/* * Argyll Color Correction System * Verify two sets of PCS values. * * Author: Graeme W. Gill * Date: 7/6/2005 * * Copyright 2005 Graeme W. Gill * All rights reserved. * * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- * see the License.txt file for licencing details. */ /* * This program takes in two CGATS files (probably but not necesserily .ti3 files) of PCS * values (either XYZ, L*a*b* or spectral), matches the values, and computes * overall errors. This is useful for verifying proofing systems. */ /* * TTBD: */ #undef DEBUG #define verbo stdout #include #include #if defined(__IBMC__) #include #endif #include "copyright.h" #include "aconfig.h" #include "numlib.h" #include "vrml.h" #include "cgats.h" #include "xicc.h" #include "ccmx.h" #include "insttypes.h" #include "sort.h" void usage(void) { fprintf(stderr,"Verify CIE values, Version %s\n",ARGYLL_VERSION_STR); fprintf(stderr,"Author: Graeme W. Gill, licensed under the AGPL Version 3\n"); fprintf(stderr,"usage: verify [-options] target.ti3 measured.ti3\n"); fprintf(stderr," -v Verbose - print each patch value\n"); fprintf(stderr," -n Normalise each files reading to white Y\n"); fprintf(stderr," -N Normalise each files reading to white XYZ\n"); fprintf(stderr," -D Use D50 100.0 as L*a*b* white reference\n"); fprintf(stderr," -c Show CIE94 delta E values\n"); fprintf(stderr," -k Show CIEDE2000 delta E values\n"); fprintf(stderr," -s Sort patch values by error\n"); fprintf(stderr," -w create VRML vector visualisation (measured.wrl)\n"); fprintf(stderr," -W create VRML marker visualisation (measured.wrl)\n"); fprintf(stderr," -x Use VRML axes\n"); fprintf(stderr," -f [illum] Use Fluorescent Whitening Agent compensation [opt. simulated inst. illum.:\n"); fprintf(stderr," M0, M1, M2, A, C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp]\n"); fprintf(stderr," -i illum Choose illuminant for computation of CIE XYZ from spectral data & FWA:\n"); fprintf(stderr," A, C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp\n"); fprintf(stderr," -o observ Choose CIE Observer for spectral data:\n"); fprintf(stderr," 1931_2 (def), 1964_10, S&B 1955_2, shaw, J&V 1978_2\n"); fprintf(stderr," -X file.ccmx Apply Colorimeter Correction Matrix to second file\n"); fprintf(stderr," target.ti3 Target (reference) PCS or spectral values.\n"); fprintf(stderr," measured.ti3 Measured (actual) PCS or spectral values\n"); exit(1); } /* Patch value type */ typedef struct { char sid[50]; /* sample id */ double v[3]; /* Lab value */ double de; /* Delta E */ } pval; int main(int argc, char *argv[]) { int fa,nfa; /* current argument we're looking at */ int verb = 0; int norm = 0; /* 1 = norm to Y, 2 = norm to XYZ */ int usestdd50 = 0; /* Use standard D50 instead of scaled D50 as Lab reference */ int cie94 = 0; int cie2k = 0; int dovrml = 0; int doaxes = 0; int dosort = 0; char ccmxname[MAXNAMEL+1] = "\000"; /* Colorimeter Correction Matrix name */ ccmx *cmx = NULL; /* Colorimeter Correction Matrix */ struct { char name[MAXNAMEL+1]; /* Patch filename */ int isdisp; /* nz if display */ int isdnormed; /* Has display data been normalised to 100 ? */ int npat; /* Number of patches */ pval *pat; /* patch values */ } cg[2]; /* Target and current patch file information */ int *match; /* Array mapping first list indexes to corresponding second */ int *sort; /* Array of first list indexes in sorted order */ int fwacomp = 0; /* FWA compensation */ int spec = 0; /* Use spectral data flag */ icxIllumeType tillum = icxIT_none; /* Target/simulated instrument illuminant */ xspect cust_tillum, *tillump = NULL; /* Custom target/simulated illumination spectrum */ icxIllumeType illum = icxIT_D50; /* Spectral defaults */ xspect cust_illum; /* Custom illumination spectrum */ icxObserverType observ = icxOT_CIE_1931_2; icmXYZNumber labw = icmD50; /* The Lab white reference */ char out_name[MAXNAMEL+4+1]; /* VRML name */ vrml *wrl = NULL; int i, j, n; #if defined(__IBMC__) _control87(EM_UNDERFLOW, EM_UNDERFLOW); _control87(EM_OVERFLOW, EM_OVERFLOW); #endif if (argc <= 1) usage(); /* Process the arguments */ for(fa = 1;fa < argc;fa++) { nfa = fa; /* skip to nfa if next argument is used */ if (argv[fa][0] == '-') { /* Look for any flags */ char *na = NULL; /* next argument after flag, null if none */ if (argv[fa][2] != '\000') na = &argv[fa][2]; /* next is directly after flag */ else { if ((fa+1) < argc) { if (argv[fa+1][0] != '-') { nfa = fa + 1; na = argv[nfa]; /* next is seperate non-flag argument */ } } } if (argv[fa][1] == '?') usage(); else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') verb = 1; /* normalize */ else if (argv[fa][1] == 'n' || argv[fa][1] == 'N') { norm = 1; if (argv[fa][1] == 'N') norm = 2; } else if (argv[fa][1] == 'D') usestdd50 = 1; /* VRML */ else if (argv[fa][1] == 'w') dovrml = 1; else if (argv[fa][1] == 'W') dovrml = 2; /* Axes */ else if (argv[fa][1] == 'x') doaxes = 1; /* CIE94 delta E */ else if (argv[fa][1] == 'c' || argv[fa][1] == 'C') { cie94 = 1; cie2k = 0; } else if (argv[fa][1] == 'k' || argv[fa][1] == 'K') { cie94 = 0; cie2k = 1; } /* Sort */ else if (argv[fa][1] == 's' || argv[fa][1] == 'S') dosort = 1; /* FWA compensation */ else if (argv[fa][1] == 'f') { fwacomp = 1; if (na != NULL) { /* Argument is present - target/simulated instr. illum. */ fa = nfa; if (strcmp(na, "A") == 0 || strcmp(na, "M0") == 0) { spec = 1; tillum = icxIT_A; } else if (strcmp(na, "C") == 0) { spec = 1; tillum = icxIT_C; } else if (strcmp(na, "D50") == 0 || strcmp(na, "M1") == 0) { spec = 1; tillum = icxIT_D50; } else if (strcmp(na, "D50M2") == 0 || strcmp(na, "M2") == 0) { spec = 1; tillum = icxIT_D50M2; } else if (strcmp(na, "D65") == 0) { spec = 1; tillum = icxIT_D65; } else if (strcmp(na, "F5") == 0) { spec = 1; tillum = icxIT_F5; } else if (strcmp(na, "F8") == 0) { spec = 1; tillum = icxIT_F8; } else if (strcmp(na, "F10") == 0) { spec = 1; tillum = icxIT_F10; } else { /* Assume it's a filename */ spec = 1; tillum = icxIT_custom; if (read_xspect(&cust_tillum, na) != 0) usage(); } } } /* Spectral to CIE Illuminant type */ else if (argv[fa][1] == 'i' || argv[fa][1] == 'I') { fa = nfa; if (na == NULL) usage(); if (strcmp(na, "A") == 0) { spec = 1; illum = icxIT_A; } else if (strcmp(na, "C") == 0) { spec = 1; illum = icxIT_C; } else if (strcmp(na, "D50") == 0) { spec = 1; illum = icxIT_D50; } else if (strcmp(na, "D50M2") == 0) { spec = 1; illum = icxIT_D50M2; } else if (strcmp(na, "D65") == 0) { spec = 1; illum = icxIT_D65; } else if (strcmp(na, "F5") == 0) { spec = 1; illum = icxIT_F5; } else if (strcmp(na, "F8") == 0) { spec = 1; illum = icxIT_F8; } else if (strcmp(na, "F10") == 0) { spec = 1; illum = icxIT_F10; } else { /* Assume it's a filename */ spec = 1; illum = icxIT_custom; if (read_xspect(&cust_illum, na) != 0) usage(); } } /* Spectral Observer type */ else if (argv[fa][1] == 'o' || argv[fa][1] == 'O') { fa = nfa; if (na == NULL) usage(); if (strcmp(na, "1931_2") == 0) { /* Classic 2 degree */ spec = 1; observ = icxOT_CIE_1931_2; } else if (strcmp(na, "1964_10") == 0) { /* Classic 10 degree */ spec = 1; observ = icxOT_CIE_1964_10; } else if (strcmp(na, "1955_2") == 0) { /* Stiles and Burch 1955 2 degree */ spec = 1; observ = icxOT_Stiles_Burch_2; } else if (strcmp(na, "1978_2") == 0) { /* Judd and Voss 1978 2 degree */ spec = 1; observ = icxOT_Judd_Voss_2; } else if (strcmp(na, "shaw") == 0) { /* Shaw and Fairchilds 1997 2 degree */ spec = 1; observ = icxOT_Shaw_Fairchild_2; } else usage(); } /* Colorimeter Correction Matrix for second file */ else if (argv[fa][1] == 'X') { fa = nfa; if (na == NULL) usage(); strncpy(ccmxname,na,MAXNAMEL-1); ccmxname[MAXNAMEL-1] = '\000'; } else usage(); } else break; } /* Get the file name arguments */ if (fa >= argc || argv[fa][0] == '-') usage(); strncpy(cg[0].name,argv[fa++],MAXNAMEL); cg[0].name[MAXNAMEL] = '\000'; if (fa >= argc || argv[fa][0] == '-') usage(); strncpy(cg[1].name,argv[fa],MAXNAMEL); cg[1].name[MAXNAMEL] = '\000'; /* Create VRML name */ { char *xl; strcpy(out_name, cg[1].name); if ((xl = strrchr(out_name, '.')) == NULL) /* Figure where extention is */ xl = out_name + strlen(out_name); strcpy(xl,".wrl"); } if (fwacomp && spec == 0) error ("FWA compensation only works when viewer and/or illuminant selected"); /* Colorimeter Correction Matrix */ if (ccmxname[0] != '\000') { if ((cmx = new_ccmx()) == NULL) error("new_ccmx failed\n"); if (cmx->read_ccmx(cmx,ccmxname)) error("Reading Colorimeter Correction Matrix file '%s' failed with error %d:'%s'\n", ccmxname, cmx->errc, cmx->err); } /* Open up each file in turn, target then measured, */ /* and read in the CIE values. */ for (n = 0; n < 2; n++) { cgats *cgf = NULL; /* cgats file data */ int isLab = 0; /* 0 if file CIE is XYZ, 1 if is Lab */ int sidx; /* Sample ID index */ int xix, yix, zix; /* Open CIE target values */ cgf = new_cgats(); /* Create a CGATS structure */ cgf->add_other(cgf, ""); /* Allow any signature file */ if (cgf->read_name(cgf, cg[n].name)) error("CGATS file '%s' read error : %s",cg[n].name,cgf->err); if (cgf->ntables < 1) error ("Input file '%s' doesn't contain at least one table",cg[n].name); /* Check if the file is suitable */ if (!spec && cgf->find_field(cgf, 0, "LAB_L") < 0 && cgf->find_field(cgf, 0, "XYZ_X") < 0) { if (cgf->find_kword(cgf, 0, "SPECTRAL_BANDS") < 0) error ("Neither CIE nor spectral data found in file '%s'",cg[n].name); /* Switch to using spectral information */ if (verb) printf("No CIE data found, switching to spectral with standard observer & D50 for file '%s'\n",cg[n].name); spec = 1; illum = icxIT_D50; observ = icxOT_CIE_1931_2; } if (spec && cgf->find_kword(cgf, 0, "SPECTRAL_BANDS") < 0) error ("No spectral data data found in file '%s' when spectral expected",cg[n].name); if (!spec && cgf->find_field(cgf, 0, "LAB_L") >= 0) isLab = 1; cg[n].npat = cgf->t[0].nsets; /* Number of patches */ /* Figure out what sort of device it is */ { int ti; cg[n].isdisp = 0; if ((ti = cgf->find_kword(cgf, 0, "DEVICE_CLASS")) < 0) error ("Input file '%s' doesn't contain keyword DEVICE_CLASS",cg[n].name); if (strcmp(cgf->t[0].kdata[ti],"DISPLAY") == 0) { cg[n].isdisp = 1; illum = icxIT_none; /* Displays are assumed to be self luminous */ /* ?? What if two files are different ?? */ } /* See if the CIE data has been normalised to Y = 100 */ if ((ti = cgf->find_kword(cgf, 0, "NORMALIZED_TO_Y_100")) < 0 || strcmp(cgf->t[0].kdata[ti],"NO") == 0) { cg[n].isdnormed = 0; } else { cg[n].isdnormed = 1; } } /* Read all the target patches */ if (cg[n].npat <= 0) error("No sets of data in file '%s'",cg[n].name); if (verb && n == 0) { fprintf(verbo,"No of test patches = %d\n",cg[n].npat); } /* Allocate arrays to hold test patch input and output values */ if ((cg[n].pat = (pval *)malloc(sizeof(pval) * cg[n].npat)) == NULL) error("Malloc failed - pat[]"); /* Read in the CGATs fields */ if ((sidx = cgf->find_field(cgf, 0, "SAMPLE_ID")) < 0 && (sidx = cgf->find_field(cgf, 0, "SampleName")) < 0 && (sidx = cgf->find_field(cgf, 0, "Sample_Name")) < 0 && (sidx = cgf->find_field(cgf, 0, "SAMPLE_NAME")) < 0 && (sidx = cgf->find_field(cgf, 0, "SAMPLE_LOC")) < 0) error("Input file '%s' doesn't contain field SAMPLE_ID, SampleName, Sample_Name, SAMPLE_NAME or SAMPLE_LOC",cg[n].name); if (cgf->t[0].ftype[sidx] != nqcs_t && cgf->t[0].ftype[sidx] != cs_t) error("Sample ID/Name field isn't a quoted or non quoted character string"); if (spec == 0) { /* Using instrument tristimulous value */ if (isLab) { /* Expect Lab */ if ((xix = cgf->find_field(cgf, 0, "LAB_L")) < 0) error("Input file '%s' doesn't contain field LAB_L",cg[n].name); if (cgf->t[0].ftype[xix] != r_t) error("Field LAB_L is wrong type"); if ((yix = cgf->find_field(cgf, 0, "LAB_A")) < 0) error("Input file '%s' doesn't contain field LAB_A",cg[n].name); if (cgf->t[0].ftype[yix] != r_t) error("Field LAB_A is wrong type"); if ((zix = cgf->find_field(cgf, 0, "LAB_B")) < 0) error("Input file '%s' doesn't contain field LAB_B",cg[n].name); if (cgf->t[0].ftype[zix] != r_t) error("Field LAB_B is wrong type"); } else { /* Expect XYZ */ if ((xix = cgf->find_field(cgf, 0, "XYZ_X")) < 0) error("Input file '%s' doesn't contain field XYZ_X",cg[n].name); if (cgf->t[0].ftype[xix] != r_t) error("Field XYZ_X is wrong type"); if ((yix = cgf->find_field(cgf, 0, "XYZ_Y")) < 0) error("Input file '%s' doesn't contain field XYZ_Y",cg[n].name); if (cgf->t[0].ftype[yix] != r_t) error("Field XYZ_Y is wrong type"); if ((zix = cgf->find_field(cgf, 0, "XYZ_Z")) < 0) error("Input file '%s' doesn't contain field XYZ_Z",cg[n].name); if (cgf->t[0].ftype[zix] != r_t) error("Field XYZ_Z is wrong type"); } for (i = 0; i < cg[n].npat; i++) { strcpy(cg[n].pat[i].sid, (char *)cgf->t[0].fdata[i][sidx]); cg[n].pat[i].v[0] = *((double *)cgf->t[0].fdata[i][xix]); cg[n].pat[i].v[1] = *((double *)cgf->t[0].fdata[i][yix]); cg[n].pat[i].v[2] = *((double *)cgf->t[0].fdata[i][zix]); if (!isLab) { /* If XYZ */ /* If normalised to 100, scale back to 1.0 */ if (!cg[n].isdisp || !cg[n].isdnormed) { cg[n].pat[i].v[0] /= 100.0; /* scale back to 1.0 */ cg[n].pat[i].v[1] /= 100.0; cg[n].pat[i].v[2] /= 100.0; } } else { /* If Lab */ icmLab2XYZ(&icmD50, cg[n].pat[i].v, cg[n].pat[i].v); } /* Apply ccmx */ if (n == 1 && cmx != NULL) { cmx->xform(cmx, cg[n].pat[i].v, cg[n].pat[i].v); } } } else { /* Using spectral data */ int ii; xspect sp; char buf[100]; int spi[XSPECT_MAX_BANDS]; /* CGATS indexes for each wavelength */ xsp2cie *sp2cie; /* Spectral conversion object */ if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_BANDS")) < 0) error ("Input file doesn't contain keyword SPECTRAL_BANDS"); sp.spec_n = atoi(cgf->t[0].kdata[ii]); if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_START_NM")) < 0) error ("Input file doesn't contain keyword SPECTRAL_START_NM"); sp.spec_wl_short = atof(cgf->t[0].kdata[ii]); if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_END_NM")) < 0) error ("Input file doesn't contain keyword SPECTRAL_END_NM"); sp.spec_wl_long = atof(cgf->t[0].kdata[ii]); if (!cg[n].isdisp || cg[n].isdnormed != 0) sp.norm = 100.0; else sp.norm = 1.0; /* Find the fields for spectral values */ for (j = 0; j < sp.spec_n; j++) { int nm; /* Compute nearest integer wavelength */ nm = (int)(sp.spec_wl_short + ((double)j/(sp.spec_n-1.0)) * (sp.spec_wl_long - sp.spec_wl_short) + 0.5); sprintf(buf,"SPEC_%03d",nm); if ((spi[j] = cgf->find_field(cgf, 0, buf)) < 0) error("Input file doesn't contain field %s",buf); } /* Create a spectral conversion object */ if ((sp2cie = new_xsp2cie(illum, illum == icxIT_none ? NULL : &cust_illum, observ, NULL, icSigXYZData, icxClamp)) == NULL) error("Creation of spectral conversion object failed"); if (fwacomp) { int ti; xspect mwsp; /* Medium spectrum */ instType itype; /* Spectral instrument type */ xspect insp; /* Instrument illuminant */ mwsp = sp; /* Struct copy */ if ((ti = cgf->find_kword(cgf, 0, "TARGET_INSTRUMENT")) < 0) error ("Can't find target instrument in '%s' needed for FWA compensation",cg[n].name); if ((itype = inst_enum(cgf->t[0].kdata[ti])) == instUnknown) error ("Unrecognised target instrument '%s'", cgf->t[0].kdata[ti]); if (inst_illuminant(&insp, itype) != 0) error ("Instrument doesn't have an FWA illuminent"); /* Determine a media white spectral reflectance */ for (j = 0; j < mwsp.spec_n; j++) mwsp.spec[j] = 0.0; /* Since we don't want to assume that there are any associated device */ /* values present in each file, we can't use this as means of */ /* determining the media color. Use an alternative approach here, */ /* which may give slightly different results to profile. */ /* Track the maximum reflectance for any band to determine white. */ /* This might silently fail, if there isn't white in the sample set. */ for (i = 0; i < cg[0].npat; i++) { for (j = 0; j < mwsp.spec_n; j++) { double rv = *((double *)cgf->t[0].fdata[i][spi[j]]); if (rv > mwsp.spec[j]) mwsp.spec[j] = rv; } } /* If we are setting a specific simulated instrument illuminant */ if (tillum != icxIT_none) { tillump = &cust_tillum; if (tillum != icxIT_custom) { if (standardIlluminant(tillump, tillum, 0.0)) { error("simulated inst. illum. not recognised"); } } } if (sp2cie->set_fwa(sp2cie, &insp, tillump, &mwsp)) error ("Set FWA on sp2cie failed"); if (verb) { double FWAc; sp2cie->get_fwa_info(sp2cie, &FWAc); fprintf(verbo,"FWA content = %f\n",FWAc); } } for (i = 0; i < cg[0].npat; i++) { strcpy(cg[n].pat[i].sid, (char *)cgf->t[0].fdata[i][sidx]); /* Read the spectral values for this patch */ for (j = 0; j < sp.spec_n; j++) { sp.spec[j] = *((double *)cgf->t[0].fdata[i][spi[j]]); } /* Convert it to XYZ space */ sp2cie->convert(sp2cie, cg[n].pat[i].v, &sp); /* Applu ccmx */ if (n == 1 && cmx != NULL) { cmx->xform(cmx, cg[n].pat[i].v, cg[n].pat[i].v); } } sp2cie->del(sp2cie); /* Done with this */ } /* End of reading in CGATs file */ /* Normalise this file to white = 1.0 or D50 */ if (norm) { double bxyz[3] = { 0.0, -100.0, 0.0 }; /* Locate patch with biggest Y */ for (i = 0; i < cg[n].npat; i++) { double xyz[3]; icmLab2XYZ(&icmD50, xyz, cg[n].pat[i].v); if (cg[n].pat[i].v[1] > bxyz[1]) { icmCpy3(bxyz, cg[n].pat[i].v); } } /* Then normalize all the values */ for (i = 0; i < cg[n].npat; i++) { if (norm == 1) { cg[n].pat[i].v[0] /= bxyz[1]; cg[n].pat[i].v[1] /= bxyz[1]; cg[n].pat[i].v[2] /= bxyz[1]; } else { cg[n].pat[i].v[0] *= icmD50.X/bxyz[0]; cg[n].pat[i].v[1] *= icmD50.Y/bxyz[1]; cg[n].pat[i].v[2] *= icmD50.Z/bxyz[2]; } } } cgf->del(cgf); /* Clean up */ } if (cmx != NULL) cmx->del(cmx); cmx = NULL; /* Check that the number of test patches matches */ if (cg[0].npat != cg[1].npat) error("Number of patches between '%s' and '%s' doesn't match",cg[0].name,cg[1].name); /* Create a list to map the second list of patches to the first */ if ((match = (int *)malloc(sizeof(int) * cg[0].npat)) == NULL) error("Malloc failed - match[]"); for (i = 0; i < cg[0].npat; i++) { for (j = 0; j < cg[1].npat; j++) { if (strcmp(cg[0].pat[i].sid, cg[1].pat[j].sid) == 0) break; /* Found it */ } if (j < cg[1].npat) { match[i] = j; } else { error("Failed to find matching patch to '%s'",cg[0].pat[i].sid); } } /* Adjust the reference white Y to be larger than the largest Y of the two files */ if (!usestdd50) { double maxy = -1e6; for (n = 0; n < 2; n++) { for (i = 0; i < cg[n].npat; i++) { if (cg[n].pat[i].v[1] > maxy) maxy = cg[n].pat[i].v[1]; } } labw.X *= maxy/icmD50.Y; /* Scale white uniformly */ labw.Y *= maxy/icmD50.Y; /* Scale white uniformly */ labw.Z *= maxy/icmD50.Y; if (verb) printf("L*a*b* white reference = XYZ %f %f %f\n",labw.X,labw.Y,labw.Z); } /* Convert XYZ to Lab */ for (n = 0; n < 2; n++) { for (i = 0; i < cg[n].npat; i++) { icmXYZ2Lab(&labw, cg[n].pat[i].v, cg[n].pat[i].v); } } /* Compute the delta E's */ for (i = 0; i < cg[0].npat; i++) { if (cie2k) cg[0].pat[i].de = icmCIE2K(cg[0].pat[i].v, cg[1].pat[match[i]].v); else if (cie94) cg[0].pat[i].de = icmCIE94(cg[0].pat[i].v, cg[1].pat[match[i]].v); else cg[0].pat[i].de = icmLabDE(cg[0].pat[i].v, cg[1].pat[match[i]].v); } /* Create sorted list, from worst to best. */ if ((sort = (int *)malloc(sizeof(int) * cg[0].npat)) == NULL) error("Malloc failed - sort[]"); for (i = 0; i < cg[0].npat; i++) sort[i] = i; #define HEAP_COMPARE(A,B) (cg[0].pat[A].de > cg[0].pat[B].de) HEAPSORT(int, sort, cg[0].npat); #undef HEAP_COMPARE /* - - - - - - - - - - */ /* Figure out the report */ { double merr = 0.0, aerr = 0.0; int n90; double merr90 = 0.0, aerr90 = 0.0; int n10; double merr10 = 0.0, aerr10 = 0.0; double rad; if (dovrml) { wrl = new_vrml(out_name, doaxes, 0); wrl->start_line_set(wrl, 0); /* Fudge sphere diameter */ rad = 10.0/pow(cg[0].npat, 1.0/3.0); } /* Do overall results */ for (i = 0; i < cg[0].npat; i++) { double de; if (dosort) j = sort[i]; else j = i; de = cg[0].pat[j].de; aerr += de; if (verb) { printf("%s: %f %f %f <=> %f %f %f de %f\n", cg[0].pat[j].sid, cg[0].pat[j].v[0], cg[0].pat[j].v[1], cg[0].pat[j].v[2], cg[1].pat[match[j]].v[0], cg[1].pat[match[j]].v[1], cg[1].pat[match[j]].v[2], de); } if (de > merr) merr = de; if (dovrml) { if (de > 1e-6) { wrl->add_vertex(wrl, 0, cg[0].pat[j].v); wrl->add_vertex(wrl, 0, cg[1].pat[j].v); } if (dovrml == 2) { wrl->add_marker(wrl, cg[0].pat[j].v, NULL, rad); wrl->add_marker(wrl, cg[1].pat[j].v, NULL, rad); } } } if (cg[0].npat > 0) aerr /= (double)cg[0].npat; if (dovrml) { wrl->make_lines(wrl, 0, 2); wrl->del(wrl); wrl = NULL; } /* Do best 90% */ n90 = (int)(cg[0].npat * 9.0/10.0 + 0.5); for (i = (cg[0].npat-n90); i < cg[0].npat; i++) { double de = cg[0].pat[sort[i]].de; aerr90 += de; if (de > merr90) merr90 = de; } if (n90 > 0) aerr90 /= (double)n90; /* Do worst 10% */ n10 = (int)(cg[0].npat * 1.0/10.0 + 0.5); for (i = 0; i < n10; i++) { double de = cg[0].pat[sort[i]].de; aerr10 += de; if (de > merr10) merr10 = de; } if (n10 > 0) aerr10 /= (double)n10; if (verb) { fprintf(verbo,"No of test patches in worst 10%% are = %d\n",n10); fprintf(verbo,"No of test patches in best 90%% are = %d\n",n90); } printf("Verify results:\n"); printf(" Total errors%s: peak = %f, avg = %f\n", cie2k ? " (CIEDE2000)" : cie94 ? " (CIE94)" : "", merr, aerr); printf(" Worst 10%% errors%s: peak = %f, avg = %f\n", cie2k ? " (CIEDE2000)" : cie94 ? " (CIE94)" : "", merr10, aerr10); printf(" Best 90%% errors%s: peak = %f, avg = %f\n", cie2k ? " (CIEDE2000)" : cie94 ? " (CIE94)" : "", merr90, aerr90); free(sort); free(match); free(cg[0].pat); free(cg[1].pat); } return 0; }