/* * Argyll Color Correction System * Inverse profile checker. * * Author: Graeme W. Gill * Date: 1999/11/29 * * Copyright 1999 - 2005 Graeme W. Gill * All rights reserved. * * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- * see the License.txt file for licencing details. */ /* * This program takes checks the round trip errors of * the colorimetric forward and inverse profile direction * of an ICC profile. * (Was called icc/fbtest.c) */ /* TTBD: * */ #include #include #include #include #include #include #include #include "copyright.h" #include "aconfig.h" #include "numlib.h" #include "icc.h" #include "xicc.h" /* Resolution of the sampling modes */ #define TRES 11 #define HTRES 27 #define UHTRES 61 /* ------------------------------------------------------- */ /* Macros for an di or fdi dimensional counter */ /* Declare the counter name nn, dimensions di, & count */ #define DCOUNT(nn, di, start, reset, count) \ int nn[MAX_CHAN]; /* counter value */ \ int nn##_di = (di); /* Number of dimensions */ \ int nn##_stt = (start); /* start count value */ \ int nn##_rst = (reset); /* reset on carry value */ \ int nn##_res = (count); /* last count +1 */ \ int nn##_e /* dimension index */ /* Set the counter value to 0 */ #define DC_INIT(nn) \ { \ for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) \ nn[nn##_e] = nn##_stt; \ nn##_e = 0; \ } /* Increment the counter value */ #define DC_INC(nn) \ { \ for (nn##_e = 0; nn##_e < nn##_di; nn##_e++) { \ nn[nn##_e]++; \ if (nn[nn##_e] < nn##_res) \ break; /* No carry */ \ nn[nn##_e] = nn##_rst; \ } \ } /* After increment, expression is TRUE if counter is done */ #define DC_DONE(nn) \ (nn##_e >= nn##_di) /* ---------------------------------------- */ void usage(void) { fprintf(stderr,"Check fwd to bwd relative transfer of an ICC file, Version %s\n",ARGYLL_VERSION_STR); fprintf(stderr,"Author: Graeme W. Gill\n"); fprintf(stderr,"usage: invprofcheck [-] profile.icm\n"); fprintf(stderr," -v [level] verbosity level (default 1), 2 to print each DE\n"); fprintf(stderr," -l limit set total ink limit (estimate by default)\n"); fprintf(stderr," -L klimit set black channel ink limit (estimate by default)\n"); fprintf(stderr," -h high res test (%d)\n",HTRES); fprintf(stderr," -u Ultra high res test (%d)\n",UHTRES); fprintf(stderr," -R res Specific grid resolution\n"); fprintf(stderr," -c Show CIE94 delta E values\n"); fprintf(stderr," -k Show CIEDE2000 delta E values\n"); fprintf(stderr," -w create VRML visualisation (profile.wrl)\n"); fprintf(stderr," -x Use VRML axes\n"); fprintf(stderr," -e Color vectors acording to delta E\n"); fprintf(stderr," profile.icm Profile to check\n"); exit(1); } FILE *start_vrml(char *name, int doaxes); void start_line_set(FILE *wrl); void add_vertex(FILE *wrl, double pp[3]); void make_lines(FILE *wrl, int ppset); void make_de_lines(FILE *wrl); void end_vrml(FILE *wrl); #if defined(__IBMC__) && defined(_M_IX86) void bug_workaround(int *co) { }; /* Workaround optimiser bug */ #endif int main( int argc, char *argv[] ) { int fa,nfa; /* argument we're looking at */ int verb = 0; int cie94 = 0; int cie2k = 0; int dovrml = 0; int doaxes = 0; int dodecol = 0; char in_name[MAXNAMEL+1]; char out_name[MAXNAMEL+1], *xl; /* VRML name */ icmFile *rd_fp; icc *icco; int rv = 0; int tres = TRES; double tlimit = -1.0; double klimit = -1.0; FILE *wrl = NULL; error_program = "invprofcheck"; if (argc < 2) usage(); /* Process the arguments */ for(fa = 1;fa < argc;fa++) { nfa = fa; /* skip to nfa if next argument is used */ if (argv[fa][0] == '-') { /* Look for any flags */ char *na = NULL; /* next argument after flag, null if none */ if (argv[fa][2] != '\000') na = &argv[fa][2]; /* next is directly after flag */ else { if ((fa+1) < argc) { if (argv[fa+1][0] != '-') { nfa = fa + 1; na = argv[nfa]; /* next is seperate non-flag argument */ } } } if (argv[fa][1] == '?') usage(); /* Verbosity */ else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') { verb = 1; if (na != NULL && isdigit(na[0])) { verb = atoi(na); } } /* Resolution */ else if (argv[fa][1] == 'h' || argv[fa][1] == 'H') { tres = HTRES; } /* Resolution */ else if (argv[fa][1] == 'u' || argv[fa][1] == 'U') { tres = UHTRES; } /* Resolution */ else if (argv[fa][1] == 'R') { int res; fa = nfa; if (na == NULL) usage(); res = atoi(na); if (res < 2 || res > 500) usage(); tres = res; } else if (argv[fa][1] == 'l') { int limit; fa = nfa; if (na == NULL) usage(); limit = atoi(na); if (limit < 1) limit = 1; tlimit = limit/100.0; } else if (argv[fa][1] == 'L') { int limit; fa = nfa; if (na == NULL) usage(); limit = atoi(na); if (limit < 1) limit = 1; klimit = limit/100.0; } /* VRML */ else if (argv[fa][1] == 'w' || argv[fa][1] == 'W') dovrml = 1; /* Axes */ else if (argv[fa][1] == 'x' || argv[fa][1] == 'X') doaxes = 1; /* Delta E coloring */ else if (argv[fa][1] == 'e' || argv[fa][1] == 'E') dodecol = 1; else if (argv[fa][1] == 'c' || argv[fa][1] == 'C') { cie94 = 1; cie2k = 0; } else if (argv[fa][1] == 'k' || argv[fa][1] == 'K') { cie94 = 0; cie2k = 1; } else usage(); } else break; } if (fa >= argc || argv[fa][0] == '-') usage(); strncpy(in_name,argv[fa++],MAXNAMEL); in_name[MAXNAMEL] = '\000'; strncpy(out_name,in_name,MAXNAMEL-4); out_name[MAXNAMEL-4] = '\000'; if ((xl = strrchr(out_name, '.')) == NULL) /* Figure where extention is */ xl = out_name + strlen(out_name); strcpy(xl,".wrl"); /* Open up the file for reading */ if ((rd_fp = new_icmFileStd_name(in_name,"r")) == NULL) error ("Read: Can't open file '%s'",in_name); if ((icco = new_icc()) == NULL) error ("Read: Creation of ICC object failed"); /* Read the header and tag list */ if ((rv = icco->read(icco,rd_fp,0)) != 0) error ("Read: %d, %s",rv,icco->err); /* Check the forward lookup against the bwd function */ { xcal *cal = NULL; /* Device calibration curves */ icColorSpaceSignature ins, outs; /* Type of input and output spaces of fwd */ int inn, outn; /* Channels of fwd conversion */ int kch; /* Black channel, -1 if not known/applicable */ icmLuBase *luo1, *luo2; double merr = 0.0; /* Max */ double aerr = 0.0; /* Avg */ double rerr = 0.0; /* RMS */ double nsamps = 0.0; /* Get a Device to PCS conversion object */ if ((luo1 = icco->get_luobj(icco, icmFwd, icRelativeColorimetric, icSigLabData, icmLuOrdNorm)) == NULL) { if ((luo1 = icco->get_luobj(icco, icmFwd, icmDefaultIntent, icSigLabData, icmLuOrdNorm)) == NULL) error ("%d, %s",icco->errc, icco->err); } /* Get details of conversion */ luo1->spaces(luo1, &ins, &inn, &outs, &outn, NULL, NULL, NULL, NULL, NULL); /* Get a PCS to Device conversion object */ if ((luo2 = icco->get_luobj(icco, icmBwd, icRelativeColorimetric, icSigLabData, icmLuOrdNorm)) == NULL) { if ((luo2 = icco->get_luobj(icco, icmBwd, icmDefaultIntent, icSigLabData, icmLuOrdNorm)) == NULL) error ("%d, %s",icco->errc, icco->err); } if (dovrml) { wrl = start_vrml(out_name, doaxes); start_line_set(wrl); } /* Grab any device calibration curves */ cal = xiccReadCalTag(icco); kch = icxGuessBlackChan(icco); /* Set the default ink limits if not set by user */ if (tlimit < 0.0 || klimit < 0.0) { double max[MAX_CHAN], total; total = icco->get_tac(icco, max, cal != NULL ? xiccCalCallback : NULL, (void *)cal); if (tlimit < 0.0) tlimit = total; if (klimit < 0.0 && kch >= 0) klimit = max[kch]; } if (verb) { printf("Grid resolution is %d\n",tres); if (tlimit >= 0.0) printf("Input total ink limit assumed is %3.1f%%\n",100.0 * tlimit); if (klimit >= 0.0) printf("Input black ink limit assumed is %3.1f%%\n",100.0 * klimit); } { double dev[MAX_CHAN], cdev[MAX_CHAN], pcsin[3], devout[MAX_CHAN], pcsout[3]; DCOUNT(co, inn, 0, 0, tres); /* Multi-D counter */ /* Go through the chosen device grid */ DC_INIT(co) for (; !DC_DONE(co);) { int n, rv1, rv2; double sum; double de; /* Check the (possibly calibrated) device values */ /* end reject any over the limits. */ for (sum = 0, n = 0; n < inn; n++) { cdev[n] = dev[n] = co[n]/(tres-1.0); sum += cdev[n]; } if (cal != NULL) { cal->interp(cal, cdev, dev); for (sum = 0, n = 0; n < inn; n++) sum += cdev[n]; } if ((tlimit > 0.0 && sum > tlimit) || (klimit > 0.0 && kch >= 0 && cdev[kch] > klimit)) { DC_INC(co); continue; } /* Generate the in-gamut PCS test point */ /* by converting device to pcsin */ if ((rv1 = luo1->lookup(luo1, pcsin, dev)) > 1) error ("%d, %s",icco->errc,icco->err); /* Now do the check */ /* PCS -> Device */ if ((rv2 = luo2->lookup(luo2, devout, pcsin)) > 1) error ("%d, %s",icco->errc,icco->err); /* Device to PCS */ if ((rv2 = luo1->lookup(luo1, pcsout, devout)) > 1) error ("%d, %s",icco->errc,icco->err); /* Delta E */ if (dovrml) { add_vertex(wrl, pcsin); add_vertex(wrl, pcsout); } /* Check the result */ if (cie2k) de = icmCIE2K(pcsout, pcsin); else if (cie94) de = icmCIE94(pcsout, pcsin); else de = icmLabDE(pcsout, pcsin); aerr += de; rerr += de * de; if (de > merr) merr = de; nsamps++; if (verb > 1) { printf("[%f] %f %f %f -> ",de, pcsin[0], pcsin[1], pcsin[2]); for (n = 0; n < inn; n++) printf("%f ",devout[n]); printf("-> %f %f %f\n",pcsout[0], pcsout[1], pcsout[2]); } DC_INC(co); } } if (dovrml) { if (dodecol) make_de_lines(wrl); else make_lines(wrl, 2); end_vrml(wrl); } printf("Profile check complete, errors%s: max. = %f, avg. = %f, RMS = %f\n", cie2k ? "(CIEDE2000)" : cie94 ? " (CIE94)" : "", merr, aerr/nsamps, sqrt(rerr/nsamps)); /* Done with lookup object */ luo1->del(luo1); luo2->del(luo2); } icco->del(icco); rd_fp->del(rd_fp); return 0; } /* ------------------------------------------------ */ /* Some simple functions to do basix VRML work */ /* !!! Should change to plot/vrml lib !!! */ #define GAMUT_LCENT 50.0 static int npoints = 0; static int paloc = 0; static struct { double pp[3]; } *pary; static void Lab2RGB(double *out, double *in); static void DE2RGB(double *out, double in); FILE *start_vrml(char *name, int doaxes) { FILE *wrl; /* Define the axis boxes */ struct { double x, y, z; /* Box center */ double wx, wy, wz; /* Box size */ double r, g, b; /* Box color */ } axes[5] = { { 0, 0, 50-GAMUT_LCENT, 2, 2, 100, .7, .7, .7 }, /* L axis */ { 50, 0, 0-GAMUT_LCENT, 100, 2, 2, 1, 0, 0 }, /* +a (red) axis */ { 0, -50, 0-GAMUT_LCENT, 2, 100, 2, 0, 0, 1 }, /* -b (blue) axis */ { -50, 0, 0-GAMUT_LCENT, 100, 2, 2, 0, 1, 0 }, /* -a (green) axis */ { 0, 50, 0-GAMUT_LCENT, 2, 100, 2, 1, 1, 0 }, /* +b (yellow) axis */ }; /* Define the labels */ struct { double x, y, z; double size; char *string; double r, g, b; } labels[6] = { { -2, 2, -GAMUT_LCENT + 100 + 10, 10, "+L*", .7, .7, .7 }, /* Top of L axis */ { -2, 2, -GAMUT_LCENT - 10, 10, "0", .7, .7, .7 }, /* Bottom of L axis */ { 100 + 5, -3, 0-GAMUT_LCENT, 10, "+a*", 1, 0, 0 }, /* +a (red) axis */ { -5, -100 - 10, 0-GAMUT_LCENT, 10, "-b*", 0, 0, 1 }, /* -b (blue) axis */ { -100 - 15, -3, 0-GAMUT_LCENT, 10, "-a*", 0, 0, 1 }, /* -a (green) axis */ { -5, 100 + 5, 0-GAMUT_LCENT, 10, "+b*", 1, 1, 0 }, /* +b (yellow) axis */ }; if ((wrl = fopen(name,"w")) == NULL) error("Error opening VRML file '%s'\n",name); npoints = 0; fprintf(wrl,"#VRML V2.0 utf8\n"); fprintf(wrl,"\n"); fprintf(wrl,"# Created by the Argyll CMS\n"); fprintf(wrl,"Transform {\n"); fprintf(wrl,"children [\n"); fprintf(wrl," NavigationInfo {\n"); fprintf(wrl," type \"EXAMINE\" # It's an object we examine\n"); fprintf(wrl," } # We'll add our own light\n"); fprintf(wrl,"\n"); fprintf(wrl," DirectionalLight {\n"); fprintf(wrl," direction 0 0 -1 # Light illuminating the scene\n"); fprintf(wrl," direction 0 -1 0 # Light illuminating the scene\n"); fprintf(wrl," }\n"); fprintf(wrl,"\n"); fprintf(wrl," Viewpoint {\n"); fprintf(wrl," position 0 0 340 # Position we view from\n"); fprintf(wrl," }\n"); fprintf(wrl,"\n"); if (doaxes != 0) { int n; fprintf(wrl," # Lab axes as boxes:\n"); for (n = 0; n < 5; n++) { fprintf(wrl," Transform { translation %f %f %f\n", axes[n].x, axes[n].y, axes[n].z); fprintf(wrl," children [\n"); fprintf(wrl," Shape{\n"); fprintf(wrl," geometry Box { size %f %f %f }\n", axes[n].wx, axes[n].wy, axes[n].wz); fprintf(wrl," appearance Appearance { material Material "); fprintf(wrl,"{ diffuseColor %f %f %f} }\n", axes[n].r, axes[n].g, axes[n].b); fprintf(wrl," }\n"); fprintf(wrl," ]\n"); fprintf(wrl," }\n"); } fprintf(wrl," # Axes identification:\n"); for (n = 0; n < 6; n++) { fprintf(wrl," Transform { translation %f %f %f\n", labels[n].x, labels[n].y, labels[n].z); fprintf(wrl," children [\n"); fprintf(wrl," Shape{\n"); fprintf(wrl," geometry Text { string [\"%s\"]\n",labels[n].string); fprintf(wrl," fontStyle FontStyle { family \"SANS\" style \"BOLD\" size %f }\n", labels[n].size); fprintf(wrl," }\n"); fprintf(wrl," appearance Appearance { material Material "); fprintf(wrl,"{ diffuseColor %f %f %f} }\n", labels[n].r, labels[n].g, labels[n].b); fprintf(wrl," }\n"); fprintf(wrl," ]\n"); fprintf(wrl," }\n"); } fprintf(wrl,"\n"); } return wrl; } void start_line_set(FILE *wrl) { fprintf(wrl,"\n"); fprintf(wrl,"Shape {\n"); fprintf(wrl," geometry IndexedLineSet { \n"); fprintf(wrl," coord Coordinate { \n"); fprintf(wrl," point [\n"); } void add_vertex(FILE *wrl, double pp[3]) { fprintf(wrl,"%f %f %f,\n",pp[1], pp[2], pp[0]-GAMUT_LCENT); if (paloc < (npoints+1)) { paloc = (paloc + 10) * 2; if (pary == NULL) pary = malloc(paloc * 3 * sizeof(double)); else pary = realloc(pary, paloc * 3 * sizeof(double)); if (pary == NULL) error ("Malloc failed"); } pary[npoints].pp[0] = pp[0]; pary[npoints].pp[1] = pp[1]; pary[npoints].pp[2] = pp[2]; npoints++; } void make_lines(FILE *wrl, int ppset) { int i, j; fprintf(wrl," ]\n"); fprintf(wrl," }\n"); fprintf(wrl," coordIndex [\n"); for (i = 0; i < npoints;) { for (j = 0; j < ppset; j++, i++) { fprintf(wrl,"%d, ", i); } fprintf(wrl,"-1,\n"); } fprintf(wrl," ]\n"); /* Color */ fprintf(wrl," colorPerVertex TRUE\n"); fprintf(wrl," color Color {\n"); fprintf(wrl," color [ # RGB colors of each vertex\n"); for (i = 0; i < npoints; i++) { double rgb[3], Lab[3]; Lab[0] = pary[i].pp[0]; Lab[1] = pary[i].pp[1]; Lab[2] = pary[i].pp[2]; Lab2RGB(rgb, Lab); fprintf(wrl," %f %f %f,\n", rgb[0], rgb[1], rgb[2]); } fprintf(wrl," ] \n"); fprintf(wrl," }\n"); /* End color */ fprintf(wrl," }\n"); fprintf(wrl,"} # end shape\n"); } /* Assume 2 ppset, and make line color prop to length */ void make_de_lines(FILE *wrl) { int i, j; fprintf(wrl," ]\n"); fprintf(wrl," }\n"); fprintf(wrl," coordIndex [\n"); for (i = 0; i < npoints;) { for (j = 0; j < 2; j++, i++) { fprintf(wrl,"%d, ", i); } fprintf(wrl,"-1,\n"); } fprintf(wrl," ]\n"); /* Color */ fprintf(wrl," colorPerVertex TRUE\n"); fprintf(wrl," color Color {\n"); fprintf(wrl," color [ # RGB colors of each vertex\n"); for (i = 0; i < npoints; i++) { double rgb[3], ss; for (ss = 0.0, j = 0; j < 3; j++) { double tt = (pary[i & ~1].pp[j] - pary[i | 1].pp[j]); ss += tt * tt; } ss = sqrt(ss); DE2RGB(rgb, ss); fprintf(wrl," %f %f %f,\n", rgb[0], rgb[1], rgb[2]); } fprintf(wrl," ] \n"); fprintf(wrl," }\n"); /* End color */ fprintf(wrl," }\n"); fprintf(wrl,"} # end shape\n"); } void end_vrml(FILE *wrl) { fprintf(wrl,"\n"); fprintf(wrl," ] # end of children for world\n"); fprintf(wrl,"}\n"); if (fclose(wrl) != 0) error("Error closing VRML file\n"); } /* Convert a gamut Lab value to an RGB value for display purposes */ static void Lab2RGB(double *out, double *in) { double L = in[0], a = in[1], b = in[2]; double x,y,z,fx,fy,fz; double R, G, B; /* Scale so that black is visible */ L = L * (100 - 40.0)/100.0 + 40.0; /* First convert to XYZ using D50 white point */ if (L > 8.0) { fy = (L + 16.0)/116.0; y = pow(fy,3.0); } else { y = L/903.2963058; fy = 7.787036979 * y + 16.0/116.0; } fx = a/500.0 + fy; if (fx > 24.0/116.0) x = pow(fx,3.0); else x = (fx - 16.0/116.0)/7.787036979; fz = fy - b/200.0; if (fz > 24.0/116.0) z = pow(fz,3.0); else z = (fz - 16.0/116.0)/7.787036979; x *= 0.9642; /* Multiply by white point, D50 */ y *= 1.0; z *= 0.8249; /* Now convert to sRGB values */ R = x * 3.2410 + y * -1.5374 + z * -0.4986; G = x * -0.9692 + y * 1.8760 + z * 0.0416; B = x * 0.0556 + y * -0.2040 + z * 1.0570; if (R < 0.0) R = 0.0; else if (R > 1.0) R = 1.0; if (G < 0.0) G = 0.0; else if (G > 1.0) G = 1.0; if (B < 0.0) B = 0.0; else if (B > 1.0) B = 1.0; R = pow(R, 1.0/2.2); G = pow(G, 1.0/2.2); B = pow(B, 1.0/2.2); out[0] = R; out[1] = G; out[2] = B; } /* Convert a delta E value into a signal color: */ static void DE2RGB(double *out, double in) { struct { double de; double r, g, b; } range[6] = { { 10.0, 1, 1, 0 }, /* yellow */ { 4.0, 1, 0, 0 }, /* red */ { 2.0, 1, 0, 1 }, /* magenta */ { 1.0, 0, 0, 1 }, /* blue */ { 0.5, 0, 1, 1 }, /* cyan */ { 0.0, 0, 1, 0 } /* green */ }; int i; double bl; //printf("~1 input de = %f\n",in); /* Locate the range we're in */ if (in > range[0].de) { out[0] = range[0].r; out[1] = range[0].g; out[2] = range[0].b; //printf("~1 too big\n"); } else { for (i = 0; i < 5; i++) { if (in <= range[i].de && in >= range[i+1].de) break; } bl = (in - range[i+1].de)/(range[i].de - range[i+1].de); //printf("~1 located at ix %d, bl = %f\n",i,bl); out[0] = bl * range[i].r + (1.0 - bl) * range[i+1].r; out[1] = bl * range[i].g + (1.0 - bl) * range[i+1].g; out[2] = bl * range[i].b + (1.0 - bl) * range[i+1].b; } //printf("~1 returning rgb %f %f %f\n",out[0],out[1],out[2]); }