/* * Copyright (c) 2007, Cameron Rich * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the axTLS project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * Implements the RSA public encryption algorithm. Uses the bigint library to * perform its calculations. */ #include #include #include #include #include "os_port.h" #include "crypto.h" void RSA_priv_key_new(RSA_CTX **ctx, const uint8_t *modulus, int mod_len, const uint8_t *pub_exp, int pub_len, const uint8_t *priv_exp, int priv_len #ifdef CONFIG_BIGINT_CRT , const uint8_t *p, int p_len, const uint8_t *q, int q_len, const uint8_t *dP, int dP_len, const uint8_t *dQ, int dQ_len, const uint8_t *qInv, int qInv_len #endif ) { RSA_CTX *rsa_ctx; BI_CTX *bi_ctx; RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len); rsa_ctx = *ctx; bi_ctx = rsa_ctx->bi_ctx; rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len); bi_permanent(rsa_ctx->d); #ifdef CONFIG_BIGINT_CRT rsa_ctx->p = bi_import(bi_ctx, p, p_len); rsa_ctx->q = bi_import(bi_ctx, q, q_len); rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len); rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len); rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len); bi_permanent(rsa_ctx->dP); bi_permanent(rsa_ctx->dQ); bi_permanent(rsa_ctx->qInv); bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET); bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET); #endif } void RSA_pub_key_new(RSA_CTX **ctx, const uint8_t *modulus, int mod_len, const uint8_t *pub_exp, int pub_len) { RSA_CTX *rsa_ctx; BI_CTX *bi_ctx; if (*ctx) /* if we load multiple certs, dump the old one */ RSA_free(*ctx); bi_ctx = bi_initialize(); *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX)); rsa_ctx = *ctx; rsa_ctx->bi_ctx = bi_ctx; rsa_ctx->num_octets = mod_len; rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len); bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET); rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len); bi_permanent(rsa_ctx->e); } /** * Free up any RSA context resources. */ void RSA_free(RSA_CTX *rsa_ctx) { BI_CTX *bi_ctx; if (rsa_ctx == NULL) /* deal with ptrs that are null */ return; bi_ctx = rsa_ctx->bi_ctx; bi_depermanent(rsa_ctx->e); bi_free(bi_ctx, rsa_ctx->e); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET); if (rsa_ctx->d) { bi_depermanent(rsa_ctx->d); bi_free(bi_ctx, rsa_ctx->d); #ifdef CONFIG_BIGINT_CRT bi_depermanent(rsa_ctx->dP); bi_depermanent(rsa_ctx->dQ); bi_depermanent(rsa_ctx->qInv); bi_free(bi_ctx, rsa_ctx->dP); bi_free(bi_ctx, rsa_ctx->dQ); bi_free(bi_ctx, rsa_ctx->qInv); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET); bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET); #endif } bi_terminate(bi_ctx); free(rsa_ctx); } /** * @brief Use PKCS1.5 for decryption/verification. * @param ctx [in] The context * @param in_data [in] The data to encrypt (must be < modulus size-11) * @param out_data [out] The encrypted data. * @param is_decryption [in] Decryption or verify operation. * @return The number of bytes that were originally encrypted. -1 on error. * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 */ int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data, int is_decryption) { const int byte_size = ctx->num_octets; int i, size; bigint *decrypted_bi, *dat_bi; uint8_t *block = (uint8_t *)malloc(byte_size); memset(out_data, 0, byte_size); /* initialise */ /* decrypt */ dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size); #ifdef CONFIG_SSL_CERT_VERIFICATION decrypted_bi = is_decryption ? /* decrypt or verify? */ RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi); #else /* always a decryption */ decrypted_bi = RSA_private(ctx, dat_bi); #endif /* convert to a normal block */ bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size); i = 10; /* start at the first possible non-padded byte */ #ifdef CONFIG_SSL_CERT_VERIFICATION if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */ { while (block[i++] == 0xff && i < byte_size); if (block[i-2] != 0xff) i = byte_size; /*ensure size is 0 */ } else /* PKCS1.5 encryption padding is random */ #endif { while (block[i++] && i < byte_size); } size = byte_size - i; /* get only the bit we want */ if (size > 0) memcpy(out_data, &block[i], size); free(block); return size ? size : -1; } /** * Performs m = c^d mod n */ bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg) { #ifdef CONFIG_BIGINT_CRT return bi_crt(c->bi_ctx, bi_msg, c->dP, c->dQ, c->p, c->q, c->qInv); #else BI_CTX *ctx = c->bi_ctx; ctx->mod_offset = BIGINT_M_OFFSET; return bi_mod_power(ctx, bi_msg, c->d); #endif } #ifdef CONFIG_SSL_FULL_MODE /** * Used for diagnostics. */ void RSA_print(const RSA_CTX *rsa_ctx) { if (rsa_ctx == NULL) return; printf("----------------- RSA DEBUG ----------------\n"); printf("Size:\t%d\n", rsa_ctx->num_octets); bi_print("Modulus", rsa_ctx->m); bi_print("Public Key", rsa_ctx->e); bi_print("Private Key", rsa_ctx->d); } #endif #if defined(CONFIG_SSL_CERT_VERIFICATION) || defined(CONFIG_SSL_GENERATE_X509_CERT) /** * Performs c = m^e mod n */ bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg) { c->bi_ctx->mod_offset = BIGINT_M_OFFSET; return bi_mod_power(c->bi_ctx, bi_msg, c->e); } /** * Use PKCS1.5 for encryption/signing. * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 */ int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len, uint8_t *out_data, int is_signing) { int byte_size = ctx->num_octets; int num_pads_needed = byte_size-in_len-3; bigint *dat_bi, *encrypt_bi; /* note: in_len+11 must be > byte_size */ out_data[0] = 0; /* ensure encryption block is < modulus */ if (is_signing) { out_data[1] = 1; /* PKCS1.5 signing pads with "0xff"'s */ memset(&out_data[2], 0xff, num_pads_needed); } else /* randomize the encryption padding with non-zero bytes */ { out_data[1] = 2; get_random_NZ(num_pads_needed, &out_data[2]); } out_data[2+num_pads_needed] = 0; memcpy(&out_data[3+num_pads_needed], in_data, in_len); /* now encrypt it */ dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size); encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi); bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size); /* save a few bytes of memory */ bi_clear_cache(ctx->bi_ctx); return byte_size; } #endif /* CONFIG_SSL_CERT_VERIFICATION */