0.0100000,
+ -0.1000000,
+ -1.0000000,
+ -10.000000,
+ 0.0
+ }
+ };
+
+ /* Set of noise levels to explore (average deviation * 4) */
+ double noiseset[4][20] = {
+ {
+ 0.0, /* Perfect data */
+ 0.01, /* 1.0 % */
+ 0.02, /* 2.0 % */
+ 0.05, /* 5.0 % */
+ 0.10, /* 10.0 % */
+ 0.20, /* 20.0 % */
+ -1.0,
+ },
+ {
+ 0.0, /* Perfect data */
+ 0.01, /* 1.0 % */
+ 0.02, /* 2.0 % */
+ 0.05, /* 5.0 % */
+ 0.10, /* 10.0 % */
+ 0.20, /* 20.0 % */
+ -1.0,
+ },
+ {
+ 0.0, /* Perfect data */
+ 0.01, /* 1.0 % */
+ 0.02, /* 2.0 % */
+ 0.05, /* 5.0 % */
+ 0.10, /* 10.0 % */
+ 0.20, /* 20.0 % */
+ -1.0,
+ },
+ {
+ 0.0, /* Perfect data */
+ 0.01, /* 1.0 % */
+ 0.02, /* 2.0 % */
+ 0.03, /* 3.0 % */
+ 0.05, /* 5.0 % */
+ 0.10, /* 10.0 % */
+ 0.20, /* 20.0 % */
+ -1.0,
+ },
+ };
+
+
+ printf("Testing effect of underlying smoothness factors\n");
+ if (twopass)
+ printf("Two Pass smoothing\n");
+ if (extra)
+ printf("Extra fitting\n");
+
+ /* For dimensions */
+ if (tdi != 0)
+ sdi = edi = tdi;
+ for (di = sdi; di <= edi; di++) { // dimensions
+
+ its = trials[di-1];
+
+ for (m = 1; m < 2; m++) { // Just 2nd-highest resolution
+ res = reses[di-1][m];
+
+ printf("Tests %d\n",its);
+ printf("Dimensions %d\n",di);
+ printf("RSPL resolution %d\n",res);
+
+ /* For noise levels */
+ for (j = tnlev; j < 20; j++) { // All noise levels
+ double smv[20];
+ double rmse[20];
+ double bfit;
+
+ if (tnlev != 0 && j != tnlev)
+ break;
+
+ noise = noiseset[di-1][j];
+ if (noise < 0.0)
+ break;
+ printf("\nNoise volume %f%%, average deviation %f%%\n",noise * 100.0, noise * 25.0);
+
+ /* For number of sample points */
+ for (i = 0; i < 20; i++) { // All test points
+ int rpts;
+ ntps = nset[di-1][i];
+
+ if (ntps == 0)
+ break;
+
+ if (tntps != 0 && ntps != tntps) /* Skip any not requested */
+ continue;
+
+ /* Make sure at least 100 points are tested */
+ rpts = 1 + 100/ntps;
+ if (rpts > 5)
+ rpts = 5;
+
+ printf("\nNo. Sample points %d, norm %8.2f, total its %d\n",ntps, pow((double)ntps, 1.0/di),its * rpts);
+
+ /* For smooth factors */
+ for (k = 0; k < 20; k++) { // All smoothing levels
+ if (twopass)
+ smooth = smset2[di-1][k];
+ else
+ smooth = smset[di-1][k];
+ if (smooth == 0.0)
+ break;
+
+ printf("Underlying smooth %9.7f, ",-smooth); fflush(stdout);
+
+ do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its * rpts, res, ntps, noise, unif,smooth, twopass, extra);
+ smv[k] = -smooth;
+ rmse[k] = trmse;
+ printf("maxerr %f%%, avgerr %f%%, rmserr %f%%\n",
+ tmaxe * 100.0, tavge * 100.0, trmse * 100.0);
+ }
+
+ bfit = best(k, rmse, smv);
+ printf("Best smoothness = %9.7f, log10 = %4.1f\n",bfit,log10(bfit));
+ }
+ }
+ }
+ printf("\n");
+ }
+}
+
+/* Explore performance of "optimised" smoothness over test point number and noise volume */
+static void do_series_2(int unif, int twopass, int extra) {
+ int verb = 0;
+ int plot = 0;
+ int di = 0;
+ int its;
+ int res = 0;
+ int ntps = 0;
+ double noise = 0.0;
+ double smooth = 0.0;
+ double trmse, tavge, tmaxe;
+ int i, j, k;
+
+ /* Number of trials to do for each dimension */
+ int trials[4] = {
+ 16,
+ 12,
+ 8,
+ 5
+ };
+
+
+ /* Resolution of grid for each dimension */
+ int reses[4] = {
+ 129,
+ 65,
+ 33,
+ 17
+ };
+
+#ifdef NEVER
+ /* Set of sample points to explore */
+ int nset[4][20] = {
+ {
+ 5, 10, 20, 50, 0
+ },
+ {
+ 25, 100, 400, 2500, 0
+ },
+ {
+ 125, 1000, 8000, 125000, 0
+ },
+ {
+ 625, 10000, 160000, 1000000, 0
+ }
+ };
+#else
+ /* Set of sample points to explore */
+ int nset[4][20] = {
+ {
+ 5, 10, 20, 50, 0
+ },
+ {
+ 25, 100, 400, 2500, 0
+ },
+ {
+ 250, 500, 1000, 2000, 0
+ },
+ {
+ 450, 900, 1800, 3600, 0
+ }
+ };
+#endif /* NEVER */
+
+
+ /* Set of smoothnesses to explore */
+ double smset[5] = {
+ 00.01,
+ 00.10,
+ 01.00,
+ 10.00,
+ 100.0
+ };
+
+ /* Set of noise levels to explore (average deviation * 4) */
+ double noiseset[6] = {
+ 0.0, /* Perfect data */
+ 0.01, /* 1.0 % */
+ 0.02, /* 2.0 % */
+ 0.05, /* 5.0 % */
+ 0.10, /* 10.0 % */
+ 0.20, /* 20.0 % */
+ };
+
+
+ printf("Verifying optimised smoothness factors\n");
+
+ /* For dimensions */
+ for (di = 1; di <= 4; di++) {
+
+ its = trials[di-1];
+ res = reses[di-1];
+
+ printf("Tests %d\n",its);
+ printf("Dimensions %d\n",di);
+ printf("RSPL resolution %d\n",res);
+
+ /* For number of sample points */
+ for (i = 0; i < 20; i++) {
+ ntps = nset[di-1][i];
+
+ if (ntps == 0)
+ break;
+
+ printf("\nNo. Sample points %d, norm %8.2f\n",ntps, pow((double)ntps, 1.0/di));
+
+ /* For noise levels */
+ for (j = 0; j < 6; j++) {
+ double rmse[20];
+ double bfit;
+
+ noise = noiseset[j];
+ printf("Noise volume %f%%, average deviation %f%%\n",noise * 100.0, noise * 25.0);
+
+ /* For smooth factors */
+ for (k = 0; k < 5; k++) {
+ smooth = smset[k];
+
+ printf("Extra smooth %f, ",smooth); fflush(stdout);
+
+ do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, twopass, extra);
+
+ rmse[k] = trmse;
+ printf("maxerr %f%%, avgerr %f%%, rmserr %f%%\n",
+ tmaxe * 100.0, tavge * 100.0, trmse * 100.0);
+ }
+ bfit = best(5, rmse, smset);
+ printf("Best smoothness = %9.7f, log10 = %4.1f\n",bfit,log10(bfit));
+ }
+ }
+ printf("\n");
+ }
+}
+
+/* ---------------------------------------------------------------------- */
+void usage(void) {
+ fprintf(stderr,"Test smoothness factor tuning of RSPL in N Dimensions\n");
+ fprintf(stderr,"Author: Graeme W. Gill\n");
+ fprintf(stderr,"usage: smtnd [options]\n");
+ fprintf(stderr," -v Verbose\n");
+ fprintf(stderr," -p Plot graphs\n");
+ fprintf(stderr," -z n Do test series ""n"" else single test\n");
+ fprintf(stderr," 1 = Underlying smoothness\n");
+ fprintf(stderr," 2 = Verify optimised smoothness\n");
+ fprintf(stderr," -S Compute smoothness factor instead\n");
+ fprintf(stderr," -u Use uniformly distributed noise\n");
+ fprintf(stderr," -d n Test ""d"" dimension, 1-4 (default 1)\n");
+ fprintf(stderr," -t n Test ""n"" random functions (default 1)\n");
+ fprintf(stderr," -r res Rspl resolution (defaults 129, 65, 33, 17)\n");
+ fprintf(stderr," -n no Test ""no"" sample points (default 20, 40, 80, 100)\n");
+ fprintf(stderr," -a amnt Add total randomness to function value (default 0.0)\n");
+ fprintf(stderr," -A n Just do the n'th noise level of series\n");
+ fprintf(stderr," -2 Use two pass smoothing\n");
+ fprintf(stderr," -x Use extra fitting\n");
+ fprintf(stderr," -s smooth RSPL extra smoothness factor to test (default 1.0)\n");
+ fprintf(stderr," -g smooth RSPL underlying smoothness factor to test\n");
+ exit(1);
+}
+
+int main(int argc, char *argv[]) {
+ int fa,nfa; /* argument we're looking at */
+ int verb = 0;
+ int plot = 0;
+ int series = 0;
+ int unif = 0;
+ int di = 0;
+ int its = 1;
+ int res = -1;
+ int ntps = 0;
+ double noise = 0.0;
+ int nlev = 0;
+ double smooth = 1.0;
+ double gsmooth = 0.0;
+ int twopass = 0;
+ int extra = 0;
+ int smfunc = 0;
+ double trmse, tavge, tmaxe;
+
+ error_program = "smtnd";
+
+#ifdef NEVER
+ {
+ double rmse[10], smv[10], rv;
+
+ smv[0] = 0.0000100, rmse[0] = 2.566116;
+ smv[1] = 0.0001000, rmse[1] = 2.528666;
+ smv[2] = 0.0010000, rmse[2] = 2.489116;
+ smv[3] = 0.0100000, rmse[3] = 3.409045;
+ smv[4] = 0.1000000, rmse[4] = 5.727079;
+ smv[5] = 1.0000000, rmse[5] = 6.653747;
+
+ rv = best(6,rmse, smv);
+ printf("~1 best = %f\n",rv);
+ exit(0);
+ }
+#endif
+ /* Process the arguments */
+ for(fa = 1;fa < argc;fa++) {
+ nfa = fa; /* skip to nfa if next argument is used */
+ if (argv[fa][0] == '-') { /* Look for any flags */
+ char *na = NULL; /* next argument after flag, null if none */
+
+ if (argv[fa][2] != '\000')
+ na = &argv[fa][2]; /* next is directly after flag */
+ else {
+ if ((fa+1) < argc) {
+ if (argv[fa+1][0] != '-') {
+ nfa = fa + 1;
+ na = argv[nfa]; /* next is seperate non-flag argument */
+ }
+ }
+ }
+
+ if (argv[fa][1] == '?') {
+ usage();
+
+ } else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') {
+ verb = 1;
+
+ } else if (argv[fa][1] == 'p' || argv[fa][1] == 'P') {
+ plot = 1;
+
+ } else if (argv[fa][1] == 'u' || argv[fa][1] == 'U') {
+ unif = 1;
+
+ /* Test series */
+ } else if (argv[fa][1] == 'z' || argv[fa][1] == 'Z') {
+ fa = nfa;
+ if (na == NULL) usage();
+ series = atoi(na);
+ if (series <= 0) usage();
+
+ /* Compute smoothness factor */
+ } else if (argv[fa][1] == 'S') {
+ smfunc = 1;
+
+ /* Dimension */
+ } else if (argv[fa][1] == 'd' || argv[fa][1] == 'D') {
+ fa = nfa;
+ if (na == NULL) usage();
+ di = atoi(na);
+ if (di <= 0 || di > 4) usage();
+printf("~1 Got -d %s = %d\n",na,di);
+
+ /* Number of tests */
+ } else if (argv[fa][1] == 't' || argv[fa][1] == 'T') {
+ fa = nfa;
+ if (na == NULL) usage();
+ its = atoi(na);
+ if (its <= 0) usage();
+
+ /* Resolution */
+ } else if (argv[fa][1] == 'r' || argv[fa][1] == 'R') {
+ fa = nfa;
+ if (na == NULL) usage();
+ res = atoi(na);
+ if (res <= 0) usage();
+
+ /* Number of sample points */
+ } else if (argv[fa][1] == 'n' || argv[fa][1] == 'N') {
+ fa = nfa;
+ if (na == NULL) usage();
+ ntps = atoi(na);
+ if (ntps <= 0) usage();
+
+ /* Randomness */
+ } else if (argv[fa][1] == 'a') {
+ fa = nfa;
+ if (na == NULL) usage();
+ noise = atof(na);
+ if (noise < 0.0) usage();
+
+ /* Series Noise Level */
+ } else if (argv[fa][1] == 'A') {
+ fa = nfa;
+ if (na == NULL) usage();
+ nlev = atoi(na);
+ if (noise < 0) usage();
+
+ } else if (argv[fa][1] == '2') {
+ twopass = 1;
+
+ } else if (argv[fa][1] == 'x' || argv[fa][1] == 'X') {
+ extra = 1;
+
+ /* Extra smooth factor */
+ } else if (argv[fa][1] == 's') {
+ fa = nfa;
+ if (na == NULL) usage();
+ smooth = atof(na);
+ if (smooth < 0.0) usage();
+
+ /* Underlying smoothnes factor */
+ } else if (argv[fa][1] == 'g') {
+ fa = nfa;
+ if (na == NULL) usage();
+ smooth = atof(na);
+ if (gsmooth < 0.0) usage();
+
+ } else
+ usage();
+ } else
+ break;
+ }
+
+ if (series > 0) {
+ if (series == 1)
+ do_series_1(unif, di, ntps, nlev, twopass, extra);
+ else if (series == 2)
+ do_series_2(unif, twopass, extra);
+ else
+ error("Unknown series %d\n",series);
+ return 0;
+ }
+
+ if (di == 0)
+ di = 1;
+
+ if (res < 0) {
+ if (di == 1)
+ res = 129;
+ else if (di == 2)
+ res = 65;
+ else if (di == 3)
+ res = 33;
+ else
+ res = 17;
+ }
+
+ if (ntps <= 0) {
+ if (di == 1)
+ ntps = 20;
+ else if (di == 2)
+ ntps = 40;
+ else if (di == 3)
+ ntps = 60;
+ else
+ ntps = 80;
+ }
+
+ if (smfunc) {
+ double sm;
+
+ if (verb) {
+ printf("Dimensions %d\n",di);
+ printf("Tests %d\n",its);
+ printf("Grid resolution %d\n",res);
+ }
+
+ sm = do_stest(verb, di, its, res);
+
+ printf("Results: smoothness factor = %f\n",sm);
+
+ } else {
+
+ if (verb) {
+ printf("Dimensions %d\n",di);
+ printf("Tests %d\n",its);
+ printf("RSPL resolution %d\n",res);
+ printf("No. Sample points %d (norm %f)\n",ntps, pow((double)ntps, 1.0/di));
+ printf("Noise volume %f\n",noise);
+ if (gsmooth > 0.0)
+ printf("Underlying smooth %f\n",gsmooth);
+ else
+ printf("Extra smooth %f\n",smooth);
+ }
+
+ if (gsmooth > 0.0)
+ do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, -gsmooth, twopass, extra);
+ else
+ do_test(&trmse, &tmaxe, &tavge, verb, plot, di, its, res, ntps, noise, unif, smooth, twopass, extra);
+
+ printf("Results: maxerr %f%%, avgerr %f%%, rmserr %f%%\n",
+ tmaxe * 100.0, tavge * 100.0, trmse * 100.0);
+ }
+
+ return 0;
+}
+
+/* Do one set of tests and return the results */
+static void do_test(
+ double *trmse, /* RETURN total RMS error */
+ double *tmaxe, /* RETURN total maximum error */
+ double *tavge, /* RETURN total average error */
+ int verb, /* Verbosity */
+ int plot, /* Plot graphs */
+ int di, /* Dimensions */
+ int its, /* Number of function tests */
+ int res, /* RSPL grid resolution */
+ int ntps, /* Number of sample points */
+ double noise, /* Sample point noise volume (total = 4 x average deviation) */
+ int unif, /* NZ if uniform rather than standard deistribution noise */
+ double smooth, /* Smoothness to test, +ve for extra, -ve for underlying */
+ int twopass, /* Two pass flag */
+ int extra /* Extra fit flag */
+) {
+ funcp fp; /* Function parameters */
+ sobol *so; /* Sobol sequence generator */
+ co *tps = NULL;
+ rspl *rss; /* Multi-resolution regularized spline structure */
+ datai low,high;
+ double avgdev[MXDO];
+ int gres[MXDI];
+ int i, j, it;
+ int flags = RSPL_NOFLAGS;
+
+ *trmse = 0.0;
+ *tmaxe = 0.0;
+ *tavge = 0.0;
+
+ for (j = 0; j < di; j++) {
+ low[j] = 0.0;
+ high[j] = 1.0;
+ gres[j] = res;
+ }
+
+ if (twopass)
+ flags |= RSPL_2PASSSMTH;
+
+ if (extra)
+ flags |= RSPL_EXTRAFIT2;
+
+ if ((so = new_sobol(di)) == NULL)
+ error("Creating sobol sequence generator failed");
+
+ for (it = 0; it < its; it++) {
+ double rmse, avge, maxe;
+
+ /* Make repeatable by setting random seed before a test set. */
+ rand32(0x12345678 + 0x1000 * it);
+
+ /* New function */
+ setup_func(&fp, di);
+
+ /* Create the object */
+ rss = new_rspl(RSPL_NOFLAGS,di, 1);
+
+ /* Create the list of sampling points */
+ if ((tps = (co *)malloc(ntps * sizeof(co))) == NULL)
+ error ("malloc failed");
+
+ so->reset(so);
+
+ if (verb) printf("Generating the sample points\n");
+
+ for (i = 0; i < ntps; i++) {
+ so->next(so, tps[i].p);
+ tps[i].v[0] = lookup_func(&fp, tps[i].p);
+ if (unif)
+ tps[i].v[0] += d_rand(-0.5 * noise, 0.5 * noise);
+ else
+ tps[i].v[0] += noise * 0.25 * 1.2533 * norm_rand();
+ }
+
+ /* Fit to scattered data */
+ if (verb) printf("Fitting the scattered data\n");
+ avgdev[0] = 0.25 * noise;
+ rss->fit_rspl(rss,
+ flags, /* Non-mon and clip flags */
+ tps, /* Test points */
+ ntps, /* Number of test points */
+ low, high, gres, /* Low, high, resolution of grid */
+ low, high, /* Default data scale */
+ smooth, /* Smoothing to test */
+ avgdev, /* Average deviation */
+ NULL); /* iwidth */
+
+ /* Plot out function values */
+ if (plot) {
+ int slice;
+ printf("Black is target, Red is rspl\n");
+ for (slice = 0; slice < (di+1); slice++) {
+ co tp; /* Test point */
+ double x[PLOTRES];
+ double ya[PLOTRES];
+ double yb[PLOTRES];
+ double yc[PLOTRES];
+ double pp[MXDI], p1[MXDI], p2[MXDI], ss[MXDI];
+ int n = PLOTRES;
+
+ /* setup slices on each axis at 0.5 and diagonal */
+ if (slice < di) {
+ for (j = 0; j < di; j++)
+ p1[j] = p2[j] = 0.5;
+ p1[slice] = 0.0;
+ p2[slice] = 1.0;
+ printf("Slice along axis %d\n",slice);
+ } else {
+ for (j = 0; j < di; j++) {
+ p1[j] = 0.0;
+ p2[j] = 1.0;
+ }
+ printf("Slice along diagonal\n");
+ }
+
+ for (j = 0; j < di; j++) {
+ ss[j] = (p2[j] - p1[j])/n;
+ pp[j] = p1[j];
+ }
+
+ for (i = 0; i < n; i++) {
+ double vv = i/(n-1.0);
+ x[i] = vv;
+
+ /* Reference */
+ ya[i] = lookup_func(&fp, pp);
+
+ /* RSPL aproximation */
+ for (j = 0; j < di; j++)
+ tp.p[j] = pp[j];
+
+ if (rss->interp(rss, &tp))
+ tp.v[0] = -0.1;
+ yb[i] = tp.v[0];
+
+ /* Crude way of setting the scale: */
+ yc[i] = 0.0;
+ if (i == (n-1))
+ yc[0] = 1.0;
+
+ for (j = 0; j < di; j++)
+ pp[j] += ss[j];
+ }
+
+ /* Plot the result */
+ do_plot(x,ya,yb,yc,n);
+ }
+ }
+
+ /* Compute statistics */
+ rmse = 0.0;
+ avge = 0.0;
+ maxe = 0.0;
+// so->reset(so);
+
+ /* Fit to scattered data */
+ if (verb) printf("Fitting the scattered data\n");
+ for (i = 0; i <100000; i++) {
+ co tp; /* Test point */
+ double aa, bb, err;
+
+ so->next(so, tp.p);
+
+ /* Reference */
+ aa = lookup_func(&fp, tp.p);
+
+ /* RSPL aproximation */
+ rss->interp(rss, &tp);
+ bb = tp.v[0];
+
+ err = fabs(aa - bb);
+ avge += err;
+ rmse += err * err;
+ if (err > maxe)
+ maxe = err;
+ }
+ avge /= (double)i;
+ rmse /= (double)i;
+
+ if (verb)
+ printf("Dim %d, res %d, noise %f, points %d, maxerr %f%%, rmserr %f%%, avgerr %f%%\n",
+ di, res, noise, ntps, maxe * 100.0, sqrt(rmse) * 100.0, avge * 100.0);
+
+ *trmse += rmse;
+ *tmaxe += maxe;
+ *tavge += avge;
+
+ rss->del(rss);
+ free(tps);
+ }
+ so->del(so);
+
+ *trmse = sqrt(*trmse/(double)its);
+ *tmaxe /= (double)its;
+ *tavge /= (double)its;
+}
+
+/* Do smoothness scaling check & return results */
+static double do_stest(
+ int verb, /* Verbosity */
+ int di, /* Dimensions */
+ int its, /* Number of function tests */
+ int res /* RSPL grid resolution */
+) {
+ funcp fp; /* Function parameters */
+ DCOUNT(gc, MXDIDO, di, 1, 1, res-1);
+ int it;
+ double atse = 0.0;
+
+ /* Make repeatable by setting random seed before a test set. */
+ rand32(0x12345678);
+
+ for (it = 0; it < its; it++) {
+ double tse;
+ setup_func(&fp, di); /* New function */
+
+ DC_INIT(gc)
+ tse = 0.0;
+ for (; !DC_DONE(gc);) {
+ double g[MXDI];
+ int e, k;
+ double y1, y2, y3;
+ double del;
+
+ for (e = 0; e < di; e++)
+ g[e] = gc[e]/(res-1.0);
+ y2 = lookup_func(&fp, g);
+
+ del = 1.0/(res-1.0);
+
+ for (k = 0 ; k < di; k++) {
+ double err;
+
+ g[k] -= del;
+ y1 = lookup_func(&fp, g);
+ g[k] += 2.0 * del;
+ y3 = lookup_func(&fp, g);
+ g[k] -= del;
+
+ err = 0.5 * (y3 + y1) - y2;
+ tse += err * err;
+ }
+
+ DC_INC(gc);
+ }
+ /* Apply adjustments and corrections */
+ tse *= pow((res-1.0), 4.0); /* Aprox. geometric resolution factor */
+ tse /= pow((res-2.0),(double)di); /* Average squared non-smoothness */
+
+ if (verb)
+ printf("smf for it %d = %f\n",it,tse);
+ atse += tse;
+ }
+
+ return atse/(double)its;
+}
+
+