/* * Color Correct a TIFF or JPEG file, using an ICC Device link profile. * Version #2, that allows an arbitrary string of profiles, and * copes with TIFF L*a*b* input and output. * * Author: Graeme W. Gill * Date: 29/5/2004 * Version: 2.00 * * Copyright 2000 - 2006, 2012 Graeme W. Gill * All rights reserved. * * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- * see the License.txt file for licencing details. */ /* TTBD: Add dithered 8 bit output mode. Generate 16 bit internally, then apply screening down to 8 bits Use render/thrscreen to do the hard work. Should special case jpeg noop used to embed profile in output, using jpeg_read_coefficients()/jpeg_write_coefficients() rather than jpeg_start_decompress(), jpeg_read_scanlines() etc. Should make -d option default to the last device profile. Should add support for getting TIFF ink names from the ICC profile colorantTable if it exists, or guessing them if they don't, and then matching them to the incoming TIFF, and embedding them in the outgoing TIFF. Add flag to ignore inkname mismatches. Should add support for transfering any extra alpha planes from input to output, rather than simply ignoring them. Question: Should this be changed to also function as a dedicated simple linker, capable of outputing a device link formed from a sequence ? If argyll functionality was properly modularized, it would be possible to have a single arbitrary smart link sequence for both purposes. There's the sugggestion that the CIELab and ICCLab encodings have different white points (D65 and D50 respecively - see ). Should we convert the white point to D65 for CIELab, or make this an option ? Probably a bad idea if we regard the Lab in/out as relative colorimetric representation ?? Ideally should automatically generate optimized per channel input and output curves, rather than depending on reasonable behaviour from the profiles. I don't think that the idea of an XYZ input/output space has been properly implemented, since the TIFF format doesn't have an encoding for it, and hence the l2y_curve and u2l_curve scaling is probably incorrect. Forcing XYZ or Lab input & output spaces to be [io]combined is also not actually necessary, if the necessary profile curves were applied and the colorspace ranges properly allowed for. JPEG FAX encoding is not currently implemented. */ /* This program is a framework that exercises the IMDI code, as well as a demonstration of profile linking. It can also do the raster data conversion using the floating point code in ICCLIB as a reference. */ #include #include #include #include #include #include #include #include "copyright.h" #include "aconfig.h" #include "numlib.h" #include "tiffio.h" #include "jpeglib.h" #include "iccjpeg.h" #include "icc.h" #include "xicc.h" #include "imdi.h" #include "ui.h" #undef DEBUG /* Print detailed debug info */ #if !defined(O_CREAT) && !defined(_O_CREAT) # error "Need to #include fcntl.h!" #endif #define DEFJPGQ 80 /* Default JPEG quality */ void usage(char *diag, ...) { fprintf(stderr,"Color Correct a TIFF or JPEG file using any sequence of ICC profiles or Calibrations, V%s\n",ARGYLL_VERSION_STR); fprintf(stderr,"Author: Graeme W. Gill, licensed under the AGPL Version 3\n"); if (diag != NULL) { va_list args; fprintf(stderr," Diagnostic: "); va_start(args, diag); vfprintf(stderr, diag, args); va_end(args); fprintf(stderr,"\n"); } fprintf(stderr,"usage: cctiff [-options] { [-i intent] profile%s | calbrtn.cal ...} infile.tif/jpg outfile.tif/jpg\n",ICC_FILE_EXT); fprintf(stderr," -v Verbose.\n"); fprintf(stderr," -c Combine linearisation curves into one transform.\n"); fprintf(stderr," -p Use slow precise correction.\n"); fprintf(stderr," -k Check fast result against precise, and report.\n"); fprintf(stderr," -r n Override the default CLUT resolution\n"); fprintf(stderr," -t n Choose output encoding from 1..n\n"); fprintf(stderr," -f [T|J] Set output format to Tiff or Jpeg (Default is same as input)\n"); fprintf(stderr," -q quality Set JPEG quality 1..100 (Default %d)\n",DEFJPGQ); fprintf(stderr," -a Read and Write planes > 4 as alpha planes\n"); fprintf(stderr," -I Ignore any file or profile colorspace mismatches\n"); fprintf(stderr," -D Don't append or set the output TIFF or JPEG description\n"); fprintf(stderr," -N Output uncompressed TIFF (default LZW)\n"); fprintf(stderr," -e profile.[%s | tiff | jpg] Optionally embed a profile in the destination TIFF or JPEG file.\n",ICC_FILE_EXT_ND); fprintf(stderr,"\n"); fprintf(stderr," Then for each profile in sequence:\n"); fprintf(stderr," -i intent p = perceptual, r = relative colorimetric,\n"); fprintf(stderr," s = saturation, a = absolute colorimetric\n"); fprintf(stderr," -o order n = normal (priority: lut > matrix > monochrome)\n"); fprintf(stderr," r = reverse (priority: monochrome > matrix > lut)\n"); fprintf(stderr," profile.[%s | tiff] Device, Link or Abstract profile\n",ICC_FILE_EXT_ND); fprintf(stderr," ( May be embedded profile in TIFF/JPEG file)\n"); fprintf(stderr," or each calibration file in sequence:\n"); fprintf(stderr," -d dir f = forward cal. (default), b = backwards cal.\n"); fprintf(stderr," calbrtn.cal Device calibration file.\n"); fprintf(stderr,"\n"); fprintf(stderr," infile.tif/jpg Input TIFF/JPEG file in appropriate color space\n"); fprintf(stderr," outfile.tif/jpg Output TIFF/JPEG file\n"); exit(1); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Conversion functions from direct binary 0..n^2-1 == 0.0 .. 1.0 range */ /* to ICC luo input range, and the reverse. */ /* Note that all these functions are per-component, */ /* so the can be included in per-component input or output curves, */ /* if they PCS values were rescaled to be within the range 0.0 .. 1.0. */ /* Since we're not currently doing this, we always set i/ocpmbine */ /* if the input/output is PCS, so that real PCS values don't */ /* appear in the input/output curves. */ /* TIFF 8 bit CIELAB to standard L*a*b* */ /* Assume that a & b have been converted from signed to offset */ static void cvt_CIELAB8_to_Lab(double *out, double *in) { out[0] = in[0] * 100.0; out[1] = in[1] * 255.0 - 128.0; out[2] = in[2] * 255.0 - 128.0; } /* Standard L*a*b* to TIFF 8 bit CIELAB */ /* Assume that a & b will be converted from offset to signed */ static void cvt_Lab_to_CIELAB8(double *out, double *in) { out[0] = in[0] / 100.0; out[1] = (in[1] + 128.0) * 1.0/255.0; out[2] = (in[2] + 128.0) * 1.0/255.0; } /* TIFF 16 bit CIELAB to standard L*a*b* */ /* Assume that a & b have been converted from signed to offset */ static void cvt_CIELAB16_to_Lab(double *out, double *in) { out[0] = in[0] * 100.0; out[1] = (in[1] - 32768.0/65535.0) * 256.0; out[2] = (in[2] - 32768.0/65535.0) * 256.0; } /* Standard L*a*b* to TIFF 16 bit CIELAB */ /* Assume that a & b will be converted from offset to signed */ static void cvt_Lab_to_CIELAB16(double *out, double *in) { out[0] = in[0] / 100.0; out[1] = in[1]/256.0 + 32768.0/65535.0; out[2] = in[2]/256.0 + 32768.0/65535.0; } /* TIFF 8 bit ICCLAB to standard L*a*b* */ static void cvt_ICCLAB8_to_Lab(double *out, double *in) { out[0] = in[0] * 100.0; out[1] = (in[1] * 255.0) - 128.0; out[2] = (in[2] * 255.0) - 128.0; } /* Standard L*a*b* to TIFF 8 bit ICCLAB */ static void cvt_Lab_to_ICCLAB8(double *out, double *in) { out[0] = in[0] * 1.0/100.0; out[1] = (in[1] + 128.0) * 1.0/255.0; out[2] = (in[2] + 128.0) * 1.0/255.0; } /* TIFF 16 bit ICCLAB to standard L*a*b* */ static void cvt_ICCLAB16_to_Lab(double *out, double *in) { out[0] = in[0] * (100.0 * 65535.0)/65280.0; out[1] = (in[1] * (255.0 * 65535.0)/65280) - 128.0; out[2] = (in[2] * (255.0 * 65535.0)/65280) - 128.0; } /* Standard L*a*b* to TIFF 16 bit ICCLAB */ static void cvt_Lab_to_ICCLAB16(double *out, double *in) { out[0] = in[0] * 65280.0/(100.0 * 65535.0); out[1] = (in[1] + 128.0) * 65280.0/(255.0 * 65535.0); out[2] = (in[2] + 128.0) * 65280.0/(255.0 * 65535.0); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Convert a TIFF Photometric tag to an ICC colorspace. */ /* return 0 if not possible or applicable. */ icColorSpaceSignature TiffPhotometric2ColorSpaceSignature( void (**ocvt)(double *out, double *in), /* Return write conversion function, NULL if none */ void (**icvt)(double *out, double *in), /* Return read conversion function, NULL if none */ int *smsk, /* Return signed handling mask, 0x0 if none */ int pmtc, /* Input TIFF photometric */ int bps, /* Input Bits per sample */ int spp, /* Input Samples per pixel */ int extra /* Extra Samples per pixel, if any */ ) { if (icvt != NULL) *icvt = NULL; /* Default return values */ if (ocvt != NULL) *ocvt = NULL; /* Default return values */ if (smsk != NULL) *smsk = 0x0; // if (extra > 0 && pmtc != PHOTOMETRIC_SEPARATED) // return 0x0; /* We don't handle this */ switch (pmtc) { case PHOTOMETRIC_MINISWHITE: /* Subtractive Gray */ return icSigGrayData; case PHOTOMETRIC_MINISBLACK: /* Additive Gray */ return icSigGrayData; case PHOTOMETRIC_RGB: return icSigRgbData; case PHOTOMETRIC_PALETTE: return 0x0; case PHOTOMETRIC_MASK: return 0x0; case PHOTOMETRIC_SEPARATED: /* Should look at the colorant names to figure out if this is CMY, CMYK */ /* Should at least return both Cmy/3 or Cmyk/4 ! */ switch(spp) { case 2: return icSig2colorData; case 3: // return icSig3colorData; return icSigCmyData; case 4: // return icSig4colorData; return icSigCmykData; case 5: return icSig5colorData; case 6: return icSig6colorData; case 7: return icSig7colorData; case 8: return icSig8colorData; case 9: return icSig9colorData; case 10: return icSig10colorData; case 11: return icSig11colorData; case 12: return icSig12colorData; case 13: return icSig13colorData; case 14: return icSig14colorData; case 15: return icSig15colorData; } case PHOTOMETRIC_YCBCR: return icSigYCbCrData; case PHOTOMETRIC_CIELAB: if (bps == 8) { if (icvt != NULL) *icvt = cvt_CIELAB8_to_Lab; if (ocvt != NULL) *ocvt = cvt_Lab_to_CIELAB8; } else { if (icvt != NULL) *icvt = cvt_CIELAB16_to_Lab; if (ocvt != NULL) *ocvt = cvt_Lab_to_CIELAB16; } *smsk = 0x6; /* Treat a & b as signed */ return icSigLabData; case PHOTOMETRIC_ICCLAB: if (bps == 8) { if (icvt != NULL) *icvt = cvt_ICCLAB8_to_Lab; if (ocvt != NULL) *ocvt = cvt_Lab_to_ICCLAB8; } else { if (icvt != NULL) *icvt = cvt_ICCLAB16_to_Lab; if (ocvt != NULL) *ocvt = cvt_Lab_to_ICCLAB16; } return icSigLabData; case PHOTOMETRIC_ITULAB: return 0x0; /* Could add this with a conversion function */ /* but have to allow for variable ITU gamut */ /* (Tag 433, "Decode") */ case PHOTOMETRIC_LOGL: return 0x0; /* Could add this with a conversion function */ case PHOTOMETRIC_LOGLUV: return 0x0; /* Could add this with a conversion function */ } return 0x0; } /* Convert an ICC colorspace to the corresponding possible TIFF Photometric tags. */ /* Return the number of matching tags, and 0 if there is no corresponding tag. */ int ColorSpaceSignature2TiffPhotometric( uint16 tags[10], /* Pointer to return array, up to 10 */ icColorSpaceSignature cspace /* Input ICC colorspace */ ) { switch(cspace) { case icSigGrayData: tags[0] = PHOTOMETRIC_MINISBLACK; return 1; case icSigRgbData: tags[0] = PHOTOMETRIC_RGB; return 1; case icSigCmyData: case icSigCmykData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSigYCbCrData: tags[0] = PHOTOMETRIC_YCBCR; return 1; case icSigXYZData: case icSigLabData: tags[0] = PHOTOMETRIC_CIELAB; tags[1] = PHOTOMETRIC_ICCLAB; #ifdef NEVER tags[2] = PHOTOMETRIC_ITULAB; #endif return 2; case icSigLuvData: case icSigYxyData: /* Could handle this with a conversion ?? */ case icSigHsvData: case icSigHlsData: return 0; case icSig2colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig3colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig4colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig5colorData: case icSigMch5Data: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig6colorData: case icSigMch6Data: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig7colorData: case icSigMch7Data: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig8colorData: case icSigMch8Data: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig9colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig10colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig11colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig12colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig13colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig14colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; case icSig15colorData: tags[0] = PHOTOMETRIC_SEPARATED; return 1; default: return 0; } return 0; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Compute the length of a double nul terminated string, including */ /* the nuls. */ static int zzstrlen(char *s) { int i; for (i = 0;; i++) { if (s[i] == '\000' && s[i+1] == '\000') return i+2; } return 0; } /* Convert an ICC colorspace to the corresponding TIFF Inkset tag */ /* return 0xffff if not possible or applicable. */ static int ColorSpaceSignature2TiffInkset( icColorSpaceSignature cspace, int *len, /* Return length of ASCII inknames */ char **inknames /* Return ASCII inknames if non NULL */ ) { switch(cspace) { case icSigCmyData: return 0xffff; if (inknames != NULL) { *inknames = "cyan\000magenta\000yellow\000\000"; *len = zzstrlen(*inknames); } return 0; /* Not CMYK */ case icSigCmykData: if (inknames != NULL) { *inknames = NULL; /* No inknames - it's coded */ *len = 0; } return INKSET_CMYK; case icSigGrayData: case icSigRgbData: case icSigYCbCrData: case icSigLabData: case icSigXYZData: case icSigLuvData: case icSigYxyData: case icSigHsvData: case icSigHlsData: case icSig2colorData: case icSig3colorData: case icSig4colorData: case icSig5colorData: case icSigMch5Data: return 0xffff; case icSig6colorData: case icSigMch6Data: /* This is a cheat and a hack. Should really make use of the */ /* ColorantTable to determine the colorant names. */ /* allowing cctiff to read it. */ if (inknames != NULL) { *inknames = "cyan\000magenta\000yellow\000black\000orange\000green\000\000"; *len = zzstrlen(*inknames); } return INKSET_MULTIINK; case icSig7colorData: case icSigMch7Data: return 0xffff; case icSig8colorData: case icSigMch8Data: /* This is a cheat and a hack. Should really make use of the */ /* ColorantTable to determine the colorant names. */ /* allowing cctiff to read it. */ if (inknames != NULL) { *inknames = "cyan\000magenta\000yellow\000black\000orange\000green\000lightcyan\000lightmagenta\000\000"; *len = zzstrlen(*inknames); } return INKSET_MULTIINK; case icSig9colorData: case icSig10colorData: case icSig11colorData: case icSig12colorData: case icSig13colorData: case icSig14colorData: case icSig15colorData: default: return 0xffff; } return 0xffff; } static char * Photometric2str( int pmtc ) { static char buf[80]; switch (pmtc) { case PHOTOMETRIC_MINISWHITE: return "Subtractive Gray"; case PHOTOMETRIC_MINISBLACK: return "Additive Gray"; case PHOTOMETRIC_RGB: return "RGB"; case PHOTOMETRIC_PALETTE: return "Indexed"; case PHOTOMETRIC_MASK: return "Transparency Mask"; case PHOTOMETRIC_SEPARATED: return "Separated"; case PHOTOMETRIC_YCBCR: return "YCbCr"; case PHOTOMETRIC_CIELAB: return "CIELab"; case PHOTOMETRIC_ICCLAB: return "ICCLab"; case PHOTOMETRIC_ITULAB: return "ITULab"; case PHOTOMETRIC_LOGL: return "CIELog2L"; case PHOTOMETRIC_LOGLUV: return "CIELog2Luv"; } sprintf(buf,"Unknown Photometric Tag %d",pmtc); return buf; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #define YSCALE (2.0/1.3) /* Extra non-linearity applied to BtoA XYZ PCS */ /* This distributes the LUT indexes more evenly in */ /* perceptual space, greatly improving the B2A accuracy of XYZ LUT */ /* Since typically XYZ doesn't use the full range of 0-2.0 allowed */ /* for in the encoding, we scale the cLUT index values to use the 0-1.3 range */ /* (For these functions the encoded XYZ 0.0 - 2.0 range is 0.0 - 1.0 ??) */ /* Y to L* */ static void y2l_curve(double *out, double *in, int isXYZ) { int i; double val; double isc = 1.0, osc = 1.0; /* Scale from 0.0 .. 1.999969 to 0.0 .. 1.0 and back */ /* + range adjustment */ if (isXYZ) { isc = 32768.0/65535.0 * YSCALE; osc = 65535.0/32768.0; } for (i = 0; i < 3; i++) { val = in[i] * isc; if (val > 0.008856451586) val = 1.16 * pow(val,1.0/3.0) - 0.16; else val = 9.032962896 * val; if (val > 1.0) val = 1.0; out[i] = val * osc; } } /* L* to Y */ static void l2y_curve(double *out, double *in, int isXYZ) { int i; double val; double isc = 1.0, osc = 1.0; /* Scale from 0.0 .. 1.999969 to 0.0 .. 1.0 and back */ /* + range adjustment */ if (isXYZ) { isc = 32768.0/65535.0; osc = 65535.0/32768.0 / YSCALE; } /* Use an L* like curve, scaled to the maximum XYZ value */ for (i = 0; i < 3; i++) { val = in[i] * isc; if (val > 0.08) val = pow((val + 0.16)/1.16, 3.0); else val = val/9.032962896; out[i] = val * osc; } } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Callbacks used to initialise imdi */ /* Information needed from a single profile or calibration */ struct _profinfo { char name[MAXNAMEL+1]; icc *c; /* If non-NULL, ICC profile. */ xcal *cal; /* if non-NULL, xcal rather than profile */ /* Valid for both icc and xcal: */ icColorSpaceSignature ins, outs; /* Colorspace of conversion */ int id, od; /* Dimensions of conversion */ /* Valid only for icc: */ icmHeader *h; icRenderingIntent intent; /* Rendering intent chosen */ icmLookupFunc func; /* Type of function to use in lookup */ icmLookupOrder order; /* tag search order to use */ icmLuAlgType alg; /* Type of lookup algorithm used */ int clutres; /* If this profile uses a clut, what's it's res. ? */ icColorSpaceSignature natpcs; /* Underlying natural PCS */ icmLuBase *luo; /* Base Lookup type object */ }; typedef struct _profinfo profinfo; /* Context for imdi setup callbacks */ typedef struct { /* Overall parameters */ int verb; /* Non-zero if verbose */ int compr; /* NZ to use TIFF LZW */ icColorSpaceSignature ins, outs; /* Input/Output spaces */ int iinv, oinv; /* Space inversion */ int id, od, md; /* Input/Output dimensions and max(id,od) */ int width, height; /* Width and heigh of raster */ int isign_mask; /* Input sign mask */ int osign_mask; /* Output sign mask */ int icombine; /* Non-zero if input curves are to be combined */ int ocombine; /* Non-zero if output curves are to be combined */ int ilcurve; /* 1 if input curves are to be concatenated with Y like ->L* curve */ /* (2 if input curves are to be concatenated with Y->L* curve) */ int olcurve; /* 1 if output curves are to be concatenated with L*->Y like curve */ /* (2 if output curves are to be concatenated with L*->Y curve) */ void (*icvt)(double *out, double *in); /* If non-NULL, Input format conversion */ void (*ocvt)(double *out, double *in); /* If non-NULL, Output format conversion */ int nprofs; /* Number of profiles in the sequence */ int first, last; /* index of first and last profiles/cals, 0 and nprofs-1 */ int fclut, lclut; /* first and last profiles/cals that are part of multi-d table */ profinfo *profs; /* Profile information */ } sucntx; /* Input curve function */ static void input_curves( void *cntx, double *out_vals, double *in_vals ) { int i; sucntx *rx = (sucntx *)cntx; //printf("~1 incurve in %f %f %f %f\n",in_vals[0],in_vals[1],in_vals[2],in_vals[3]); for (i = 0; i < rx->id; i++) out_vals[i] = in_vals[i]; /* Default to nothing */ if (rx->icombine == 0) { /* Not combined into multi-d table */ /* TIFF input format conversion */ if (rx->icvt != NULL) { /* (Never used because PCS < 0.0 > 1.0) */ rx->icvt(out_vals, out_vals); } /* Any concatinated input calibrations */ for (i = rx->first; i < rx->fclut; i++) { if (rx->profs[i].func == icmFwd) rx->profs[i].cal->interp(rx->profs[i].cal, out_vals, out_vals); else rx->profs[i].cal->inv_interp(rx->profs[i].cal, out_vals, out_vals); } /* The input table of the first profile */ /* (icombine is set if input is PCS) */ if (rx->fclut <= rx->lclut) rx->profs[rx->fclut].luo->lookup_in(rx->profs[rx->fclut].luo, out_vals, out_vals); } /* If input curve converts to Y like space, apply Y->L* curve */ /* so as to index CLUT perceptually. */ if (rx->ilcurve != 0) { y2l_curve(out_vals, out_vals, rx->ilcurve == 2); } //printf("~1 incurve out %f %f %f %f\n",out_vals[0],out_vals[1],out_vals[2],out_vals[3]); } /* Multi-dim table function */ static void md_table( void *cntx, double *out_vals, double *in_vals ) { sucntx *rx = (sucntx *)cntx; double vals[MAX_CHAN]; icColorSpaceSignature prs; /* Previous colorspace */ int i, j; for (i = 0; i < rx->id; i++) vals[i] = in_vals[i]; /* default is do nothing */ //printf("~1 md_table in %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); if (rx->ilcurve) { /* Apply L*->Y curve to compensate for curve applied after input curve */ l2y_curve(vals, vals, rx->ilcurve == 2); } prs = rx->ins; /* If the input curves are being combined into clut: */ if (rx->icombine != 0) { /* Any needed TIFF file format conversion */ if (rx->icvt != NULL) { rx->icvt(vals, vals); //printf("~1 md_table after icvt %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } /* Any concatinated input calibrations */ for (j = rx->first; j < rx->fclut; j++) { if (rx->profs[j].func == icmFwd) rx->profs[j].cal->interp(rx->profs[j].cal, vals, vals); else rx->profs[j].cal->inv_interp(rx->profs[j].cal, vals, vals); } //printf("~1 md_table after in cals %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } /* Do all the profile links in-between (if any) */ for (j = rx->fclut; j <= rx->lclut; j++) { /* If it's a calibration */ if (rx->profs[j].cal != NULL) { if (rx->profs[j].func == icmFwd) rx->profs[j].cal->interp(rx->profs[j].cal, vals, vals); else rx->profs[j].cal->inv_interp(rx->profs[j].cal, vals, vals); /* Else it's a profile */ } else { /* Convert PCS for this profile */ if (prs == icSigXYZData && rx->profs[j].ins == icSigLabData) { icmXYZ2Lab(&icmD50, vals, vals); //printf("~1 md_table after XYZ2Lab %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } else if (prs == icSigLabData && rx->profs[j].ins == icSigXYZData) { icmLab2XYZ(&icmD50, vals, vals); //printf("~1 md_table after Lab2XYZ %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } /* If first or last profile */ if (j == rx->fclut || j == rx->lclut) { if (j != rx->fclut || rx->icombine) { rx->profs[j].luo->lookup_in(rx->profs[j].luo, vals, vals); //printf("~1 md_table after input curve %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } rx->profs[j].luo->lookup_core(rx->profs[j].luo, vals, vals); //printf("~1 md_table after core %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); if (j != rx->lclut || rx->ocombine) { rx->profs[j].luo->lookup_out(rx->profs[j].luo, vals, vals); } //printf("~1 md_table after output curve %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); /* Middle of chain */ } else { rx->profs[j].luo->lookup(rx->profs[j].luo, vals, vals); //printf("~1 md_table after middle %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } } prs = rx->profs[j].outs; } /* convert last PCS to rx->outs PCS if needed */ if (prs == icSigXYZData && rx->outs == icSigLabData) { icmXYZ2Lab(&icmD50, vals, vals); //printf("~1 md_table after out XYZ2Lab %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } else if (prs == icSigLabData && rx->outs == icSigXYZData) { icmLab2XYZ(&icmD50, vals, vals); //printf("~1 md_table after out Lab2XYZ %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } /* If the output curves are being combined into clut: */ if (rx->ocombine != 0) { /* Any concatinated output calibrations */ for (j = rx->lclut+1; j <= rx->last; j++) { if (rx->profs[j].func == icmFwd) rx->profs[j].cal->interp(rx->profs[j].cal, vals, vals); else rx->profs[j].cal->inv_interp(rx->profs[j].cal, vals, vals); } //printf("~1 md_table after out cals %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); /* Any needed TIFF file format conversion */ if (rx->ocvt != NULL) { rx->ocvt(vals, vals); //printf("~1 md_table after out ocvt %f %f %f %f\n",vals[0],vals[1],vals[2],vals[3]); } } if (rx->olcurve) { /* Add Y->L* curve to cause interpolation in perceptual space */ y2l_curve(vals, vals, rx->olcurve == 2); } for (i = 0; i < rx->od; i++) out_vals[i] = vals[i]; //printf("~1 md_table returns %f %f %f %f\n",out_vals[0],out_vals[1],out_vals[2],out_vals[3]); } /* Output curve function */ static void output_curves( void *cntx, double *out_vals, double *in_vals ) { sucntx *rx = (sucntx *)cntx; int i; //printf("~1 outurve in %f %f %f %f\n",in_vals[0],in_vals[1],in_vals[2],in_vals[3]); for (i = 0; i < rx->od; i++) out_vals[i] = in_vals[i]; /* Apply L* -> Y curve to undo curve applied at CLUT output. */ if (rx->olcurve != 0) { l2y_curve(out_vals, out_vals, rx->olcurve == 2); } if (rx->ocombine == 0) { /* Not combined into multi-d table */ /* The output table of the last profile */ /* (ocombine is set if output is PCS) */ if (rx->fclut <= rx->lclut) { rx->profs[rx->lclut].luo->lookup_out(rx->profs[rx->lclut].luo, out_vals, out_vals); //printf("~1 md_table after out curve %f %f %f %f\n",out_vals[0],out_vals[1],out_vals[2],out_vals[3]); } /* Any concatinated output calibrations */ for (i = rx->lclut+1; i <= rx->last; i++) { if (rx->profs[i].func == icmFwd) rx->profs[i].cal->interp(rx->profs[i].cal, out_vals, out_vals); else rx->profs[i].cal->inv_interp(rx->profs[i].cal, out_vals, out_vals); } /* Any needed file format conversion */ if (rx->ocvt != NULL) { /* (Never used because PCS < 0.0 > 1.0) */ rx->ocvt(out_vals, out_vals); //printf("~1 md_table after out ocvt %f %f %f %f\n",out_vals[0],out_vals[1],out_vals[2],out_vals[3]); } } //printf("~1 outurve out %f %f %f %f\n",out_vals[0],out_vals[1],out_vals[2],out_vals[3]); } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* Check whether two colorspaces appear compatible */ /* return NZ if they match, Z if they don't. */ /* Compatible means any PCS == any PCS, or exact match */ int CSMatch(icColorSpaceSignature s1, icColorSpaceSignature s2) { if (s1 == s2) return 1; if ((s1 == icSigXYZData || s1 == icSigLabData) && (s2 == icSigXYZData || s2 == icSigLabData)) return 1; if ((s1 == icSig5colorData || s1 == icSigMch5Data) && (s2 == icSig5colorData || s2 == icSigMch5Data)) return 1; if ((s1 == icSig6colorData || s1 == icSigMch6Data) && (s2 == icSig6colorData || s2 == icSigMch6Data)) return 1; if ((s1 == icSig7colorData || s1 == icSigMch7Data) && (s2 == icSig7colorData || s2 == icSigMch7Data)) return 1; if ((s1 == icSig8colorData || s1 == icSigMch8Data) && (s2 == icSig8colorData || s2 == icSigMch8Data)) return 1; return 0; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* JPEG error information */ typedef struct { jmp_buf env; /* setjmp/longjmp environment */ char message[JMSG_LENGTH_MAX]; } jpegerrorinfo; /* JPEG error handler */ static void jpeg_error(j_common_ptr cinfo) { jpegerrorinfo *p = (jpegerrorinfo *)cinfo->client_data; (*cinfo->err->format_message) (cinfo, p->message); longjmp(p->env, 1); } static char * JPEG_cspace2str( J_COLOR_SPACE cspace ) { static char buf[80]; switch (cspace) { case JCS_UNKNOWN: return "Unknown"; case JCS_GRAYSCALE: return "Monochrome"; case JCS_RGB: return "RGB"; case JCS_YCbCr: return "YCbCr"; case JCS_CMYK: return "CMYK"; case JCS_YCCK: return "YCCK"; } sprintf(buf,"Unknown JPEG colorspace %d",cspace); return buf; } /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ int main(int argc, char *argv[]) { int fa, nfa; /* argument we're looking at */ char in_name[MAXNAMEL+1] = ""; /* Input raster file name */ char out_name[MAXNAMEL+1] = ""; /* Output raster file name */ char dst_pname[MAXNAMEL+1] = ""; /* Destination embedded profile file name */ icc *deicc = NULL; /* Destination embedded profile (if any) */ icRenderingIntent next_intent; /* Rendering intent for next profile */ icmLookupOrder next_order; /* tag search order for next profile */ icmLookupFunc next_func; /* Direction for next calibration */ int last_dim; /* Next dimentionality between conversions */ icColorSpaceSignature last_colorspace; /* Next colorspace between conversions */ char *last_cs_file; /* Name of the file the last colorspace came from */ int dojpg = -1; /* 0 = tiff, 1 = jpg, -1 = same as input */ int jpgq = -1; /* Jpeg quality, default DEFJPGQ */ int doimdi = 1; /* Use the fast overall integer conversion */ int dofloat = 0; /* Use the slow precice (float). */ int check = 0; /* Check fast (int) against slow (float) */ int ochoice = 0; /* Output encoding choice 1..n */ int alpha = 0; /* Use alpha for extra planes */ int ignoremm = 0; /* Ignore any colorspace mismatches */ int nodesc = 0; /* Don't append or set the description */ int copydct = 0; /* For jpeg->jpeg with no changes, copy DCT cooeficients */ int i, j, rv = 0; /* TIFF file info */ TIFFErrorHandler olderrh, oldwarnh; TIFFErrorHandlerExt olderrhx, oldwarnhx; TIFF *rh = NULL, *wh = NULL; int x, y, width, height; /* Common size of image */ uint16 bitspersample; /* Bits per sample */ uint16 resunits; float resx, resy; uint16 pconfig; /* Planar configuration */ uint16 rsamplesperpixel, wsamplesperpixel; /* Channels per sample */ uint16 rphotometric, wphotometric; /* Photometrics */ uint16 rextrasamples, wextrasamples; /* Extra "alpha" samples */ uint16 *rextrainfo, wextrainfo[MAX_CHAN]; /* Info about extra samples */ char *rdesc = NULL; /* Existing description */ char *ddesc = "[ Color corrected by ArgyllCMS ]"; /* Default description */ char *wdesc = NULL; /* Written desciption */ tdata_t *inbuf = NULL, *outbuf = NULL, *hprecbuf = NULL; int inbpix, outbpix; /* Number of pixels in jpeg in/out buf */ /* JPEG file info */ jpegerrorinfo jpeg_rerr, jpeg_werr; FILE *rf = NULL, *wf = NULL; struct jpeg_decompress_struct rj; struct jpeg_compress_struct wj; struct jpeg_error_mgr jerr; /* IMDI */ imdi *s = NULL; sucntx su; /* Setup context */ unsigned char *inp[MAX_CHAN]; unsigned char *outp[MAX_CHAN]; int clutres = 0; /* Default */ /* Error check */ int mxerr = 0; double avgerr = 0.0; double avgcount = 0.0; error_program = "cctiff"; if (argc < 2) usage("Too few arguments"); /* Set defaults */ memset((void *)&su, 0, sizeof(sucntx)); su.compr = 1; /* TIFF LZW by default */ next_intent = icmDefaultIntent; next_func = icmFwd; next_order = icmLuOrdNorm; /* JPEG */ jpeg_std_error(&jerr); jerr.error_exit = jpeg_error; /* Process the arguments */ for(fa = 1;fa < argc;fa++) { nfa = fa; /* skip to nfa if next argument is used */ if (argv[fa][0] == '-') { /* Look for any flags */ char *na = NULL; /* next argument after flag, null if none */ if (argv[fa][2] != '\000') na = &argv[fa][2]; /* next is directly after flag */ else { if ((fa+1) < argc) { if (argv[fa+1][0] != '-') { nfa = fa + 1; na = argv[nfa]; /* next is seperate non-flag argument */ } } } if (argv[fa][1] == '?') usage("Usage requested"); /* Slow, Precise, not integer */ else if (argv[fa][1] == 'p' || argv[fa][1] == 'P') { doimdi = 0; dofloat = 1; } /* Combine per channel curves */ else if (argv[fa][1] == 'c' || argv[fa][1] == 'C') { su.icombine = 1; su.ocombine = 1; } /* Check curves */ else if (argv[fa][1] == 'k' || argv[fa][1] == 'K') { doimdi = 1; dofloat = 1; check = 1; } /* Use alpha planes for any over 4 */ else if (argv[fa][1] == 'a' || argv[fa][1] == 'A') { alpha = 1; } /* CLUT resolution */ else if (argv[fa][1] == 'r' || argv[fa][1] == 'R') { fa = nfa; if (na == NULL) usage("Expect argument to -r flag"); clutres = atoi(na); if (clutres < 2) usage("-r argument must be >= 2"); } /* Output file encoding choice */ else if (argv[fa][1] == 't' || argv[fa][1] == 'T') { fa = nfa; if (na == NULL) usage("Expect argument to -t flag"); ochoice = atoi(na); } /* Output file format override */ else if (argv[fa][1] == 'f') { fa = nfa; if (na == NULL) usage("Missing argument to -f flag"); switch (na[0]) { case 't': case 'T': dojpg = 0; break; case 'j': case 'J': dojpg = 1; break; default: usage("Unknown argument '%c' to -f flag",na[0]); } } /* JPEG quality */ else if (argv[fa][1] == 'q') { fa = nfa; if (na == NULL) usage("Expect argument to -q flag"); jpgq = atoi(na); if (jpgq < 1 || jpgq > 100) usage("-q argument must 1..100"); } /* Destination TIFF embedded profile */ else if (argv[fa][1] == 'e' || argv[fa][1] == 'E') { fa = nfa; if (na == NULL) usage("Expect profile name argument to -e flag"); strncpy(dst_pname,na, MAXNAMEL); dst_pname[MAXNAMEL] = '\000'; } /* Next profile Intent */ else if (argv[fa][1] == 'i') { fa = nfa; if (na == NULL) usage("Missing argument to -i flag"); switch (na[0]) { case 'p': case 'P': next_intent = icPerceptual; break; case 'r': case 'R': next_intent = icRelativeColorimetric; break; case 's': case 'S': next_intent = icSaturation; break; case 'a': case 'A': next_intent = icAbsoluteColorimetric; break; default: usage("Unknown argument '%c' to -i flag",na[0]); } } /* Next profile search order */ else if (argv[fa][1] == 'o') { fa = nfa; if (na == NULL) usage("Missing argument to -o flag"); switch (na[0]) { case 'n': case 'N': next_order = icmLuOrdNorm; break; case 'r': case 'R': next_order = icmLuOrdRev; break; default: usage("Unknown argument '%c' to -o flag",na[0]); } } /* Next calibraton direction */ else if (argv[fa][1] == 'd') { fa = nfa; if (na == NULL) usage("Missing argument to -i flag"); switch (na[0]) { case 'f': case 'F': next_func = icmFwd; break; case 'b': case 'B': next_func = icmBwd; break; default: usage("Unknown argument '%c' to -d flag",na[0]); } } else if (argv[fa][1] == 'I') ignoremm = 1; else if (argv[fa][1] == 'D') nodesc = 1; else if (argv[fa][1] == 'N') su.compr = 0; /* Verbosity */ else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') { su.verb = 1; } else { usage("Unknown flag '%c'",argv[fa][1]); } } else if (argv[fa][0] != '\000') { /* Get the next filename */ if (su.nprofs == 0) su.profs = (profinfo *)malloc(sizeof(profinfo)); else su.profs = (profinfo *)realloc(su.profs, (su.nprofs+1) * sizeof(profinfo)); if (su.profs == NULL) error("Malloc failed in allocating space for profile info."); memset((void *)&su.profs[su.nprofs], 0, sizeof(profinfo)); strncpy(su.profs[su.nprofs].name,argv[fa],MAXNAMEL); su.profs[su.nprofs].name[MAXNAMEL] = '\000'; su.profs[su.nprofs].intent = next_intent; su.profs[su.nprofs].func = next_func; su.profs[su.nprofs].order = next_order; su.nprofs++; next_intent = icmDefaultIntent; next_func = icmFwd; next_order = icmLuOrdNorm; } else { break; } } /* The last two "profiles" are actually the input and output TIFF/JPEG filenames */ /* Unwind them */ if (su.nprofs < 2) usage("Not enough arguments to specify input and output TIFF/JPEG files"); strncpy(out_name,su.profs[--su.nprofs].name, MAXNAMEL); out_name[MAXNAMEL] = '\000'; strncpy(in_name,su.profs[--su.nprofs].name, MAXNAMEL); in_name[MAXNAMEL] = '\000'; su.fclut = su.first = 0; su.lclut = su.last = su.nprofs-1; if (check && (!doimdi || !dofloat)) error("Can't do check unless both integeral and float processing are enabled"); /* Logic required: Discover input TIFF/JPEG colorspace and set as (ICC) "next_space" Set any special input space encoding transform (ie. device, Lab flavour) For each profile: case abstract: set dir = fwd, intent = default check next_space == CIE next_space = CIE case dev link: set dir = fwd, intent = default check next_space == profile.in_devspace next_space = profile.out_devspace case cal file: check next_space == cal.devspace next_space = cal.devspace case colorspace/input/display/output: if colorspace set intent = default if next_space == CIE set dir = fwd next_space = profile.devspace else set dir = bwd check next_space == profile.devspace next_space = CIE create luo Make output TIFF colorspace match next_space Figure out how many calibrations can be concatinated into the input and output curves. Set any special output space encoding transform (ie. device, Lab flavour) */ /* - - - - - - - - - - - - - - - */ /* Open up input tiff file ready for reading */ /* Discover input TIFF colorspace and set as (ICC) "last_colorspace" */ /* Set any special input space encoding transform (ie. device, Lab flavour) */ /* Supress TIFF messages */ olderrh = TIFFSetErrorHandler(NULL); oldwarnh = TIFFSetWarningHandler(NULL); olderrhx = TIFFSetErrorHandlerExt(NULL); oldwarnhx = TIFFSetWarningHandlerExt(NULL); if ((rh = TIFFOpen(in_name, "r")) != NULL) { TIFFSetErrorHandler(olderrh); TIFFSetWarningHandler(oldwarnh); TIFFSetErrorHandlerExt(olderrhx); TIFFSetWarningHandlerExt(oldwarnhx); TIFFGetField(rh, TIFFTAG_IMAGEWIDTH, &width); TIFFGetField(rh, TIFFTAG_IMAGELENGTH, &height); TIFFGetField(rh, TIFFTAG_BITSPERSAMPLE, &bitspersample); if (bitspersample != 8 && bitspersample != 16) { error("TIFF Input file must be 8 or 16 bits/channel"); } TIFFGetFieldDefaulted(rh, TIFFTAG_EXTRASAMPLES, &rextrasamples, &rextrainfo); // if (rextrasamples > 0 && alpha == 0) // error("TIFF Input file has extra samples per pixel - cctiff can't handle that"); TIFFGetField(rh, TIFFTAG_PHOTOMETRIC, &rphotometric); TIFFGetField(rh, TIFFTAG_SAMPLESPERPIXEL, &rsamplesperpixel); /* Figure out how to handle the input TIFF colorspace */ if ((su.ins = TiffPhotometric2ColorSpaceSignature(NULL, &su.icvt, &su.isign_mask, rphotometric, bitspersample, rsamplesperpixel, rextrasamples)) == 0) error("Can't handle TIFF file photometric %s", Photometric2str(rphotometric)); su.iinv = 0; su.id = rsamplesperpixel; TIFFGetField(rh, TIFFTAG_PLANARCONFIG, &pconfig); if (pconfig != PLANARCONFIG_CONTIG) error ("TIFF Input file must be planar"); TIFFGetField(rh, TIFFTAG_RESOLUTIONUNIT, &resunits); TIFFGetField(rh, TIFFTAG_XRESOLUTION, &resx); TIFFGetField(rh, TIFFTAG_YRESOLUTION, &resy); last_dim = su.id; last_colorspace = su.ins; last_cs_file = in_name; su.width = width; su.height = height; if (TIFFGetField(rh, TIFFTAG_IMAGEDESCRIPTION, &rdesc) != 0) { if ((rdesc = strdup(rdesc)) == NULL) error("Malloc of input file description string failed"); } else rdesc = NULL; if (dojpg < 0) dojpg = 0; /* See if it is a JPEG File */ } else { jpeg_saved_marker_ptr mlp; TIFFSetErrorHandler(olderrh); TIFFSetWarningHandler(oldwarnh); TIFFSetErrorHandlerExt(olderrhx); TIFFSetWarningHandlerExt(oldwarnhx); //printf("~1 TIFFOpen failed on '%s'\n",in_name); /* We cope with the horrible ijg jpeg library error handling */ /* by using a setjmp/longjmp. */ if (setjmp(jpeg_rerr.env)) { /* Something went wrong with opening the file */ jpeg_destroy_decompress(&rj); error("error opening read file '%s' [%s]",in_name,jpeg_rerr.message); } rj.err = &jerr; rj.client_data = &jpeg_rerr; jpeg_create_decompress(&rj); #if defined(O_BINARY) || defined(_O_BINARY) if ((rf = fopen(in_name,"rb")) == NULL) #else if ((rf = fopen(in_name,"r")) == NULL) #endif { jpeg_destroy_decompress(&rj); error("error opening read file '%s'",in_name); } jpeg_stdio_src(&rj, rf); jpeg_save_markers(&rj, JPEG_COM, 0xFFFF); for (i = 0; i < 16; i++) jpeg_save_markers(&rj, JPEG_APP0 + i, 0xFFFF); /* we'll longjmp on error */ jpeg_read_header(&rj, TRUE); bitspersample = rj.data_precision; if (bitspersample != 8 && bitspersample != 16) { error("JPEG Input file must be 8 or 16 bit/channel"); } /* No extra samples */ rextrasamples = 0; su.iinv = 0; switch (rj.jpeg_color_space) { case JCS_GRAYSCALE: rj.out_color_space = JCS_GRAYSCALE; su.ins = icSigGrayData; su.id = 1; break; case JCS_YCbCr: /* get libjpg to convert to RGB */ rj.out_color_space = JCS_RGB; su.ins = icSigRgbData; su.id = 3; if (ochoice == 0) ochoice = 1; break; case JCS_RGB: rj.out_color_space = JCS_RGB; su.ins = icSigRgbData; su.id = 3; if (ochoice == 0) ochoice = 2; break; case JCS_YCCK: /* libjpg to convert to CMYK */ rj.out_color_space = JCS_CMYK; su.ins = icSigCmykData; su.id = 4; if (rj.saw_Adobe_marker) su.iinv = 1; if (ochoice == 0) ochoice = 1; break; case JCS_CMYK: rj.out_color_space = JCS_CMYK; su.ins = icSigCmykData; su.id = 4; if (rj.saw_Adobe_marker) /* Adobe inverts CMYK */ su.iinv = 1; if (ochoice == 0) ochoice = 2; break; default: error("Can't handle JPEG file colorspace 0x%x", rj.jpeg_color_space); } if (rj.density_unit == 1) resunits = RESUNIT_INCH; else if (rj.density_unit == 2) resunits = RESUNIT_CENTIMETER; else resunits = RESUNIT_NONE; resx = rj.X_density; resy = rj.Y_density; last_dim = su.id; last_colorspace = su.ins; last_cs_file = in_name; jpeg_calc_output_dimensions(&rj); su.width = width = rj.output_width; su.height = height = rj.output_height; /* Locate any comment */ rdesc = NULL; for (mlp = rj.marker_list; mlp != NULL; mlp = mlp->next) { if (mlp->marker == JPEG_COM && mlp->data_length > 0) { if ((rdesc = malloc(mlp->data_length+1)) == NULL) error("Malloc of input file description string failed"); memcpy(rdesc, mlp->data, mlp->data_length-1); rdesc[mlp->data_length] = '\000'; break; } } if (dojpg < 0) dojpg = 1; } /* - - - - - - - - - - - - - - - */ /* Check and setup the sequence of ICC profiles */ /* For each profile in the sequence, configure it to transform the color */ /* appropriately */ for (i = su.first; i <= su.last; i++) { /* First see if it's a calibration file */ if ((su.profs[i].cal = new_xcal()) == NULL) error("new_xcal failed"); if ((su.profs[i].cal->read(su.profs[i].cal, su.profs[i].name)) == 0) { su.profs[i].ins = su.profs[i].outs = icx_colorant_comb_to_icc(su.profs[i].cal->devmask); if (su.profs[i].outs == 0) error ("Calibration file '%s' has unhandled device mask %s",su.profs[i].name,icx_inkmask2char(su.profs[i].cal->devmask,1)); su.profs[i].id = su.profs[i].od = su.profs[i].cal->devchan; /* We use the user provided direction */ /* else see if it's an ICC or embedded ICC */ } else { su.profs[i].cal->del(su.profs[i].cal); /* Clean up */ su.profs[i].cal = NULL; if ((su.profs[i].c = read_embedded_icc(su.profs[i].name)) == NULL) error ("Can't read profile or calibration from file '%s'",su.profs[i].name); su.profs[i].h = su.profs[i].c->header; /* Deal with different profile classes, */ /* and set the profile function and intent. */ switch (su.profs[i].h->deviceClass) { case icSigAbstractClass: case icSigLinkClass: su.profs[i].func = icmFwd; su.profs[i].intent = icmDefaultIntent; break; case icSigColorSpaceClass: su.profs[i].func = icmFwd; su.profs[i].intent = icmDefaultIntent; /* Fall through */ case icSigInputClass: case icSigDisplayClass: case icSigOutputClass: /* Note we don't handle an ambigious (both directions match) case. */ /* We would need direction from the user to resolve this. */ if (CSMatch(last_colorspace, su.profs[i].h->colorSpace)) { su.profs[i].func = icmFwd; } else { su.profs[i].func = icmBwd; /* PCS -> Device */ } break; /* Use the user provided intent */ default: error("Can't handle deviceClass %s from file '%s'", icm2str(icmProfileClassSignature,su.profs[i].h->deviceClass), su.profs[i].c->err,su.profs[i].name); } /* Get a conversion object */ if ((su.profs[i].luo = su.profs[i].c->get_luobj(su.profs[i].c, su.profs[i].func, su.profs[i].intent, icmSigDefaultData, su.profs[i].order)) == NULL) error ("%d, %s from '%s'",su.profs[i].c->errc, su.profs[i].c->err, su.profs[i].name); /* Get details of conversion */ su.profs[i].luo->spaces(su.profs[i].luo, &su.profs[i].ins, &su.profs[i].id, &su.profs[i].outs, &su.profs[i].od, &su.profs[i].alg, NULL, NULL, NULL, NULL); /* Get native PCS space */ su.profs[i].luo->lutspaces(su.profs[i].luo, NULL, NULL, NULL, NULL, &su.profs[i].natpcs); /* If this is a lut transform, find out its resolution */ if (su.profs[i].alg == icmLutType) { icmLut *lut; icmLuLut *luluo = (icmLuLut *)su.profs[i].luo; /* Safe to coerce */ luluo->get_info(luluo, &lut, NULL, NULL, NULL); /* Get some details */ su.profs[i].clutres = lut->clutPoints; /* Desired table resolution */ } else su.profs[i].clutres = 0; } /* Check that we can join to previous correctly */ if (!ignoremm && !CSMatch(last_colorspace, su.profs[i].ins)) error("Last colorspace %s from file '%s' doesn't match input space %s of profile %s", icm2str(icmColorSpaceSignature,last_colorspace), last_cs_file, icm2str(icmColorSpaceSignature,su.profs[i].ins), su.profs[i].name); last_dim = icmCSSig2nchan(su.profs[i].outs); last_colorspace = su.profs[i].outs; last_cs_file = su.profs[i].name; } su.od = last_dim; su.oinv = 0; su.outs = last_colorspace; /* Go though the sequence again, and count the number of leading and */ /* trailing calibrations that can be combined into the input and output */ /* lookup curves */ for (i = su.first; ; i++) { if (i > su.last || su.profs[i].c != NULL) { su.fclut = i; break; } } for (i = su.last; ; i--) { if (i < su.first || su.profs[i].c != NULL) { su.lclut = i; break; } } if (su.fclut > su.lclut) { /* Hmm. All calibs, no profiles */ su.fclut = su.first; /* None at start */ su.lclut = su.first-1; /* All at the end */ } //printf("~1 first = %d, fclut = %d, lclut = %d, last = %d\n", su.first, su.fclut, su.lclut, su.last); su.md = su.id > su.od ? su.id : su.od; /* - - - - - - - - - - - - - - - */ /* Create a TIFF file */ if (dojpg == 0) { /* Open up the output TIFF file for writing */ if ((wh = TIFFOpen(out_name, "w")) == NULL) error("Can\'t create TIFF file '%s'!",out_name); wsamplesperpixel = su.od; wextrasamples = 0; if (alpha && wsamplesperpixel > 4) { wextrasamples = wsamplesperpixel - 4; /* Call samples > 4 "alpha" samples */ for (j = 0; j < wextrasamples; j++) wextrainfo[j] = EXTRASAMPLE_UNASSALPHA; } /* Configure the output TIFF file appropriately */ TIFFSetField(wh, TIFFTAG_IMAGEWIDTH, width); TIFFSetField(wh, TIFFTAG_IMAGELENGTH, height); TIFFSetField(wh, TIFFTAG_ORIENTATION, ORIENTATION_TOPLEFT); TIFFSetField(wh, TIFFTAG_SAMPLESPERPIXEL, wsamplesperpixel); TIFFSetField(wh, TIFFTAG_BITSPERSAMPLE, bitspersample); TIFFSetField(wh, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG); if (su.compr) TIFFSetField(wh, TIFFTAG_COMPRESSION, COMPRESSION_LZW); else TIFFSetField(wh, TIFFTAG_COMPRESSION, COMPRESSION_NONE); if (resunits) { TIFFSetField(wh, TIFFTAG_RESOLUTIONUNIT, resunits); TIFFSetField(wh, TIFFTAG_XRESOLUTION, resx); TIFFSetField(wh, TIFFTAG_YRESOLUTION, resy); } /* Perhaps the description could be more informative ? */ if (rdesc != NULL) { if ((wdesc = malloc(sizeof(char) * (strlen(rdesc) + strlen(ddesc) + 2))) == NULL) error("malloc failed on new desciption string"); strcpy(wdesc, rdesc); if (nodesc == 0 && su.nprofs > 0) { strcat(wdesc, " "); strcat(wdesc, ddesc); } TIFFSetField(wh, TIFFTAG_IMAGEDESCRIPTION, wdesc); } else if (nodesc == 0 && su.nprofs > 0) { if ((wdesc = strdup(ddesc)) == NULL) error("malloc failed on new desciption string"); TIFFSetField(wh, TIFFTAG_IMAGEDESCRIPTION, ddesc); } /* Lookup and decide what TIFF photometric suites the output colorspace */ { int no_pmtc; /* Number of possible photometrics */ uint16 pmtc[10]; /* Photometrics of output file */ if ((no_pmtc = ColorSpaceSignature2TiffPhotometric(pmtc, last_colorspace)) == 0) error("TIFF file can't handle output colorspace '%s'!", icm2str(icmColorSpaceSignature, last_colorspace)); if (no_pmtc > 1) { /* Need to choose a photometric */ if (ochoice < 1 || ochoice > no_pmtc ) { if (su.verb) { printf("Possible Output Encodings for output colorspace %s are:\n", icm2str(icmColorSpaceSignature,last_colorspace)); for (i = 0; i < no_pmtc; i++) printf("%d: %s%s\n",i+1, Photometric2str(pmtc[i]), i == 0 ? " (Default)" : ""); printf("Using default\n\n"); } ochoice = 1; } wphotometric = pmtc[ochoice-1]; } else { wphotometric = pmtc[0]; } } /* Lookup what we need to handle this. */ if ((su.outs = TiffPhotometric2ColorSpaceSignature(&su.ocvt, NULL, &su.osign_mask, wphotometric, bitspersample, wsamplesperpixel, wextrasamples)) == 0) error("Can't handle TIFF file photometric %s", Photometric2str(wphotometric)); TIFFSetField(wh, TIFFTAG_PHOTOMETRIC, wphotometric); if (alpha && wextrasamples > 0) { TIFFSetField(wh, TIFFTAG_EXTRASAMPLES, wextrasamples, wextrainfo); } else { if (wphotometric == PHOTOMETRIC_SEPARATED) { icc *c = NULL; icmColorantTable *ct; int iset; int inlen; char *inames = NULL; if (su.lclut >= 0 && su.lclut < su.nprofs) c = su.profs[su.lclut].c; iset = ColorSpaceSignature2TiffInkset(su.outs, &inlen, &inames); /* Use ICC profile ink names if they are available */ if (c != NULL && ((ct = (icmColorantTable *)c->read_tag(c, icSigColorantTableOutTag)) != NULL || (ct = (icmColorantTable *)c->read_tag(c, icSigColorantTableTag)) != NULL) && ct->count != wsamplesperpixel ) { int i; char *cp; inlen = 0; for (i = 0; i < ct->count; i++) inlen += strlen(ct->data[i].name) + 1; inlen += 1; if ((inames = malloc(inlen)) == NULL) error("malloc failed on inknames string"); cp = inames; for (i = 0; i < ct->count; i++) { int slen = strlen(ct->data[i].name) + 1; memcpy(cp, ct->data[i].name, slen); cp += slen; } *cp = '\000'; } if (iset != 0xffff) { TIFFSetField(wh, TIFFTAG_INKSET, iset); /* An inknames tage confuses Photoshop with standard spaces */ if ((iset == INKSET_MULTIINK || iset == 0) /* N color or CMY */ && inlen > 0 && inames != NULL) { TIFFSetField(wh, TIFFTAG_INKNAMES, inlen, inames); } } } } /* Create JPEG file */ } else { jpeg_saved_marker_ptr mlp; int jpeg_color_space; /* We cope with the horrible ijg jpeg library error handling */ /* by using a setjmp/longjmp. */ if (setjmp(jpeg_werr.env)) { /* Something went wrong with opening the file */ jpeg_destroy_compress(&wj); error("Can\'t create JPEG file '%s'! [%s]",out_name, jpeg_werr.message); } wj.err = &jerr; wj.client_data = &jpeg_werr; jpeg_create_compress(&wj); #if defined(O_BINARY) || defined(_O_BINARY) if ((wf = fopen(out_name,"wb")) == NULL) #else if ((wf = fopen(out_name,"w")) == NULL) #endif { jpeg_destroy_compress(&wj); error("Can\'t create JPEG file '%s'!",out_name); } jpeg_stdio_dest(&wj, wf); wj.image_width = width; wj.image_height = height; wj.input_components = su.od; switch (last_colorspace) { case icSigGrayData: wj.in_color_space = JCS_GRAYSCALE; jpeg_color_space = JCS_GRAYSCALE; break; case icSigRgbData: wj.in_color_space = JCS_RGB; if (ochoice < 0 || ochoice > 2) { printf("Possible JPEG Output Encodings for output colorspace icSigRgbData are\n" "1: YCbCr (Default)\n" "2: RGB\n"); ochoice = 1; } if (ochoice == 2) jpeg_color_space = JCS_RGB; else jpeg_color_space = JCS_YCbCr; break; case icSigCmykData: wj.in_color_space = JCS_CMYK; if (ochoice < 0 || ochoice > 2) { printf("Possible JPEG Output Encodings for output colorspace icSigCmykData are\n" "1: YCCK (Default)\n" "2: CMYK\n"); ochoice = 1; } if (ochoice == 2) jpeg_color_space = JCS_CMYK; else jpeg_color_space = JCS_YCCK; break; default: error("JPEG file can't handle output colorspace '%s'!", icm2str(icmColorSpaceSignature, last_colorspace)); } if (resunits != RESUNIT_NONE) { if (resunits == RESUNIT_INCH) wj.density_unit = 1; else if (resunits == RESUNIT_CENTIMETER) wj.density_unit = 2; wj.X_density = resx; wj.Y_density = resy; } jpeg_set_defaults(&wj); jpeg_set_colorspace(&wj, jpeg_color_space); if (jpgq < 0) jpgq = DEFJPGQ; jpeg_set_quality(&wj, jpgq, TRUE); /* The default sub-sampling sub-samples the CC and K of YCC & YCCK */ /* while not sub-sampling RGB or CMYK */ if (wj.write_Adobe_marker) su.oinv = 1; } /* - - - - - - - - - - - - - - - */ if (su.fclut <= su.lclut && ((su.profs[su.fclut].natpcs == icSigXYZData && su.profs[su.fclut].alg == icmMatrixFwdType) || su.profs[su.fclut].ins == icSigXYZData)) { su.ilcurve = 1; /* Index CLUT with L* curve rather than Y */ } /* Setup input/output curve use. */ if (su.ins == icSigLabData || su.ins == icSigXYZData) { su.icombine = 1; /* CIE can't be conveyed through 0..1 domain lookup */ } if (su.fclut <= su.lclut && ((su.profs[su.lclut].natpcs == icSigXYZData && su.profs[su.lclut].alg == icmMatrixBwdType) || su.profs[su.lclut].outs == icSigXYZData)) { su.olcurve = 1; /* Interpolate in L* space rather than Y */ } if (su.outs == icSigLabData || su.outs == icSigXYZData) { su.ocombine = 1; /* CIE can't be conveyed through 0..1 domain lookup */ } /* Decide if jpeg should decompress & compress */ if (rf != NULL && wf != NULL && su.nprofs == 0) { copydct = 1; } /* - - - - - - - - - - - - - - - */ /* Report the connection sequence details */ if (su.verb) { if (rh) { printf("Input raster file '%s' is TIFF\n",in_name); printf("Input TIFF file photometric is %s\n",Photometric2str(rphotometric)); } else { printf("Input raster file '%s' is JPEG\n",in_name); printf("Input JPEG file original colorspace is %s\n",JPEG_cspace2str(rj.jpeg_color_space)); if (copydct) printf("JPEG copy will be lossless\n"); } printf("Input raster file ICC colorspace is %s\n",icm2str(icmColorSpaceSignature,su.ins)); printf("Input raster file is %d x %d pixels\n",su.width, su.height); if (rdesc != NULL) printf("Input raster file description: '%s'\n",rdesc); printf("\n"); printf("There are %d profiles/calibrations in the sequence:\n\n",su.nprofs); for (i = su.first; i <= su.last; i++) { if (su.profs[i].c != NULL) { icmFile *op; if ((op = new_icmFileStd_fp(stdout)) == NULL) error ("Can't open stdout"); printf("Profile %d '%s':\n",i,su.profs[i].name); su.profs[i].h->dump(su.profs[i].h, op, 1); op->del(op); printf("Direction = %s\n",icm2str(icmTransformLookupFunc, su.profs[i].func)); printf("Intent = %s\n",icm2str(icmRenderingIntent, su.profs[i].intent)); printf("Algorithm = %s\n",icm2str(icmLuAlg, su.profs[i].alg)); } else { printf("Calibration %d '%s':\n",i,su.profs[i].name); printf("Direction = %s\n",icm2str(icmTransformLookupFunc, su.profs[i].func)); if (su.profs[i].cal->xpi.deviceMfgDesc != NULL) printf("Manufacturer: '%s'\n",su.profs[i].cal->xpi.deviceMfgDesc); if (su.profs[i].cal->xpi.modelDesc != NULL) printf("Model: '%s'\n",su.profs[i].cal->xpi.modelDesc); if (su.profs[i].cal->xpi.profDesc != NULL) printf("Description: '%s'\n",su.profs[i].cal->xpi.profDesc); if (su.profs[i].cal->xpi.copyright != NULL) printf("Copyright: '%s'\n",su.profs[i].cal->xpi.copyright); } if (i == 0 && su.icombine) printf("Input curves being combined\n"); if (i == 0 && su.ilcurve) printf("Input curves being post-converted to L*\n"); printf("Input space = %s\n",icm2str(icmColorSpaceSignature, su.profs[i].ins)); printf("Output space = %s\n",icm2str(icmColorSpaceSignature, su.profs[i].outs)); if (i == (su.last) && su.olcurve) printf("Output curves being pre-converted from L*\n"); if (i == (su.last) && su.ocombine) printf("Output curves being combined\n"); printf("\n"); } if (wh != NULL) { printf("Output TIFF file '%s'\n",out_name); printf("Ouput raster file ICC colorspace is %s\n",icm2str(icmColorSpaceSignature,su.outs)); printf("Output TIFF file photometric is %s\n",Photometric2str(wphotometric)); } else { printf("Output JPEG file '%s'\n",out_name); printf("Ouput raster file ICC colorspace is %s\n",icm2str(icmColorSpaceSignature,su.outs)); printf("Output JPEG file colorspace is %s\n",JPEG_cspace2str(wj.jpeg_color_space)); if (wdesc != NULL) printf("Output raster file description: '%s'\n",wdesc); } printf("\n"); } /* - - - - - - - - - - - - - - - */ /* Setup the imdi */ if (check) doimdi = dofloat = 1; if (doimdi && su.nprofs > 0) { int aclutres = 0; /* Automatically set res */ imdi_options opts = opts_none; if (rextrasamples > 0) { /* We need to skip the alpha */ opts |= opts_istride; } /* Setup the imdi resolution */ /* Choose the resolution from the highest lut resolution in the sequence, */ /* or choose a default. */ for (i = su.first; i <= su.last; i++) { if (su.profs[i].c != NULL && su.profs[i].clutres > aclutres) aclutres = su.profs[i].clutres; } if (aclutres == 0) { aclutres = dim_to_clutres(su.id, 2); /* High quality */ } else if (aclutres < dim_to_clutres(su.id, 1)) { /* Worse than medium */ aclutres = dim_to_clutres(su.id, 1); } if (clutres == 0) clutres = aclutres; if (su.verb) printf("Using CLUT resolution %d\n",clutres); s = new_imdi( su.id, /* Number of input dimensions */ su.od, /* Number of output dimensions */ /* Input pixel representation */ bitspersample == 8 ? pixint8 : pixint16, /* Output pixel representation */ su.isign_mask, /* Treat appropriate channels as signed */ NULL, /* No raster to callback channel mapping */ prec_min, /* Minimum of input and output precision */ bitspersample == 8 ? pixint8 : pixint16, su.osign_mask, /* Treat appropriate channels as signed */ NULL, /* No raster to callback channel mapping */ clutres, /* Desired table resolution */ oopts_none, /* Desired per channel output options */ NULL, /* Output channel check values */ opts, /* Desired processing direction and stride support */ input_curves, /* Callback functions */ md_table, output_curves, (void *)&su /* Context to callbacks */ ); if (s == NULL) { #ifdef NEVER printf("id = %d\n",su.id); printf("od = %d\n",su.od); printf("in bps = %d\n",bitspersample); printf("out bps = %d\n",bitspersample); printf("in signs = %d\n",su.isign_mask); printf("out signs = %d\n",su.osign_mask); printf("clutres = %d\n",clutres); #endif error("new_imdi failed"); } } if (rh != NULL) inbuf = _TIFFmalloc(TIFFScanlineSize(rh)); else { inbpix = rj.output_width * rj.num_components; if ((inbuf = (tdata_t *)malloc(inbpix)) == NULL) error("Malloc failed on input line buffer"); } if (wh != NULL) outbuf = _TIFFmalloc(TIFFScanlineSize(wh)); else { outbpix = wj.image_width * wj.input_components; if ((outbuf = (tdata_t *)malloc(outbpix)) == NULL) error("Malloc failed on output line buffer"); } inp[0] = (unsigned char *)inbuf; outp[0] = (unsigned char *)outbuf; if (dofloat || su.nprofs == 0) { if (wh != NULL) hprecbuf = _TIFFmalloc(TIFFScanlineSize(wh)); else { if ((hprecbuf = (tdata_t *)malloc(outbpix)) == NULL) error("Malloc failed on high precision line buffer"); } } if (rh == NULL) { if (setjmp(jpeg_rerr.env)) { /* Something went wrong with reading the file */ jpeg_destroy_decompress(&rj); error("failed to read JPEG line [%s]",jpeg_rerr.message); } } if (wh == NULL) { if (setjmp(jpeg_werr.env)) { /* Something went wrong with writing the file */ jpeg_destroy_compress(&wj); error("failed to write JPEG line [%s]", jpeg_werr.message); } } /* NOTE :- the legal of jpeg calls is rather tricky.... */ if (!copydct) { /* Do this before writing description */ if (rf) jpeg_start_decompress(&rj); if (wf) jpeg_start_compress(&wj, TRUE); } if (wf != NULL) { /* Perhaps the description could be more informative ? */ if (rdesc != NULL) { if ((wdesc = malloc(sizeof(char) * (strlen(rdesc) + strlen(ddesc) + 2))) == NULL) error("malloc failed on new desciption string"); strcpy(wdesc, rdesc); if (nodesc == 0 && su.nprofs > 0) { strcat(wdesc, " "); strcat(wdesc, ddesc); } jpeg_write_marker(&wj, JPEG_COM, (const JOCTET *)wdesc, strlen(wdesc)+1); } else if (nodesc == 0 && su.nprofs > 0) { if ((wdesc = strdup(ddesc)) == NULL) error("malloc failed on new desciption string"); jpeg_write_marker(&wj, JPEG_COM, (const JOCTET *)wdesc, strlen(wdesc)+1); } } if (copydct) { /* Lossless JPEG copy - copy image data */ jvirt_barray_ptr *coefas; jpeg_saved_marker_ptr marker; coefas = jpeg_read_coefficients(&rj); jpeg_copy_critical_parameters(&rj, &wj); jpeg_write_coefficients(&wj, coefas); // We don't copy these normally. // for (marker = rj.marker_list; marker != NULL; marker = marker->next) { // jpeg_write_marker(&wj, marker->marker, marker->data, marker->data_length); } /* Setup any destination embedded profile */ if (dst_pname[0] != '\000') { icmFile *fp; /* Read fp for the profile */ unsigned char *buf; int size; if ((deicc = read_embedded_icc(dst_pname)) == NULL) error("Unable to open profile for destination embedding '%s'",dst_pname); /* Check that it is compatible with the destination raster file */ if (deicc->header->deviceClass != icSigColorSpaceClass && deicc->header->deviceClass != icSigInputClass && deicc->header->deviceClass != icSigDisplayClass && deicc->header->deviceClass != icSigOutputClass) { error("Destination embedded profile is wrong device class for embedding"); } if (deicc->header->colorSpace != su.outs || (deicc->header->pcs != icSigXYZData && deicc->header->pcs != icSigLabData)) { error("Destination embedded profile colorspaces don't match TIFF"); } if ((fp = deicc->get_rfp(deicc)) == NULL) error("Failed to be able to read destination embedded profile"); if ((size = fp->get_size(fp)) == 0) error("Failed to be able to get size of destination embedded profile"); if ((buf = malloc(size)) == NULL) error("malloc failed on destination embedded profile size %d",size); if (fp->seek(fp,0)) error("rewind on destination embedded profile failed"); if (fp->read(fp, buf, 1, size) != size) error("reading destination embedded profile failed"); /* (For iccv4 we would now fp->del(fp) because we got a reference) */ if (wh != NULL) { if (TIFFSetField(wh, TIFFTAG_ICCPROFILE, size, buf) == 0) error("setting TIFF embedded ICC profile field failed"); } else { if (setjmp(jpeg_werr.env)) { jpeg_destroy_compress(&wj); error("setting JPEG embedded ICC profile marker failed"); } write_icc_profile(&wj, buf, size); } free(buf); deicc->del(deicc); } if (!copydct) { /* We're not doing a lossless copy */ /* - - - - - - - - - - - - - - - */ /* Process colors to translate */ /* (Should fix this to process a group of lines at a time ?) */ for (y = 0; y < height; y++) { tdata_t *obuf; /* Read in the next line */ if (rh) { if (TIFFReadScanline(rh, inbuf, y, 0) < 0) error ("Failed to read TIFF line %d",y); } else { jpeg_read_scanlines(&rj, (JSAMPARRAY)&inbuf, 1); if (su.iinv) { unsigned char *cp, *ep = (unsigned char *)inbuf + inbpix; for (cp = (unsigned char *)inbuf; cp < ep; cp++) *cp = ~*cp; } } if (doimdi && su.nprofs > 0) { /* Do fast conversion */ s->interp(s, (void **)outp, 0, (void **)inp, su.id, width); } if (dofloat || su.nprofs == 0) { /* Do floating point conversion into the hprecbuf[] */ for (x = 0; x < width; x++) { int i; double in[MAX_CHAN], out[MAX_CHAN]; //printf("\n"); if (bitspersample == 8) { for (i = 0; i < su.id; i++) { int v = ((unsigned char *)inbuf)[x * su.id + i]; //printf("~1 8 bit pixel value chan %d = %d\n",i,v); if (su.isign_mask & (1 << i)) /* Treat input as signed */ v = (v & 0x80) ? v - 0x80 : v + 0x80; //printf("~1 8 bit after treat as signed chan %d = %d\n",i,v); in[i] = v/255.0; //printf("~1 8 bit fp chan %d value = %f\n",i,in[i]); } } else { for (i = 0; i < su.id; i++) { int v = ((unsigned short *)inbuf)[x * su.id + i]; //printf("~1 16 bit pixel value chan %d = %d\n",i,v); if (su.isign_mask & (1 << i)) /* Treat input as signed */ v = (v & 0x8000) ? v - 0x8000 : v + 0x8000; //printf("~1 16 bit after treat as signed chan %d = %d\n",i,v); in[i] = v/65535.0; //printf("~1 16 bit fp chan %d value = %f\n",i,in[i]); } } if (su.nprofs > 0) { /* Apply the reference conversion */ input_curves((void *)&su, out, in); //for (i = 0; i < su.id; i++) printf("~1 after input curve chan %d = %f\n",i,out[i]); md_table((void *)&su, out, out); //for (i = 0; i < su.od; i++) printf("~1 after md table chan %d = %f\n",i,out[i]); output_curves((void *)&su, out, out); //for (i = 0; i < su.od; i++) printf("~1 after output curve chan %d = %f\n",i,out[i]); } else { for (i = 0; i < su.od; i++) out[i] = in[i]; } if (bitspersample == 8) { for (i = 0; i < su.od; i++) { int v = (int)(out[i] * 255.0 + 0.5); //printf("~1 8 bit chan %d = %d\n",i,v); if (v < 0) v = 0; else if (v > 255) v = 255; //printf("~1 8 bit after clip curve chan %d = %d\n",i,v); if (su.osign_mask & (1 << i)) /* Treat input as offset */ v = (v & 0x80) ? v - 0x80 : v + 0x80; //printf("~1 8 bit after treat as offset chan %d = %d\n",i,v); ((unsigned char *)hprecbuf)[x * su.od + i] = v; } } else { for (i = 0; i < su.od; i++) { int v = (int)(out[i] * 65535.0 + 0.5); //printf("~1 16 bit chan %d = %d\n",i,v); if (v < 0) v = 0; else if (v > 65535) v = 65535; //printf("~1 16 bit after clip curve chan %d = %d\n",i,v); if (su.osign_mask & (1 << i)) /* Treat input as offset */ v = (v & 0x8000) ? v - 0x8000 : v + 0x8000; //printf("~1 16 bit after treat as offset chan %d = %d\n",i,v); ((unsigned short *)hprecbuf)[x * su.od + i] = v; } } } if (check) { /* Compute the errors */ for (x = 0; x < (width * su.od); x++) { int err; if (bitspersample == 8) err = ((unsigned char *)outbuf)[x] - ((unsigned char *)hprecbuf)[x]; else err = ((unsigned short *)outbuf)[x] - ((unsigned short *)hprecbuf)[x]; if (err < 0) err = -err; if (err > mxerr) mxerr = err; avgerr += (double)err; avgcount++; } } } if (dofloat || su.nprofs == 0) /* Use the results of the f.p. conversion */ obuf = hprecbuf; else obuf = outbuf; if (wh != NULL) { if (TIFFWriteScanline(wh, obuf, y, 0) < 0) error ("Failed to write TIFF line %d",y); } else { if (su.oinv) { unsigned char *cp, *ep = (unsigned char *)obuf + outbpix; for (cp = (unsigned char *)obuf; cp < ep; cp++) *cp = ~(*cp); } jpeg_write_scanlines(&wj, (JSAMPARRAY)&obuf, 1); } } if (check) { printf("Worst error = %d bits, average error = %f bits\n", mxerr, avgerr/avgcount); if (bitspersample == 8) printf("Worst error = %f%%, average error = %f%%\n", mxerr/2.55, avgerr/(2.55 * avgcount)); else printf("Worst error = %f%%, average error = %f%%\n", mxerr/655.35, avgerr/(655.35 * avgcount)); } } if (wh != NULL) { if (outbuf != NULL) _TIFFfree(outbuf); if (hprecbuf != NULL) _TIFFfree(hprecbuf); TIFFClose(wh); } else { jpeg_finish_compress(&wj); jpeg_destroy_compress(&wj); if (outbuf != NULL) free(outbuf); if (hprecbuf != NULL) free(hprecbuf); if (fclose(wf)) error("Error closing output file '%s'\n",out_name); } /* Release buffers and close files */ if (rh != NULL) { if (inbuf != NULL) _TIFFfree(inbuf); TIFFClose(rh); /* Close Input file */ } else { jpeg_finish_decompress(&rj); jpeg_destroy_decompress(&rj); if (inbuf != NULL) free(inbuf); if (fclose(rf)) error("Error closing JPEG input file '%s'\n",in_name); } /* Done with lookup object */ if (s != NULL) s->del(s); /* Free up all the profiles etc. in the sequence. */ for (i = 0; i < su.nprofs; i++) { if (su.profs[i].c != NULL) { /* Has an ICC profile */ su.profs[i].luo->del(su.profs[i].luo); /* Lookup */ su.profs[i].c->del(su.profs[i].c); } else { su.profs[i].cal->del(su.profs[i].cal); /* Calibration */ } } if (rdesc != NULL) free(rdesc); if (wdesc != NULL) free(wdesc); return 0; }