/* * nearsmth test code. Test the smoothed nearpoint routine. * * Author: Graeme W. Gill * Date: 17/1/2002 * Version: 1.00 * * Copyright 2002, Graeme W. Gill * All rights reserved. * * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- * see the License.txt file for licencing details. */ /* TTBD: * */ #undef DEBUG /* test a single value out */ #include #include #include #include #include #include #if defined(__IBMC__) && defined(_M_IX86) #include #endif #include "copyright.h" #include "aconfig.h" #include "numlib.h" #include "rspl.h" #include "gamut.h" #include "nearsmth.h" double m21po[3] = { 2.0, 1.0, 2.0 }; /* Many to 1 filter mixing power LCh (theoretically 2) */ /* Mapping weights */ gammapweights weights[] = { { gmm_default, /* Non hue specific defaults */ { /* Cusp alignment control */ { 0.0, /* Cusp luminance alignment weighting 0 = none, 1 = full */ 0.0, /* Cusp chroma alignment weighting 0 = none, 1 = full */ 0.2 /* Cusp hue alignment weighting 0 = none, 1 = full */ }, 1.00 /* Chroma expansion 1 = none */ }, { /* Radial weighting */ 0.0, /* Radial error overall weight, 0 + */ 0.5, /* Radial hue dominance vs l+c, 0 - 1 */ 0.5 /* Radial l dominance vs, c, 0 - 1 */ }, { /* Weighting of absolute error of destination from source */ 1.0, /* Absolute error overall weight */ 0.5, /* Hue dominance vs l+c, 0 - 1 */ 0.9, /* Light l dominance vs, c, 0 - 1 */ 0.9, /* Medium l dominance vs, c, 0 - 1 */ 0.9, /* Dark l dominance vs, c, 0 - 1 */ 0.5, /* l/c dominance breakpoint, 0 - 1 */ 0.0, /* l dominance exageration, 0+ */ 0.0 /* c dominance exageration, 0+ */ }, { /* Relative vector smoothing */ 30.0, 20.0 /* Relative Smoothing radius L* H* */ }, { /* Weighting of excessive compression error, which is */ /* the src->dst vector length over the available dst depth. */ /* The depth is half the distance to the intersection of the */ /* vector to the other side of the gamut. (doesn't get triggered much ?) */ 100.0, /* Compression depth weight */ 100.0 /* Expansion depth weight */ } } }; #define OVERSHOOT 1.0 void usage(void) { fprintf(stderr,"Create smoothed near mapping between two gamuts, Version %s\n",ARGYLL_VERSION_STR); fprintf(stderr,"Author: Graeme W. Gill, licensed under the AGPL Version 3\n"); fprintf(stderr,"usage: smthtest [options] ingamut outgamut diag_vrml\n"); fprintf(stderr," -v Verbose\n"); // fprintf(stderr," -s nearf Absolute delta E weighting\n"); exit(1); } FILE *start_vrml(char *name, int doaxes); void start_line_set(FILE *wrl); void add_vertex(FILE *wrl, double pp[3]); void make_lines(FILE *wrl, int ppset); void end_vrml(FILE *wrl); int main(int argc, char *argv[]) { int fa,nfa; /* argument we're looking at */ char *xl; char in_name[100]; char out_name[100]; char diag_name[100]; int verb = 0; double nearf = 1.0; /* Absolute delta E weightign */ datai il, ih; /* rspl input range */ datao ol, oh; /* rspl output range */ gamut *gin, *gout; /* Input and Output gamuts */ nearsmth *nsm; /* Returned list of near smooth points */ int nnsm; /* Number of near smoothed points */ FILE *wrl; /* VRML output file */ gammapweights xweights[14]; int i; #if defined(__IBMC__) && defined(_M_IX86) _control87(EM_UNDERFLOW, EM_UNDERFLOW); #endif error_program = argv[0]; if (argc < 3) usage(); /* Process the arguments */ for(fa = 1;fa < argc;fa++) { nfa = fa; /* skip to nfa if next argument is used */ if (argv[fa][0] == '-') { /* Look for any flags */ char *na = NULL; /* next argument after flag, null if none */ if (argv[fa][2] != '\000') na = &argv[fa][2]; /* next is directly after flag */ else { if ((fa+1) < argc) { if (argv[fa+1][0] != '-') { nfa = fa + 1; na = argv[nfa]; /* next is seperate non-flag argument */ } } } if (argv[fa][1] == '?') usage(); /* Verbosity */ else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') { verb = 1; } /* Smoothing factor */ else if (argv[fa][1] == 's' || argv[fa][1] == 'S') { fa = nfa; if (na == NULL) usage(); nearf = atof(na); } else usage(); } else break; } if (fa >= argc || argv[fa][0] == '-') usage(); strcpy(in_name,argv[fa++]); if (fa >= argc || argv[fa][0] == '-') usage(); strcpy(out_name,argv[fa++]); if (fa >= argc || argv[fa][0] == '-') usage(); strcpy(diag_name,argv[fa++]); /* - - - - - - - - - - - - - - - - - - - */ /* read the input device gamut */ gin = new_gamut(0.0, 0, 0); if ((xl = strrchr(in_name, '.')) == NULL) { /* Add .gam extention if there isn't one */ xl = in_name + strlen(in_name); strcpy(xl,".gam"); } if (gin->read_gam(gin, in_name)) error("Reading input gamut failed"); /* - - - - - - - - - - - - - - - - - - - */ /* read the output device gamut */ gout = new_gamut(0.0, 0, 0); if ((xl = strrchr(out_name, '.')) == NULL) { /* Add .gam extention if there isn't one */ xl = out_name + strlen(out_name); strcpy(xl,".gam"); } if (gout->read_gam(gout, out_name)) error("Reading output gamut failed"); /* - - - - - - - - - - - - - - - - - - - */ il[0] = ol[0] = 0.0; il[1] = ol[1] = -128.0; il[2] = ol[2] = -128.0; ih[0] = oh[0] = 100.0; ih[1] = oh[1] = 128.0; ih[2] = oh[2] = 128.0; /* Convert from compact to explicit hextant weightings */ expand_weights(xweights, weights); /* Create the near point mapping */ nsm = near_smooth(verb, &nnsm, gin, gin, gout, 0, 0, NULL, xweights, 0.1, 0.1, 1, 1, 2.0, 17, 10.0, il, ih, ol, oh); if (nsm == NULL) error("Creating smoothed near points failed"); /* Output the src to smoothed near point vectors */ if ((xl = strrchr(diag_name, '.')) == NULL) { /* Add .wrl extention if there isn't one */ xl = diag_name + strlen(diag_name); strcpy(xl,".wrl"); } wrl = start_vrml(diag_name, 1); start_line_set(wrl); for (i = 0; i < nnsm; i++) { add_vertex(wrl, nsm[i].sv); /* Source gamut point */ add_vertex(wrl, nsm[i].dv); /* Smoother destination value */ // add_vertex(wrl, nsm[i].drv); /* Radial points */ } make_lines(wrl, 2); end_vrml(wrl); /* Clean up */ free_nearsmth(nsm, nnsm); gout->del(gout); gin->del(gin); return 0; } /* ------------------------------------------------ */ /* Some simple functions to do basic VRML work */ #ifndef GAMUT_LCENT #define GAMUT_LCENT 50.0 #endif static int npoints = 0; static int paloc = 0; static struct { double pp[3]; } *pary; static void Lab2RGB(double *out, double *in); FILE *start_vrml(char *name, int doaxes) { FILE *wrl; struct { double x, y, z; double wx, wy, wz; double r, g, b; } axes[5] = { { 0, 0, 50-GAMUT_LCENT, 2, 2, 100, .7, .7, .7 }, /* L axis */ { 50, 0, 0-GAMUT_LCENT, 100, 2, 2, 1, 0, 0 }, /* +a (red) axis */ { 0, -50, 0-GAMUT_LCENT, 2, 100, 2, 0, 0, 1 }, /* -b (blue) axis */ { -50, 0, 0-GAMUT_LCENT, 100, 2, 2, 0, 1, 0 }, /* -a (green) axis */ { 0, 50, 0-GAMUT_LCENT, 2, 100, 2, 1, 1, 0 }, /* +b (yellow) axis */ }; int i; if ((wrl = fopen(name,"w")) == NULL) error("Error opening VRML file '%s'\n",name); npoints = 0; fprintf(wrl,"#VRML V2.0 utf8\n"); fprintf(wrl,"\n"); fprintf(wrl,"# Created by the Argyll CMS\n"); fprintf(wrl,"Transform {\n"); fprintf(wrl,"children [\n"); fprintf(wrl," NavigationInfo {\n"); fprintf(wrl," type \"EXAMINE\" # It's an object we examine\n"); fprintf(wrl," } # We'll add our own light\n"); fprintf(wrl,"\n"); fprintf(wrl," DirectionalLight {\n"); fprintf(wrl," direction 0 0 -1 # Light illuminating the scene\n"); fprintf(wrl," direction 0 -1 0 # Light illuminating the scene\n"); fprintf(wrl," }\n"); fprintf(wrl,"\n"); fprintf(wrl," Viewpoint {\n"); fprintf(wrl," position 0 0 340 # Position we view from\n"); fprintf(wrl," }\n"); fprintf(wrl,"\n"); if (doaxes != 0) { fprintf(wrl,"# Lab axes as boxes:\n"); for (i = 0; i < 5; i++) { fprintf(wrl,"Transform { translation %f %f %f\n", axes[i].x, axes[i].y, axes[i].z); fprintf(wrl,"\tchildren [\n"); fprintf(wrl,"\t\tShape{\n"); fprintf(wrl,"\t\t\tgeometry Box { size %f %f %f }\n", axes[i].wx, axes[i].wy, axes[i].wz); fprintf(wrl,"\t\t\tappearance Appearance { material Material "); fprintf(wrl,"{ diffuseColor %f %f %f} }\n", axes[i].r, axes[i].g, axes[i].b); fprintf(wrl,"\t\t}\n"); fprintf(wrl,"\t]\n"); fprintf(wrl,"}\n"); } fprintf(wrl,"\n"); } return wrl; } void start_line_set(FILE *wrl) { fprintf(wrl,"\n"); fprintf(wrl,"Shape {\n"); fprintf(wrl," geometry IndexedLineSet { \n"); fprintf(wrl," coord Coordinate { \n"); fprintf(wrl," point [\n"); } void add_vertex(FILE *wrl, double pp[3]) { fprintf(wrl,"%f %f %f,\n",pp[1], pp[2], pp[0]-GAMUT_LCENT); if (paloc < (npoints+1)) { paloc = (paloc + 10) * 2; if (pary == NULL) pary = malloc(paloc * 3 * sizeof(double)); else pary = realloc(pary, paloc * 3 * sizeof(double)); if (pary == NULL) error ("Malloc failed"); } pary[npoints].pp[0] = pp[0]; pary[npoints].pp[1] = pp[1]; pary[npoints].pp[2] = pp[2]; npoints++; } void make_lines(FILE *wrl, int ppset) { int i, j; fprintf(wrl," ]\n"); fprintf(wrl," }\n"); fprintf(wrl," coordIndex [\n"); for (i = 0; i < npoints;) { for (j = 0; j < ppset; j++, i++) { fprintf(wrl,"%d, ", i); } fprintf(wrl,"-1,\n"); } fprintf(wrl," ]\n"); /* Color */ fprintf(wrl," colorPerVertex TRUE\n"); fprintf(wrl," color Color {\n"); fprintf(wrl," color [ # RGB colors of each vertex\n"); for (i = 0; i < npoints; i++) { double rgb[3], Lab[3]; Lab[0] = pary[i].pp[0]; Lab[1] = pary[i].pp[1]; Lab[2] = pary[i].pp[2]; Lab2RGB(rgb, Lab); fprintf(wrl," %f %f %f,\n", rgb[0], rgb[1], rgb[2]); } fprintf(wrl," ] \n"); fprintf(wrl," }\n"); /* End color */ fprintf(wrl," }\n"); fprintf(wrl,"} # end shape\n"); } void end_vrml(FILE *wrl) { fprintf(wrl,"\n"); fprintf(wrl," ] # end of children for world\n"); fprintf(wrl,"}\n"); if (fclose(wrl) != 0) error("Error closing VRML file\n"); } /* Convert a gamut Lab value to an RGB value for display purposes */ static void Lab2RGB(double *out, double *in) { double L = in[0], a = in[1], b = in[2]; double x,y,z,fx,fy,fz; double R, G, B; /* Scale so that black is visible */ L = L * (100 - 40.0)/100.0 + 40.0; /* First convert to XYZ using D50 white point */ if (L > 8.0) { fy = (L + 16.0)/116.0; y = pow(fy,3.0); } else { y = L/903.2963058; fy = 7.787036979 * y + 16.0/116.0; } fx = a/500.0 + fy; if (fx > 24.0/116.0) x = pow(fx,3.0); else x = (fx - 16.0/116.0)/7.787036979; fz = fy - b/200.0; if (fz > 24.0/116.0) z = pow(fz,3.0); else z = (fz - 16.0/116.0)/7.787036979; x *= 0.9642; /* Multiply by white point, D50 */ y *= 1.0; z *= 0.8249; /* Now convert to sRGB values */ R = x * 3.2410 + y * -1.5374 + z * -0.4986; G = x * -0.9692 + y * 1.8760 + z * 0.0416; B = x * 0.0556 + y * -0.2040 + z * 1.0570; if (R < 0.0) R = 0.0; else if (R > 1.0) R = 1.0; if (G < 0.0) G = 0.0; else if (G > 1.0) G = 1.0; if (B < 0.0) B = 0.0; else if (B > 1.0) B = 1.0; R = pow(R, 1.0/2.2); G = pow(G, 1.0/2.2); B = pow(B, 1.0/2.2); out[0] = R; out[1] = G; out[2] = B; }