/* * Roots3And4.c * * Utility functions to find cubic and quartic roots. * * Coefficients are passed like this: * * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0 * * The functions return the number of non-complex roots and * put the values into the s array. * * Author: Jochen Schwarze (schwarze@isa.de) * * Jan 26, 1990 Version for Graphics Gems * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic * (reported by Mark Podlipec), * Old-style function definitions, * IsZero() as a macro * Nov 23, 1990 Some systems do not declare acos() and cbrt() in * , though the functions exist in the library. * If large coefficients are used, EQN_EPS should be * reduced considerably (e.g. to 1E-30), results will be * correct but multiple roots might be reported more * than once. * Apr 18, 2018 Reformat for inclusing in ArgyllCMS - GWG * * The authors and the publisher hold no copyright restrictions * on any of these files; this source code is public domain, and * is freely available to the entire computer graphics community * for study, use, and modification. We do request that the * comment at the top of each file, identifying the original * author and its original publication in the book Graphics * Gems, be retained in all programs that use these files. * */ #include #ifndef M_PI #define M_PI 3.14159265358979323846 #endif /* epsilon surrounding for near zero values */ #define EQN_EPS 1e-9 #define IsZero(x) ((x) > -EQN_EPS && (x) < EQN_EPS) #define CBRT(x) ((x) > 0.0 ? pow((double)(x), 1.0/3.0) : \ ((x) < 0.0 ? -pow((double)-(x), 1.0/3.0) : 0.0)) int SolveQuadric(double c[3], double s[2]) { double p, q, D; /* normal form: x^2 + px + q = 0 */ p = c[1] / (2 * c[2]); q = c[0] / c[2]; D = p * p - q; if (IsZero(D)) { s[ 0 ] = - p; return 1; } else if (D < 0) { return 0; } else /* if (D > 0) */ { double sqrt_D = sqrt(D); s[0] = sqrt_D - p; s[1] = - sqrt_D - p; return 2; } } int SolveCubic(double c[4], double s[3]) { int i, num; double sub; double A, B, C; double sq_A, p, q; double cb_p, D; /* normal form: x^3 + Ax^2 + Bx + C = 0 */ A = c[2] / c[3]; B = c[1] / c[3]; C = c[0] / c[3]; /* substitute x = y - A/3 to eliminate quadric term: */ /* x^3 +px + q = 0 */ sq_A = A * A; p = 1.0/3 * (-1.0/3 * sq_A + B); q = 1.0/2 * (2.0/27 * A * sq_A - 1.0/3 * A * B + C); /* use Cardano's formula */ cb_p = p * p * p; D = q * q + cb_p; if (IsZero(D)) { if (IsZero(q)) { /* one triple solution */ s[0] = 0.0; num = 1; } else { /* one single and one double solution */ double u = CBRT(-q); s[0] = 2.0 * u; s[1] = - u; num = 2; } } else if (D < 0) { /* Casus irreducibilis: three real solutions */ double phi = 1.0/3 * acos(-q / sqrt(-cb_p)); double t = 2 * sqrt(-p); s[0] = t * cos(phi); s[1] = -t * cos(phi + M_PI / 3.0); s[2] = -t * cos(phi - M_PI / 3.0); num = 3; } else { /* one real solution */ double sqrt_D = sqrt(D); double u = CBRT(sqrt_D - q); double v = -CBRT(sqrt_D + q); s[0] = u + v; num = 1; } /* resubstitute */ sub = 1.0/3.0 * A; for (i = 0; i < num; i++) s[i] -= sub; return num; } int SolveQuartic(double c[5], double s[4]) { double coeffs[4]; double z, u, v, sub; double A, B, C, D; double sq_A, p, q, r; int i, num; /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */ A = c[3] / c[4]; B = c[2] / c[4]; C = c[1] / c[4]; D = c[0] / c[4]; /* substitute x = y - A/4 to eliminate cubic term: x^4 + px^2 + qx + r = 0 */ sq_A = A * A; p = - 3.0/8 * sq_A + B; q = 1.0/8 * sq_A * A - 1.0/2 * A * B + C; r = - 3.0/256*sq_A*sq_A + 1.0/16*sq_A*B - 1.0/4*A*C + D; if (IsZero(r)) { /* no absolute term: y(y^3 + py + q) = 0 */ coeffs[0] = q; coeffs[1] = p; coeffs[2] = 0; coeffs[3] = 1.0; num = SolveCubic(coeffs, s); s[num++] = 0; } else { /* solve the resolvent cubic ... */ coeffs[0] = 1.0/2.0 * r * p - 1.0/8.0 * q * q; coeffs[1] = - r; coeffs[2] = - 1.0/2.0 * p; coeffs[3] = 1.0; (void) SolveCubic(coeffs, s); /* ... and take the one real solution ... */ z = s[0]; /* ... to build two quadric equations */ u = z * z - r; v = 2 * z - p; if (IsZero(u)) u = 0; else if (u > 0) u = sqrt(u); else return 0; if (IsZero(v)) v = 0; else if (v > 0) v = sqrt(v); else return 0; coeffs[0] = z - u; coeffs[1] = q < 0 ? -v : v; coeffs[2] = 1.0; num = SolveQuadric(coeffs, s); coeffs[0]= z + u; coeffs[1] = q < 0 ? v : -v; coeffs[2] = 1.0; num += SolveQuadric(coeffs, s + num); } /* resubstitute */ sub = 1.0/4.0 * A; for (i = 0; i < num; i++) s[i] -= sub; return num; }