// current scat.c with V1.6.3 position curve rspl setup code
/*
* Argyll Color Correction System
* Multi-dimensional regularized splines data fitter
*
* Author: Graeme W. Gill
* Date: 2004/8/14
*
* Copyright 1996 - 2009 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
* This file contains the scattered data solution specific code.
*
* The regular spline implementation was inspired by the following technical reports:
*
* D.J. Bone, "Adaptive Multi-Dimensional Interpolation Using Regularized Linear Splines,"
* Proc. SPIE Vol. 1902, p.243-253, Nonlinear Image Processing IV, Edward R. Dougherty;
* Jaakko T. Astola; Harold G. Longbotham;(Eds)(1993).
*
* D.J. Bone, "Adaptive Colour Printer Modeling using regularized linear splines,"
* Proc. SPIE Vol. 1909, p. 104-115, Device-Independent Color Imaging and Imaging
* Systems Integration, Ricardo J. Motta; Hapet A. Berberian; Eds.(1993)
*
* Don Bone and Duncan Stevenson, "Modelling of Colour Hard Copy Devices Using Regularised
* Linear Splines," Proceedings of the APRS workshop on Colour Imaging and Applications,
* Canberra (1994)
*
* see
*
* Also of interest was:
*
* "Discrete Smooth Interpolation", Jean-Laurent Mallet, ACM Transactions on Graphics,
* Volume 8, Number 2, April 1989, Pages 121-144.
*
*/
/* TTBD:
*
* Try simple approach to reduce extrapolation accumulation (edge propogation) effects.
* Do this by saving bounding box of scattered points, and then increase smoothness coupling
* in direction of axis that is outside this box (or the reverse, reduce smoothness
* coupling in direction of any axis that is not outside this box).
* [Example is "t3d -t 6 -P 0:0:0:1:1:1" where lins should not bend up at top end.]
*
* Speedup that skips recomputing all of A to add new points seems OK. (nothing uses
* incremental currently anyway.)
*
* Is there any way of speeding up incremental recalculation ????
*
* Add optional simplex point interpolation to
* solve setup. (No large advantage in this ??)
*
* Find a more effective way to mitigate the smoothness "clumping"
* effect where corners in particular over smooth ?
*
* Get rid of error() calls - return status instead
*/
/*
Scattered data fit related smoothness control.
We adjust the curve/data point weighting to account for the
grid resolution (to make it resolution independent), as well
as allow for the dimensionality (each dimension contributes
a curvature error).
The default assumption is that the grid resolution is set
to match the input data range for that dimension, eg. if
a sub range of input space is all that is needed, then a
smaller grid resolution can/should be used if smoothness
is expected to remain symetric in relation to the input
domain.
eg. Input range 0.0 - 1.0 and 0.0 - 0.5
matching res 50 and 25
The alternative is to set the RSPL_SYMDOMAIN flag,
in which case the grid resolution is not taken to
be a measure of the dimension scale, and is assumed
to be just a lower resolution sampling of the domain.
eg. Input range 0.0 - 1.0 and 0.0 - 1.0
with res. 50 and 25
still has symetrical smoothness in relation
to the input domain.
NOTE :- that both input and output values are normalised
by the ranges given during rspl construction. The ranges
set the significance between the input and output values.
eg. Input ranges 0.0 - 1.0 and 0.0 - 100.0
(with equal grid resolution)
will have symetry when measured against the the
same % change in the input domain, but will
appear non-symetric if measured against the
same numerical change.
*/
#include
#include
#include
#include
#include
#if defined(__IBMC__) && defined(_M_IX86)
#include
#endif
#include "rspl_imp.h"
#include "numlib.h"
#include "counters.h" /* Counter macros */
#undef DEBUG /* Print contents of solution setup etc. */
#undef DEBUG_PROGRESS /* Print progress of acheiving tollerance target */
#define DEFAVGDEV 0.5 /* Default average deviation % */
/* algorithm parameters [Release defaults] */
#define INCURVEADJ /* [Defined] Adjust smoothness criteria for input curve grid spacing */
#undef SMOOTH2 /* [Undef] INCOMPLETE - would be nice to finish this to help XYZ! */
/* Use 3nd order smoothness rather than curvature. */
/* 2nd order is optimal about 2.5 x lower than 3rd order, */
/* so an even split between 3rd:2nd would be 1.0 0.4, */
/* a 9:1 split would be 0.9 0.04 */
/* This also disables the incorrect scaling of smoothness with */
/* output range */
#undef AUTOSM /* [Undef] INCOMPLETE Support auto smoothing using LOOCV */
/* - started implementing this using shadow grid map of */
/* smoothness (see see mgtmp *sm), then switch to */
/* Leave One Out Cross Validation (LOOCV) idea. */
# define CW2 0.9
# define CW ((1.0 - CW2) * 0.4)
/* Tuning parameters */
#ifdef NEVER
/* Experimental set: */
#pragma message("!!!!!!!!! Experimental hi-accuracy config set !!!!!!!!!")
#define TOL 1e-12 /* Tollerance of result - usually 1e-5 is best. */
#define TOL_IMP 1.0 /* Minimum error improvement to continue - reduces accuracy (1.0 == off) */
#undef GRADUATED_TOL /* Speedup attemp - use reduced tollerance for prior grids. */
#define GRATIO 1.5 /* Multi-grid resolution ratio */
#undef OVERRLX /* Use over relaxation factor when progress slows (worse accuracy ?) */
#define JITTERS 0 /* Number of 1D conjugate solve itters */
#define CONJ_TOL 1.0 /* Extra tolereance on 1D conjugate solution times TOL. */
#define MAXNI 16 /* Maximum itteration without checking progress */
//#define SMOOTH 0.000100 /* Set nominal smoothing (1.0) */
#define WEAKW 0.1 /* Weak default function nominal effect (1.0) */
#else
/* Release set: */
#define TOL 1e-7 /* [1e-6] Tollerance of result - usually 1e-5 is best. */
#define TOL_IMP 0.999 /* [0.998] Minimum error improvement to continue - reduces accuracy (1.0 == off) */
#undef GRADUATED_TOL /* [Undef] Speedup attemp - use reduced tollerance for prior grids. */
#define GRATIO 2.0 /* [2.0] Multi-grid resolution ratio */
#undef OVERRLX /* [Undef] Use over relaxation when progress slows (worse accuracy ?) */
#define JITTERS 0 /* [0] Number of 1D conjugate solve itters */
#define CONJ_TOL 1.0 /* [1.0] Extra tolereance on 1D conjugate solution times TOL. */
#define MAXNI 16 /* [16] Maximum itteration without checking progress */
//#define SMOOTH 0.000100 /* Set nominal smoothing (1.0) */
#define WEAKW 0.1 /* [0.1] Weak default function nominal effect (1.0) */
#endif
#undef NEVER
#define ALWAYS
/* Implemented in rspl.c: */
extern void alloc_grid(rspl *s);
extern int is_mono(rspl *s);
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
/* ================================================= */
/* Structure to hold temporary data for multi-grid calculations */
/* One is created for each resolution. Only used in this file. */
struct _mgtmp {
rspl *s; /* Associated rspl */
int f; /* Output dimension being calculated */
/* Weak default function stuff */
double wdfw; /* Weight per grid point */
/* Scattered data fit stuff */
struct {
double cw[MXDI]; /* Curvature weight factor */
#ifdef SMOOTH2
double cw2[MXDI]; /* Smoothness weight factor */
#endif
} sf;
/* Grid points data */
struct {
int res[MXDI]; /* Single dimension grid resolution */
int bres, brix; /* Biggest resolution and its index */
double mres; /* Geometric mean res[] */
int no; /* Total number of points in grid = res ^ di */
ratai l,h,w; /* Grid low, high, grid cell width */
double *ipos[MXDI]; /* Optional relative grid cell position for each input dim cell */
/* Grid array offset lookups */
int ci[MXRI]; /* Grid coordinate increments for each dimension */
int hi[POW2MXRI]; /* Combination offset for sequence through cube. */
} g;
/* Data point grid dependent information */
struct mgdat {
int b; /* Index for associated base grid point, in grid points */
double w[POW2MXRI]; /* Weight for surrounding gridpoints [2^di] */
} *d;
/* Equation Solution related (Grid point solutions) */
struct {
double **A; /* A matrix of interpoint weights A[g.no][q.acols] */
int acols; /* A matrix columns needed */
/* Packed indexes run from 0..acols-1 */
/* Sparse index allows for +/-2 offset in any one dimension */
/* and +/-1 offset in all dimensions, but only the +ve offset */
/* half of the sparse matrix is stored, due to equations */
/* being symetrical. */
#define XCOLPMAX (HACOMPS+8)
int xcol[XCOLPMAX]; /* A array column translation from packed to sparse index */
int *ixcol; /* A array column translation from sparse to packed index */
double *b; /* b vector for RHS of simultabeous equation b[g.no] */
double normb; /* normal of b vector */
double *x; /* x solution to A . x = b */
} q;
#ifdef AUTOSM
struct _loocv *as; /* Auto Smooth Setup information */
#endif
}; typedef struct _mgtmp mgtmp;
/* ================================================= */
#ifdef AUTOSM
/* Structure to hold LOOCV equations for multi-grid calculations */
/* One is created for each resolution. Only used in this file. */
struct _loocv {
mgtmp *m; /* Associated mgtmp */
int ndcells; /* Number of cells with at least one data point */
int *dlist; /* Index of base vertex of cell with at least one data point. */
/* ndcells will be filled */
int *vtx_dlist; /* For base vertex index store the index of the first data point */
/* within that cell. -1 for no data */
int *dat_dlist; /* Index by data point, store the index of the next data point */
/* in the list in the cell. -1 for no more data */
double *sm; /* smoothness map grid data values in log space, 0.0 for none */
/* (Not fully implemented, and being superceeded) */
double **As; /* A matrix of smoothness vertex weights */
double *bs; /* b vector for RHS of smoothness equation */
#ifdef SMOOTH2
double **As2; /* A matrix of smoothness 2 vertex weights */
double *bs2; /* b vector for RHS of smoothness 2 equation */
#endif
double **Ad; /* A matrix of data vertex weights */
double *bd; /* b vector for RHS of data equation */
double **AA; /* A matrix of vertex weights */
double *bb; /* b vector for RHS of equation */
double *xx; /* x vector for solution of equation for a given smoothness */
}; typedef struct _loocv loocv;
#endif /* AUTOSM */
/* ================================================= */
/* Temporary arrays used by cj_line(). We try and avoid */
/* allocating and de-allocating these, and merely expand */
/* them as needed */
typedef struct {
double *z, *xx, *q, *r;
double *n;
int l_nid;
} cj_arrays;
static void init_cj_arrays(cj_arrays *ta);
static void free_cj_arrays(cj_arrays *ta);
static int add_rspl_imp(rspl *s, int flags, void *d, int dtp, int dno);
static mgtmp *new_mgtmp(rspl *s, int gres[MXDI], double smooth, double avgdev, int f, int issm);
static void free_mgtmp(mgtmp *m);
static void setup_solve(mgtmp *m, mgtmp *sm);
static void solve_gres(mgtmp *m, cj_arrays *ta, double tol, int final);
static void init_soln(mgtmp *m1, mgtmp *m2);
static double mgtmp_interp(mgtmp *m, double p[MXDI]);
#ifdef AUTOSM
static void setup_sutosmsolve(mgtmp *);
static void comp_fit_errors(mgtmp *m);
static void plot_mgtmp1(mgtmp *m);
#endif /* AUTOSM */
static void set_it_info(
rspl *s,
int *tres, /* Single dimension grid resolution for each axis */
it_info *ii /* it_info to set */
) {
int bres; /* Biggest resolution */
int sres; /* Starting resolution */
double res;
double gratio;
int i, e, f;
bres = 0;
for (e = 0; e < s->di; e++) {
if (tres[e] > bres)
bres = tres[e];
}
/* Figure out how many multigrid steps to use */
#ifdef SMOOTH2
sres = 5; /* Start at minimum grid res of 5 */
#else
sres = 4; /* Start at minimum grid res of 4 */
#endif
/* Calculate the resolution scaling ratio and number of itters. */
gratio = GRATIO;
if (((double)bres/(double)sres) <= gratio) {
ii->niters = 2;
gratio = (double)bres/(double)sres;
} else { /* More than one needed */
ii->niters = (int)((log((double)bres) - log((double)sres))/log(gratio) + 0.5);
gratio = exp((log((double)bres) - log((double)sres))/(double)ii->niters);
ii->niters++;
}
/* Allocate space for resolutions */
if ((ii->ires = imatrix(0, ii->niters, 0, s->di)) == NULL)
error("rspl: malloc failed - ires[][]");
/* Fill in the resolution values for each itteration */
for (res = (double)sres, i = 0; i < ii->niters; i++) {
int ires;
ires = (int)(res + 0.5);
for (e = 0; e < s->di; e++) {
if ((ires + 1) >= tres[e]) /* If close enough biger than target res. */
ii->ires[i][e] = tres[e];
else
ii->ires[i][e] = ires;
}
res *= gratio;
}
/* Assert */
for (e = 0; e < s->di; e++) {
if (ii->ires[ii->niters-1][e] != tres[e])
error("rspl: internal error, final res %d != intended res %d\n",
ii->ires[ii->niters-1][e], tres[e]);
}
}
static void freeit_info(
rspl *s,
it_info *ii
) {
int i, f;
if (ii->ires != NULL) {
free_imatrix(ii->ires, 0, ii->niters, 0, s->di);
ii->ires = NULL;
}
}
/* Initialise the regular spline from scattered data */
/* Return non-zero if non-monotonic */
static int
fit_rspl_imp(
rspl *s, /* this */
int flags, /* Combination of flags */
void *d, /* Array holding position and function values of data points */
int dtp, /* Flag indicating data type, 0 = (co *), 1 = (cow *), 2 = (coww *) */
int dno, /* Number of data points */
ratai glow, /* Grid low scale - will be expanded to enclose data, NULL = default 0.0 */
ratai ghigh, /* Grid high scale - will be expanded to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution */
ratao vlow, /* Data value low normalize, NULL = default 0.0 */
ratao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, 0.0 = default 1.0 */
/* (if -ve, overides optimised smoothing, and sets raw smoothing */
/* typically between 1e-7 .. 1e-1) */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range, */
/* typical value 0.005 (aprox. = 0.564 times the standard deviation) */
/* NULL = default 0.005 */
double *ipos[MXDI], /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
double weak, /* Weak weighting, nominal = 1.0 */
void *dfctx, /* Opaque weak default function context */
void (*dfunc)(void *cbntx, double *out, double *in) /* Function to set from, NULL if none. */
) {
int di = s->di, fdi = s->fdi;
int i, e, f;
#ifdef NEVER
printf("~1 rspl: gres = %d %d %d %d, smooth = %f, avgdev = %f %f %f\n",
gres[0], gres[1], gres[2], gres[3], smooth, avgdev[0], avgdev[1], avgdev[2]);
printf("~1 rspl: glow = %f %f %f %f ghigh = %f %f %f %f\n",
glow[0], glow[1], glow[2], glow[3], ghigh[0], ghigh[1], ghigh[2], ghigh[3]);
printf("~1 rspl: vlow = %f %f %f vhigh = %f %f %f\n",
vlow[0], vlow[1], vlow[2], vhigh[0], vhigh[1], vhigh[2]);
printf("~1 rspl: flags = 0x%x\n",flags);
#endif
#if defined(__IBMC__) && defined(_M_IX86)
_control87(EM_UNDERFLOW, EM_UNDERFLOW);
#endif
/* This is a restricted size function */
if (di > MXRI)
error("rspl: fit can't handle di = %d",di);
if (fdi > MXRO)
error("rspl: fit can't handle fdi = %d",fdi);
/* set debug level */
s->debug = (flags >> 24);
/* Init other flags */
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
s->ausm = (flags & RSPL_AUTOSMOOTH) ? 1 : 0; /* Enable auto smoothing */
s->symdom = (flags & RSPL_SYMDOMAIN) ? 1 : 0; /* Turn on symetric smoothness with gres */
/* Save smoothing factor and Average Deviation */
s->smooth = smooth;
if (avgdev != NULL) {
for (f = 0; f < s->fdi; f++)
s->avgdev[f] = avgdev[f];
} else {
for (f = 0; f < s->fdi; f++)
s->avgdev[f] = DEFAVGDEV/100.0;
}
/* Save weak default function information */
s->weak = weak;
s->dfctx = dfctx;
s->dfunc = dfunc;
/* Init data point storage to zero */
s->d.no = 0;
s->d.a = NULL;
/* record low and high grid range */
s->g.mres = 1.0;
s->g.bres = 0;
for (e = 0; e < s->di; e++) {
if (gres[e] < 2)
error("rspl: grid res must be >= 2!");
s->g.res[e] = gres[e]; /* record the desired resolution of the grid */
s->g.mres *= gres[e];
if (gres[e] > s->g.bres) {
s->g.bres = gres[e];
s->g.brix = e;
}
if (glow == NULL)
s->g.l[e] = 0.0;
else
s->g.l[e] = glow[e];
if (ghigh == NULL)
s->g.h[e] = 1.0;
else
s->g.h[e] = ghigh[e];
}
s->g.mres = pow(s->g.mres, 1.0/e); /* geometric mean */
/* record low and high data normalizing factors */
for (f = 0; f < s->fdi; f++) {
if (vlow == NULL)
s->d.vl[f] = 0.0;
else
s->d.vl[f] = vlow[f];
if (vhigh == NULL)
s->d.vw[f] = 1.0;
else
s->d.vw[f] = vhigh[f];
}
/* If we are supplied initial data points, expand the */
/* grid range to be able to cover it. */
/* Also compute average data value. */
for (f = 0; f < s->fdi; f++)
s->d.va[f] = 0.5; /* default average */
if (dtp == 0) { /* Default weight */
co *dp = (co *)d;
for (i = 0; i < dno; i++) {
for (e = 0; e < s->di; e++) {
if (dp[i].p[e] > s->g.h[e])
s->g.h[e] = dp[i].p[e];
if (dp[i].p[e] < s->g.l[e])
s->g.l[e] = dp[i].p[e];
}
for (f = 0; f < s->fdi; f++) {
if (dp[i].v[f] > s->d.vw[f])
s->d.vw[f] = dp[i].v[f];
if (dp[i].v[f] < s->d.vl[f])
s->d.vl[f] = dp[i].v[f];
s->d.va[f] += dp[i].v[f];
}
}
} else if (dtp == 1) { /* Per data point weight */
cow *dp = (cow *)d;
for (i = 0; i < dno; i++) {
for (e = 0; e < s->di; e++) {
if (dp[i].p[e] > s->g.h[e])
s->g.h[e] = dp[i].p[e];
if (dp[i].p[e] < s->g.l[e])
s->g.l[e] = dp[i].p[e];
}
for (f = 0; f < s->fdi; f++) {
if (dp[i].v[f] > s->d.vw[f])
s->d.vw[f] = dp[i].v[f];
if (dp[i].v[f] < s->d.vl[f])
s->d.vl[f] = dp[i].v[f];
s->d.va[f] += dp[i].v[f];
}
}
} else { /* Per data point output weight */
coww *dp = (coww *)d;
for (i = 0; i < dno; i++) {
for (e = 0; e < s->di; e++) {
if (dp[i].p[e] > s->g.h[e])
s->g.h[e] = dp[i].p[e];
if (dp[i].p[e] < s->g.l[e])
s->g.l[e] = dp[i].p[e];
}
for (f = 0; f < s->fdi; f++) {
if (dp[i].v[f] > s->d.vw[f])
s->d.vw[f] = dp[i].v[f];
if (dp[i].v[f] < s->d.vl[f])
s->d.vl[f] = dp[i].v[f];
s->d.va[f] += dp[i].v[f];
}
}
}
if (dno > 0) { /* Complete the average */
for (f = 0; f < s->fdi; f++)
s->d.va[f] = (s->d.va[f] - 0.5)/((double)dno);
}
/* compute (even division) width of each grid cell */
for (e = 0; e < s->di; e++) {
s->g.w[e] = (s->g.h[e] - s->g.l[e])/(double)(s->g.res[e]-1);
}
/* Convert low and high to low and width data range */
for (f = 0; f < s->fdi; f++) {
s->d.vw[f] -= s->d.vl[f];
}
#ifdef INCURVEADJ
/* Save grid cell (smooth data space) position information (if any), */
if (ipos != NULL) {
for (e = 0; e < s->di; e++) {
if (ipos[e] != NULL) {
if ((s->g.ipos[e] = (double *)calloc(s->g.res[e], sizeof(double))) == NULL)
error("rspl: malloc failed - ipos[]");
for (i = 0; i < s->g.res[e]; i++) {
s->g.ipos[e][i] = ipos[e][i];
if (i > 0 && fabs(s->g.ipos[e][i] - s->g.ipos[e][i-1]) < 1e-12)
error("rspl: ipos[%d][%d] to ipos[%d][%d] is nearly zero!",e,i,e,i-1);
}
}
}
}
#endif /* INCURVEADJ */
/* Allocate the grid data */
alloc_grid(s);
/* Setup the number of itterations and resolution for each itteration */
set_it_info(s, s->g.res, &s->ii);
/* Do the data point fitting */
return add_rspl_imp(s, 0, d, dtp, dno);
}
/* Weighting adjustment values */
double adjw[21] = {
7.0896971822529019e-278, 2.7480236142217909e+233, 1.4857837676559724e+166,
1.3997102851752585e-152, 1.3987140593588909e-076, 2.8215833239257504e+243,
1.4104974786556771e+277, 2.0916973891832284e+121, 2.0820139887245793e-152,
1.0372833042501621e-152, 2.1511212233835046e-313, 7.7791723264397072e-260,
6.7035744954188943e+223, 8.5733372291341995e+170, 1.4275976773846279e-071,
2.3994297542685112e-038, 3.9052141785471924e-153, 3.8223903939904297e-096,
3.2368131456774088e+262, 6.5639459298208554e+045, 2.0087765219520138e-139
};
/* Do the fitting for one output plane */
static mgtmp *
fit_rspl_plane_imp(
rspl *s, /* this */
int f, /* Output plane */
it_info *ii, /* resolution info */
double smooth, /* Smoothing factor */
double avgdev, /* Average deviation to use to set smoothness */
//mgtmp *sm, /* Optional smoothness map */
cj_arrays *ta /* Temporary array */
) {
int i, nn; /* Multigreid resolution itteration index */
mgtmp *pm = NULL, *m = NULL;
mgtmp *psm = NULL, *sm = NULL; /* Smoothing map */
/* For each resolution (itteration) */
for (nn = 0; nn < ii->niters; nn++, pm = m) {
m = new_mgtmp(s, ii->ires[nn], smooth, avgdev, f, 0);
// ~~~ want setup solve after creating sm,
// but can't setup initial values until after setup_solve
// because m->q.x needs to be allocated
setup_solve(m, sm);
if (nn == 0) { /* Make sure we have an initial x[] */
#ifdef AUTOSM
Create sm and set initial values
~~~~
sm = new_mgtmp(s, ii->ires[nn], smooth, avgdev, f, 1);
for (i = 0; i < sm->g.no; i++)
sm->as.sm[i] = m->sf.cw[e]; /* Value from opt_smooth() */
/* ?? how to handle cw2[] etc. ? */
#endif /* AUTOSM */
for (i = 0; i < m->g.no; i++)
m->q.x[i] = s->d.va[f]; /* Start with average data value */
} else {
init_soln(m, pm); /* Scale from previous resolution */
free_mgtmp(pm); /* Free previous grid res solution */
pm = NULL;
#ifdef AUTOSM
init_soln(sm, psm); /* Scale from previous resolution */
free_mgtmp(psm); /* Free previous grid res solution */
psm = NULL;
#endif
}
solve_gres(m, ta,
#if defined(GRADUATED_TOL)
TOL * s->g.res[s->g.brix]/s->ires[nn][s->g.brix],
#else
TOL,
#endif
ii->ires[nn][s->g.brix] >= s->g.res[s->g.brix]); /* Use itterative */
#ifdef DEBUG
{
int k, gno = m->g.no;
double *x = m->q.x; /* x vector for result */
printf("Plane %d res %d solution values:\n",f,ii->ires[nn][0]);
for (k = 0; k < gno; k++)
printf("x[%d] = %f\n",k,x[k]);
printf("\n");
}
#endif /* DEBUG */
#ifdef AUTOSM
if (nn < (ii->niters-1)) {
setup_sutosmsolve(sm);
}
#endif
psm = sm;
} /* Next resolution */
/* return the final resolution mgtmp */
return m;
}
/* Do the work of initialising from initial data points. */
/* Return non-zero if non-monotonic */
static int
add_rspl_imp(
rspl *s, /* this */
int flags, /* Combination of flags */
void *d, /* Array holding position and function values of data points */
int dtp, /* Flag indicating data type, 0 = (co *), 1 = (cow *), 2 = (coww *) */
int dno /* Number of data points */
) {
int fdi = s->fdi;
int i, n, e, f;
cj_arrays ta; /* cj_line temporary arrays */
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
if (dno == 0) { /* There are no points to initialise from */
return 0;
}
#ifdef DEBUG
printf("add_rspl_imp: flags 0x%x, dno %d, dtp %d\n",flags,dno,dtp);
#endif
/* Allocate space for points */
/* Allocate the scattered data space */
if ((s->d.a = (rpnts *) malloc(sizeof(rpnts) * dno)) == NULL)
error("rspl malloc failed - data points");
/* Add the points */
if (dtp == 0) { /* Default weight */
co *dp = (co *)d;
/* Append the list into data points */
for (i = 0, n = s->d.no; i < dno; i++, n++) {
for (e = 0; e < s->di; e++)
s->d.a[n].p[e] = dp[i].p[e];
for (f = 0; f < s->fdi; f++) {
s->d.a[n].v[f] = dp[i].v[f];
s->d.a[n].k[f] = 1.0; /* Assume all data points have same weight */
// s->d.a[n].fe = 0.0;
}
}
} else if (dtp == 1) { /* Per data point weight */
cow *dp = (cow *)d;
/* Append the list into data points */
for (i = 0, n = s->d.no; i < dno; i++, n++) {
for (e = 0; e < s->di; e++)
s->d.a[n].p[e] = dp[i].p[e];
for (f = 0; f < s->fdi; f++) {
s->d.a[n].v[f] = dp[i].v[f];
s->d.a[n].k[f] = dp[n].w; /* Weight specified */
// s->d.a[n].fe = 0.0;
}
}
} else { /* Per data point output weight */
coww *dp = (coww *)d;
/* Append the list into data points */
for (i = 0, n = s->d.no; i < dno; i++, n++) {
for (e = 0; e < s->di; e++)
s->d.a[n].p[e] = dp[i].p[e];
for (f = 0; f < s->fdi; f++) {
s->d.a[n].v[f] = dp[i].v[f];
s->d.a[n].k[f] = dp[n].w[f]; /* Weight specified */
// s->d.a[n].fe = 0.0;
}
}
}
s->d.no = dno;
init_cj_arrays(&ta); /* Zero temporary arrays */
if (s->verbose && s->ausm) {
#ifdef AUTOSM
printf("Doing automatic local smoothing optimization\n");
#else
printf("Automatic local smoothing flag ignored !!!\n");
#endif
}
/* Do fit of grid to data for each output dimension */
for (f = 0; f < fdi; f++) {
float *gp;
mgtmp *m = NULL;
#ifdef NEVER // ~~99 remove this
mgtmp *sm = NULL; /* Auto smoothness map */
/* If auto smoothness, create smoothing map */
if (s->ausm) {
int res[MXDI];
int mxres[5] = { 0, 101, 51, 17, 11 };
int smres[5] = { 0, 12, 8, 6, 6 };
/* Set target resolution for initial fit */
for (e = 0; e < s->di; e++) {
res[e] = s->g.res[e];
if (res[e] > mxres[s->di])
res[e] = mxres[s->di];
}
/* Setup the number of itterations and resolution for each itteration */
set_it_info(s, res, &s->as_ii);
printf("~1 s->smooth = %f, avgdev[f] = %f\n",s->smooth, s->avgdev[f]);
/* First pass fit with heavy smoothing */
m = fit_rspl_plane_imp(s, f, &s->as_ii, 1.0, 0.1, NULL, &ta);
printf("Initial high smoothing fit of output %d:\n",f);
plot_mgtmp1(m);
/* Compute the fit error values from first pass */
comp_fit_errors(m); /* Compute correction to data target values */
free_mgtmp(m);
/* Set target resolution for smoothness map */
for (e = 0; e < s->di; e++)
res[e] = smres[s->di];
set_it_info(s, res, &s->asm_ii);
/* Create smoothness map from fit errors */
sm = fit_rspl_plane_imp(s, -1, &s->asm_ii, -50000, 0.0, NULL, &ta);
// sm = fit_rspl_plane_imp(s, -1, &s->asm_ii, 1000.0, 0.1, NULL, &ta);
printf("Smoothness map for output %d:\n",f);
plot_mgtmp1(sm);
}
#endif /* NEVER */
/* Fit data for this plane */
m = fit_rspl_plane_imp(s, f, &s->ii, s->smooth, s->avgdev[f], /* sm, */ &ta);
//printf("Final fit for output %d:\n",f);
//plot_mgtmp1(m);
/* Transfer result in x[] to appropriate grid point value */
for (gp = s->g.a, i = 0; i < s->g.no; gp += s->g.pss, i++)
gp[f] = (float)m->q.x[i];
free_mgtmp(m); /* Free final resolution entry */
// if (sm != NULL) /* Free smoothing map */
// free_mgtmp(sm);
} /* Next output channel */
/* Free up cj_line temporary arrays */
free_cj_arrays(&ta);
/* Return non-mono check */
return is_mono(s);
}
/* Initialise the regular spline from scattered data */
/* Return non-zero if non-monotonic */
static int
fit_rspl(
rspl *s, /* this */
int flags, /* Combination of flags */
co *d, /* Array holding position and function values of data points */
int dno, /* Number of data points */
ratai glow, /* Grid low scale - will be expanded to enclose data, NULL = default 0.0 */
ratai ghigh, /* Grid high scale - will be expanded to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution */
ratao vlow, /* Data value low normalize, NULL = default 0.0 */
ratao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, nominal = 1.0 */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range. */
double *ipos[MXDI] /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
) {
/* Call implementation with (co *) data */
return fit_rspl_imp(s, flags, (void *)d, 0, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos, 1.0, NULL, NULL);
}
/* Initialise the regular spline from scattered data with weights */
/* Return non-zero if non-monotonic */
static int
fit_rspl_w(
rspl *s, /* this */
int flags, /* Combination of flags */
cow *d, /* Array holding position, function and weight values of data points */
int dno, /* Number of data points */
ratai glow, /* Grid low scale - will be expanded to enclose data, NULL = default 0.0 */
ratai ghigh, /* Grid high scale - will be expanded to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution */
ratao vlow, /* Data value low normalize, NULL = default 0.0 */
ratao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, nominal = 1.0 */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range. */
double *ipos[MXDI] /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
) {
/* Call implementation with (cow *) data */
return fit_rspl_imp(s, flags, (void *)d, 1, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos, 1.0, NULL, NULL);
}
/* Initialise the regular spline from scattered data with individual weights */
/* Return non-zero if non-monotonic */
static int
fit_rspl_ww(
rspl *s, /* this */
int flags, /* Combination of flags */
coww *d, /* Array holding position, function and weight values of data points */
int dno, /* Number of data points */
ratai glow, /* Grid low scale - will be expanded to enclose data, NULL = default 0.0 */
ratai ghigh, /* Grid high scale - will be expanded to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution */
ratao vlow, /* Data value low normalize, NULL = default 0.0 */
ratao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, nominal = 1.0 */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range. */
double *ipos[MXDI] /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
) {
/* Call implementation with (cow *) data */
return fit_rspl_imp(s, flags, (void *)d, 2, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos, 1.0, NULL, NULL);
}
/* Initialise from scattered data, with weak default function. */
/* Return non-zero if result is non-monotonic */
static int
fit_rspl_df(
rspl *s, /* this */
int flags, /* Combination of flags */
co *d, /* Array holding position and function values of data points */
int dno, /* Number of data points */
datai glow, /* Grid low scale - will expand to enclose data, NULL = default 0.0 */
datai ghigh, /* Grid high scale - will expand to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution, ncells = gres-1 */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, nominal = 1.0 */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range. */
double *ipos[MXDI], /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
double weak, /* Weak weighting, nominal = 1.0 */
void *cbntx, /* Opaque function context */
void (*func)(void *cbntx, double *out, double *in) /* Function to set from */
) {
/* Call implementation with (co *) data */
return fit_rspl_imp(s, flags, (void *)d, 0, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos, weak, cbntx, func);
}
/* Initialise from scattered data, with per point weighting and weak default function. */
/* Return non-zero if result is non-monotonic */
static int
fit_rspl_w_df(
rspl *s, /* this */
int flags, /* Combination of flags */
cow *d, /* Array holding position, function and weight values of data points */
int dno, /* Number of data points */
datai glow, /* Grid low scale - will expand to enclose data, NULL = default 0.0 */
datai ghigh, /* Grid high scale - will expand to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution, ncells = gres-1 */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh, /* Data value high normalize - NULL = default 1.0 */
double smooth, /* Smoothing factor, nominal = 1.0 */
double avgdev[MXDO],
/* Average Deviation of function values as proportion of function range. */
double *ipos[MXDI], /* Optional relative grid cell position for each input dim cell, */
/* gres[] entries per dimension. Used to scale smoothness criteria */
double weak, /* Weak weighting, nominal = 1.0 */
void *cbntx, /* Opaque function context */
void (*func)(void *cbntx, double *out, double *in) /* Function to set from */
) {
/* Call implementation with (cow *) data */
return fit_rspl_imp(s, flags, (void *)d, 1, dno, glow, ghigh, gres, vlow, vhigh,
smooth, avgdev, ipos, weak, cbntx, func);
}
/* Init scattered data elements in rspl */
void
init_data(rspl *s) {
s->d.no = 0;
s->d.a = NULL;
s->fit_rspl = fit_rspl;
s->fit_rspl_w = fit_rspl_w;
s->fit_rspl_ww = fit_rspl_ww;
s->fit_rspl_df = fit_rspl_df;
s->fit_rspl_w_df = fit_rspl_w_df;
}
/* Free the scattered data allocation */
void
free_data(rspl *s) {
freeit_info(s, &s->ii);
if (s->d.a != NULL) { /* Free up the data point data */
free((void *)s->d.a);
s->d.a = NULL;
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* In theory, the smoothness should increase proportional to the square of the */
/* overall average sample deviation. (Or the weight of each individual data point */
/* could be made inversely proportional to the square of its average sample */
/* deviation, or square of its standard deviation, or its variance, etc.) */
/* In practice, other factors also seem to come into play, so we use a */
/* table to lookup an "optimal" smoothing factor for each combination */
/* of the parameters dimension, sample count and average sample deviation. */
/* The contents of the table were created by taking some representative */
/* profiles and testing them with various numbers of data points */
/* and added L*a*b* noise, and locating the optimal smoothing factor */
/* for each parameter. */
/* If the instrument variance is assumed to be a constant factor */
/* in the sensors, then it would be appropriate to modify the */
/* data weighting rather than the overall smoothness, */
/* since a constant XYZ variance could be transformed into a */
/* per data point L*a*b* variance. */
/* The optimal smoothness factor doesn't appear to have any significant */
/* dependence on the RSPL resolution. */
/* Return an appropriate smoothing factor for the combination of final parameters. */
/* This is a base value that will be multiplied by the extra supplied smoothing factor. */
/* The "Average sample deviation" is a measure of its randomness. */
/* For instance, values that had a +/- 0.1 uniform random error added */
/* to them, would have an average sample deviation of 0.05. */
/* For normally distributed errors, the average deviation is */
/* aproximately 0.564 times the standard deviation. (0.564 * sqrt(variance)) */
/* This table is appropriate for the default rspl algorithm, */
/* and is NOT setup for RSPL_2PASSSMTH or RSPL_EXTRAFIT2 !! */
/* SMOOTH */
/* There are still issues with all this - the level of smoothing actually */
/* depends on the degree of fit of the underlying model - ie. how close */
/* to straight the mapping is. To get actual noise reduction under these */
/* conditions is harder than when there is some curvature to "tension" things. */
/* This is evident is Lab vs. XYZ display profiles, and there is code */
/* in xlut.c that tries to adjust to this. */
/* !!! Possible answer - should be using third order differences */
/* for controlling smoothness, not second order (curvature) ?? */
/* Should adapt smoothing to noise level in different parts of gamut. */
/* Fix scaling smoothing to data range bug! */
/* Smoothness tweak */
static double tweak[21] = {
8.0891733310676571e-263, 1.1269230397087924e+243, 5.5667427967136639e+170,
4.6422059659371074e-072, 4.7573037006103243e-038, 2.2050803446598081e-152,
1.9082109674254010e-094, 1.2362202651281476e+262, 1.8334727652805863e+044,
1.7193993129127580e-139, 8.4028172720870109e-316, 7.7791723264393403e-260,
4.5505694361996285e+198, 1.4450789782663302e+214, 4.8548304485951407e-033,
6.0848773033767158e-153, 2.2014810203887549e+049, 6.0451581453053059e-153,
4.5657997262605343e+233, 1.1415770815909824e+243, 2.0087364177250134e-139
};
#ifndef SMOOTH2
static double opt_smooth(
rspl *s,
int di, /* Dimensions */
int ndp, /* Number of data points */
double ad, /* Average sample deviation (proportion of input range) */
int f /* Output chanel */
) {
int i;
double nc; /* Normalised sample count */
double lsm, sm, tweakf;
/* Lookup that converts the di'th root of the data point count */
/* into the smf table row index */
int ncixN;
int ncix; /* Normalised sample count index */
double ncw; /* Weight of [ncix], 1-weight of [ncix+1] */
int nncixv[4] = { 6, 6, 10, 11 }; /* Number in ncixv[] rows */
double ncixv[4][11] = { /* nc to smf index */
{ 5.0, 10.0, 20.0, 50.0, 100.0, 200.0 },
{ 5.0, 10.0, 20.0, 50.0, 100.0, 200.0 },
{ 2.92, 3.68, 4.22, 5.0, 6.3, 7.94, 10.0, 12.6, 20.0, 50.0 },
{ 2.66, 3.16, 3.76, 4.61, 5.0, 5.48, 6.51, 7.75, 10.0, 20.0, 31.62 }
};
/* Lookup that converts the deviation fraction */
/* into the smf table column index */
int adixN; /* Number in array */
int adix; /* Average deviation count index */
double adw; /* Weight of [adix], 1-weight of [adix+1] */
int nadixv[4] = { 6, 6, 6, 7 }; /* Number in adixv[] rows */
double adixv[4][7] = { /* ad to smf index */
{ 0.0001, 0.0025, 0.005, 0.0125, 0.025, 0.05 },
{ 0.0001, 0.0025, 0.005, 0.0125, 0.025, 0.05 },
{ 0.0001, 0.0025, 0.005, 0.0125, 0.025, 0.05 },
{ 0.0001, 0.0025, 0.005, 0.0075, 0.0125, 0.025, 0.05 }
};
/* New for V1.10, from smtmpp using sRGB, EpsonR1800, Hitachi2112, */
/* Fogra39L, Canon1180, Epson10K (did use EXTRA_SURFACE_SMOOTHING). */
/* Main lookup table, by [di][ncix][adix]: */
/* Values are log of smoothness value. */
static double smf[4][11][7] = {
/* 1D: */
{
/* -r value: 0 0.25% 0.5% 1.25% 2.5% 5% */
/* Tot white N 0% 1% 2% 5% 10% 20% */
/* 5 */ { -5.0, -5.3, -5.2, -4.4, -3.5, -0.8 },
/* 10 */ { -6.4, -5.6, -5.1, -4.5, -4.0, -3.6 },
/* 20 */ { -6.4, -5.9, -5.5, -4.6, -3.9, -3.3 },
/* 50 */ { -6.8, -6.0, -5.6, -4.9, -4.4, -3.7 },
/* 100 */ { -6.9, -6.2, -5.6, -4.9, -4.3, -3.5 },
/* 200 */ { -6.9, -5.9, -5.5, -5.1, -4.7, -4.4 }
},
/* 2D: */
{
/* 0% 1% 2% 5% 10% 20% */
/* 5 */ { -5.0, -5.0, -5.0, -4.8, -4.2, -3.2 },
/* 10 */ { -5.1, -4.9, -4.6, -3.9, -3.3, -2.6 },
/* 20 */ { -5.9, -5.0, -4.6, -4.1, -3.6, -3.1 },
/* 50 */ { -6.7, -5.1, -4.7, -4.2, -3.7, -3.1 },
/* 100 */ { -6.8, -5.0, -4.6, -4.0, -3.6, -3.0 },
/* 200 */ { -6.8, -4.9, -4.4, -3.9, -3.5, -3.1 }
},
/* 3D: */
{
/* 0% 1% 2% 5% 10% 20% */
/* 2.92 */ { -5.2, -5.0, -5.0, -4.9, -3.6, -2.2 },
/* 3.68 */ { -5.5, -5.6, -5.6, -5.2, -4.4, -2.4 },
/* 4.22 */ { -4.7, -4.8, -5.7, -5.9, -5.9, -2.3 },
/* 5.00 */ { -4.1, -4.1, -5.0, -3.8, -3.4, -2.6 },
/* 6.30 */ { -4.8, -4.6, -4.6, -4.1, -3.8, -3.4 },
/* 7.94 */ { -4.7, -4.7, -4.7, -3.8, -3.3, -2.9 },
/* 10.0 */ { -4.7, -4.8, -4.6, -3.9, -3.4, -3.0 },
/* 12.6 */ { -5.2, -4.7, -4.4, -4.0, -3.4, -2.9 },
/* 20.0 */ { -5.5, -5.0, -4.3, -3.6, -3.1, -2.8 },
/* 50.0 */ { -5.1, -4.7, -4.3, -3.8, -3.3, -2.8 }
},
/* 4D: */
{
/* 0% 1% 2% 3%, 5% 10% 20% */
/* 2.66 */ { -5.5, -5.6, -4.9, -4.8, -4.5, -2.8, -3.1 },
/* 3.16 */ { -4.3, -4.2, -4.0, -3.6, -3.2, -2.8, -2.6 },
/* 3.76 */ { -4.3, -4.2, -4.0, -3.8, -3.2, -2.8, -1.5 },
/* 4.61 */ { -4.5, -3.9, -3.5, -3.2, -3.0, -2.4, -1.9 },
/* 5.00 */ { -4.5, -4.3, -3.7, -3.3, -3.0, -2.3, -1.9 },
/* 5.48 */ { -4.7, -4.5, -4.3, -3.9, -3.2, -2.0, -0.9 },
/* 6.51 */ { -4.3, -4.3, -4.1, -3.9, -3.1, -2.3, -1.6 },
/* 7.75 */ { -4.5, -4.4, -3.8, -3.5, -3.1, -2.4, -1.6 },
/* 10.00 */ { -4.9, -4.3, -3.6, -3.2, -2.8, -2.2, -1.6 },
/* 20.00 */ { -4.8, -3.5, -3.0, -2.8, -2.5, -2.2, -1.9 },
/* 31.62 */ { -5.1, -3.7, -3.0, -2.7, -2.3, -1.9, -1.5 }
}
};
/* Real world correction factors go here - */
/* None needed at the moment ? */
double rwf[4] = { 1.0, 1.0, 1.0, 1.0 }; /* Factor for each dimension */
#ifdef DEBUG
printf("opt_smooth called with di = %d, ndp = %d, ad = %e, f = %d\n",di,ndp,ad,f);
#endif
if (di < 1)
di = 1;
nc = pow((double)ndp, 1.0/(double)di); /* Normalised sample count */
if (di > 4)
di = 4;
di--; /* Make di 0..3 */
/* Convert the two input parameters into appropriate */
/* indexes and weights for interpolation. We assume ratiometric scaling. */
/* Number of samples */
ncixN = nncixv[di];
if (nc <= ncixv[di][0]) {
ncix = 0;
ncw = 1.0;
} else if (nc >= ncixv[di][ncixN-1]) {
ncix = ncixN-2;
ncw = 0.0;
} else {
for (ncix = 0; ncix < ncixN; ncix++) {
if (nc >= ncixv[di][ncix] && nc <= ncixv[di][ncix+1])
break;
}
ncw = 1.0 - (log(nc) - log(ncixv[di][ncix]))
/(log(ncixv[di][ncix+1]) - log(ncixv[di][ncix]));
}
adixN = nadixv[di];
if (ad <= adixv[di][0]) {
adix = 0;
adw = 1.0;
} else if (ad >= adixv[di][adixN-1]) {
adix = adixN-2;
adw = 0.0;
} else {
for (adix = 0; adix < adixN; adix++) {
if (ad >= adixv[di][adix] && ad <= adixv[di][adix+1])
break;
}
adw = 1.0 - (log(ad) - log(adixv[di][adix]))
/(log(adixv[di][adix+1]) - log(adixv[di][adix]));
}
/* Lookup & interpolate the log smoothness factor */
#ifdef DEBUG
printf("di = %d, ncix = %d, adix = %d\n",di,ncix,adix);
#endif
lsm = smf[di][ncix][adix] * ncw * adw;
lsm += smf[di][ncix][adix+1] * ncw * (1.0 - adw);
lsm += smf[di][ncix+1][adix] * (1.0 - ncw) * adw;
lsm += smf[di][ncix+1][adix+1] * (1.0 - ncw) * (1.0 - adw);
#ifdef DEBUG
printf("lsm = %f\n",lsm);
#endif
for (tweakf = 0.0, i = 1; i < 21; i++)
tweakf += tweak[i];
tweakf *= tweak[0];
sm = pow(10.0, lsm * tweakf);
/* and correct for the real world with a final tweak table */
sm *= rwf[di];
#ifdef DEBUG
printf("opt_smooth got sm %e before output range adjustment\n",sm);
#endif
#ifndef SMOOTH2
/* This is incorrect, but is built into the tables of releases. */
/* It is one of the things stuffing up XYZ profiles. */
/* Remove it after re-tuning with SMOOTH2 */
sm *= s->d.vw[f]; /* Scale curvature weight for data range */
#endif
#ifdef DEBUG
printf("opt_smooth returning sm %e after output range adjustment\n",sm);
#endif
#ifdef DEBUG
printf("Got log smth %f, returning %1.9f from ncix %d, ncw %f, adix %d, adw %f\n", lsm, sm, ncix, ncw, adix, adw);
#endif
return sm;
}
#else /* Smooth 2 */
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Smooth2 optimal smoothness calculation. */
/*
This is for 3rd order smoothness, and uses a set of fitted
equations rather than a table.
*/
static double opt_smooth(
rspl *s,
int di, /* Dimensions */
int ndp, /* Number of data points */
double ad, /* Average sample deviation (proportion of input range) */
int f /* Output chanel */
) {
int i;
double tweakf;
struct {
double nscale, noffset; /* Number data point scale & offset */
double nmax, nmin; /* Number data point max and min values */
double dscale, doffset; /* Deviation scale & offset */
int l_nid;
} params[4] = {
{ -6.80, 3.50, -2.00, -8.00, 1.50, -0.7 }, /* 1d */
{ -6.00, -7.50, -1.85, -6.40, 1.60, 0.6 }, /* 2d */
{ -0.84, -0.36, -1.68, -3.70, 1.75, 1.85 }, /* 3d */
{ -4.00, 11.20, -0.75, -2.30, 1.55, 2.35 } /* 4d */
};
/* Real world correction factors go here - */
/* None needed at the moment ? */
double rwf[4] = { 0.0, 0.0, 0.0, 0.0 }; /* Log10 factor to add for each dimension */
double lndp; /* log10 of ndp */
double lad; /* log10 of ad */
double lmin; /* log10 of minimum level */
double sm, lsm; /* log10 of smoothness needed */
if (di < 1)
di = 1;
if (di > 4)
di = 4;
di--; /* Make di 0..3 */
if (ad <= 1e-9)
ad = 1e-9;
//printf("~1 opt_smooth2 called with di = %d, nodp = %d, avgdev = %f\n",di,ndp,ad);
lndp = log10(ndp);
lmin = lndp * params[di].nscale + params[di].noffset;
if (lmin > params[di].nmax)
lmin = params[di].nmax;
if (lmin < params[di].nmin)
lmin = params[di].nmin;
//printf("lmin = %f from lndp\n",lmin,lndp);
lad = log10(ad);
lsm = log10(pow(10.0, lmin) + pow(10.0, lad * params[di].dscale + params[di].doffset));
//printf("lsm = %f from lmin %f lad %f dscale %f doff %f\n",lmin,lmin,lad,params[di].dscale,params[di].doffset);
/* and correct for the real world with a final tweak table */
lsm += rwf[di];
for (tweakf = 0.0, i = 1; i < 21; i++)
tweakf += tweak[i];
tweakf *= tweak[0];
sm = pow(10.0, lsm * tweakf);
//printf("Got log smth %f, returning sm %1.9f from di %d, nodp %d, avgdev %f\n", lsm, sm,di+1,ndp,ad);
return sm;
}
#endif /* SMOOTH2 */
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Multi-grid temp structure (mgtmp) routines */
/* Create a new mgtmp. */
/* Solution matricies will be NULL */
static mgtmp *new_mgtmp(
rspl *s, /* associated rspl */
int gres[MXDI], /* resolution to create */
double smooth, /* Smoothing factor */
double avgdev, /* Average deviation to use to set smoothness */
int f, /* output dimension */
int issm /* We are creating a smoothness map */
) {
mgtmp *m;
int di = s->di;
int dno = s->d.no;
int gno, nigc;
int gres_1[MXDI];
int e, g, n, i;
#ifdef AUTOSM
loocv *as = NULL;
#endif
/* Allocate a structure */
if ((m = (mgtmp *) calloc(1, sizeof(mgtmp))) == NULL)
error("rspl: malloc failed - mgtmp");
/* General stuff */
m->s = s;
m->f = f;
/* Grid related */
for (gno = 1, e = 0; e < di; gno *= gres[e], e++)
;
m->g.no = gno;
/* record high, low limits, and width of each grid cell */
m->g.mres = 1.0;
m->g.bres = 0;
for (e = 0; e < s->di; e++) {
m->g.res[e] = gres[e];
gres_1[e] = gres[e] - 1;
m->g.mres *= gres[e];
if (gres[e] > m->g.bres) {
m->g.bres = gres[e];
m->g.brix = e;
}
m->g.l[e] = s->g.l[e];
m->g.h[e] = s->g.h[e];
m->g.w[e] = (s->g.h[e] - s->g.l[e])/(double)(gres[e]-1);
}
m->g.mres = pow(m->g.mres, 1.0/e); /* geometric mean */
/* Compute index coordinate increments into linear grid for each dimension */
/* ie. 1, gres, gres^2, gres^3 */
for (m->g.ci[0] = 1, e = 1; e < di; e++)
m->g.ci[e] = m->g.ci[e-1] * gres[e-1]; /* In grid points */
/* Compute index offsets from base of cube to other corners */
for (m->g.hi[0] = 0, e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++)
m->g.hi[g+i] = m->g.hi[i] + m->g.ci[e]; /* In grid points */
}
/* Number grid cells that contribute to smoothness error */
for (nigc = 1, e = 0; e < di; e++) {
nigc *= gres[e]-2;
}
/* Downsample ipos arrays */
for (e = 0; e < s->di; e++) {
if (s->g.ipos[e] != NULL) {
unsigned int ix;
double val, w;
double inputEnt_1 = (double)(s->g.res[e]-1);
double inputEnt_2 = (double)(s->g.res[e]-2);
if ((m->g.ipos[e] = (double *)calloc(m->g.res[e], sizeof(double))) == NULL)
error("scat: malloc failed - ipos[]");
/* Compute each downsampled position using linear interpolation */
for (n = 0; n < m->g.res[e]; n++) {
double in = (double)n/(m->g.res[e]-1);
val = in * inputEnt_1;
if (val < 0.0)
val = 0.0;
else if (val > inputEnt_1)
val = inputEnt_1;
ix = (unsigned int)floor(val); /* Coordinate */
if (ix > inputEnt_2)
ix = inputEnt_2;
w = val - (double)ix; /* weight */
val = s->g.ipos[e][ix];
m->g.ipos[e][n] = val + w * (s->g.ipos[e][ix+1] - val);
}
}
}
/* Compute curvature weighting for matching intermediate resolutions for */
/* the number of grid points curvature that is accumulated, as well as the */
/* geometric effects of a finer fit to the target surface. */
/* This is all to keep the ratio of sum of smoothness error squared */
/* constant in relationship to the sum of data point error squared. */
for (e = 0; e < di; e++) {
double rsm; /* Resolution smoothness factor */
double smval;
if (s->symdom)
rsm = m->g.res[e]; /* Relative final grid size */
else
rsm = m->g.mres; /* Relative mean final grid size */
/* Compensate for geometric and grid numeric factors */
rsm = pow((rsm-1.0), 4.0); /* Geometric resolution factor for smooth surfaces */
/* (is ^2 for res. * ^2 with error squared) */
rsm /= nigc; /* Average squared non-smoothness */
/* Normal */
if (smooth >= 0.0) {
/* Use auto smoothing map in setup */
// if (sm != NULL) {
// smval = 1.0;
// } else {
/* Table lookup for optimum smoothing factor */
smval = opt_smooth(s, di, s->d.no, avgdev, f);
//printf("~1 opt_smooth returned %e\n",smval);
#ifdef SMOOTH2
m->sf.cw[e] = CW * smooth * smval * rsm;
m->sf.cw2[e] = CW2 * smooth * smval * rsm;
#else
m->sf.cw[e] = smooth * smval * rsm;
//printf("~1 cw[%d] %f = smooth %f * smval %e * rsm %f\n",e,m->sf.cw[e],smooth,smval,rsm);
#endif
/* Special used to calibrate table */
} else {
#ifdef SMOOTH2
m->sf.cw[e] = CW * -smooth * rsm;
m->sf.cw2[e] = CW2 * -smooth * rsm;
#else
m->sf.cw[e] = -smooth * rsm;
#endif
}
}
/* Compute weighting for weak default function grid value */
/* We are trying to keep the effect of the wdf constant with */
/* changes in grid resolution and dimensionality. */
m->wdfw = s->weak * WEAKW/(m->g.no * (double)di);
#ifdef AUTOSM
if (s->ausm) {
if ((m->as = (loocv *) calloc(1, sizeof(loocv))) == NULL)
error("rspl: malloc failed - loocv");
as = m->as;
as->m = m;
/* Allocate space for arrays keeping track of */
/* cells with data points in them. */
if ((as->dlist = ivector(0, dno-1)) == NULL)
error("rspl: malloc of vector dlist failed");
if ((as->vtx_dlist = ivector(0,m->g.no-1)) == NULL)
error("rspl: malloc of vector vtx_dlist failed");
for (i = 0; i < m->g.no; i++)
as->vtx_dlist[i] = -1;
if ((as->dat_dlist = ivector(0, dno-1)) == NULL)
error("rspl: malloc of vector dat_dlist failed");
for (i = 0; i < dno; i++)
as->dat_dlist[i] = -1;
}
#endif
/* Allocate space for auiliary data point related info */
if ((m->d = (struct mgdat *) calloc(dno, sizeof(struct mgdat))) == NULL)
error("rspl: malloc failed - mgtmp");
/* fill in the aux data point info */
/* (We're assuming N-linear interpolation here. */
/* Perhaps we should try simplex too ?) */
for (n = 0; n < dno; n++) {
double we[MXRI]; /* 1.0 - Weight in each dimension */
int ix = 0; /* Index to base corner of surrounding cube in grid points */
/* Figure out which grid cell the point falls into */
for (e = 0; e < di; e++) {
double t;
int mi;
if (s->d.a[n].p[e] < m->g.l[e] || s->d.a[n].p[e] > m->g.h[e]) {
error("rspl: Data point %d outside grid %e <= %e <= %e",
n,m->g.l[e],s->d.a[n].p[e],m->g.h[e]);
}
t = (s->d.a[n].p[e] - m->g.l[e])/m->g.w[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres_1[e]) /* Make sure outer point can't be base */
mi = gres_1[e]-1;
ix += mi * m->g.ci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
}
m->d[n].b = ix;
/* Compute corner weights needed for interpolation */
m->d[n].w[0] = 1.0;
for (e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
m->d[n].w[g+i] = m->d[n].w[i] * we[e];
m->d[n].w[i] *= (1.0 - we[e]);
}
}
#ifdef DEBUG
printf("Data point %d weighting factors = \n",n);
for (e = 0; e < (1 << di); e++) {
printf("%d: %f\n",e,m->d[n].w[e]);
}
#endif /* DEBUG */
#ifdef AUTOSM
if (s->ausm && m->as != NULL) {
/* Add data point to per cell list */
if (as->vtx_dlist[ix] == -1)
as->dlist[as->ndcells++] = ix;
as->dat_dlist[n] = as->vtx_dlist[ix];
as->vtx_dlist[i] = n;
}
#endif /* AUTOSM */
}
/* Set the solution matricies to unalocated */
m->q.A = NULL;
m->q.ixcol = NULL;
m->q.b = NULL;
m->q.x = NULL;
return m;
}
#ifdef AUTOSM
/* Completely free an loocv */
static void free_loocv(loocv *as) {
mgtmp *m = as->m;
rspl *s = m->s;
free_ivector(as->dlist, 0, s->d.no-1);
free_ivector(as->vtx_dlist, 0, m->g.no-1);
free_ivector(as->dat_dlist, 0, s->d.no-1);
free(as);
}
#endif
/* Completely free an mgtmp */
static void free_mgtmp(mgtmp *m) {
int e, di = m->s->di, gno = m->g.no;
for (e = 0; e < m->s->di; e++) {
if (m->g.ipos[e] != NULL)
free(m->g.ipos[e]);
}
free_dvector(m->q.x,0,gno-1);
free_dvector(m->q.b,0,gno-1);
free((void *)m->q.ixcol);
free_dmatrix(m->q.A,0,gno-1,0,m->q.acols-1);
free((void *)m->d);
#ifdef AUTOSM
if (m->as != NULL)
free_loocv(m->as);
#endif
free((void *)m);
}
#ifdef NEVER
/* Return the curreb A[][] * x[] value. */
/* (We use this to determine smoothness factor sensitivity for each */
/* point with just smoothness weighting factors present) */
static double smth_err
(
double **A, /* Sparse A[][] matrix */
double *x, /* x[] matrix */
int gno, /* Total number of unknowns */
int acols, /* Use colums in A[][] */
int *xcol /* sparse expansion lookup array */
) {
int i, k;
double rv;
/* Compute norm of b - A * x */
rv = 0.0;
for (i = 0; i < gno; i++) {
int k0,k1,k2,k3;
double sm = 0.0;
/* Diagonal and to right in 4's */
for (k = 0, k3 = i + xcol[k]; k < acols && k3 < gno; k++, k3 = i + xcol[k]) {
sm += A[i][k] * x[k3];
//printf("i %d: A[%d][%d] %f * x[%d] %f = %f\n", i, i, k, A[i][k], k3, x[k3], A[i][k] * x[k3]);
}
/* Left of diagonal in 4's */
/* (We take advantage of the symetry: what would be in the row */
/* to the left is repeated in the column above.) */
for (k = 1, k3 = i-xcol[k]; k < acols && k3 >= 0; k++, k3 = i-xcol[k]) {
sm += A[k3][k] * x[k3];
//printf("i %d: A[%d][%d] %f * x[%d] %f = %f\n", i, k3, k, A[k3][k], k3, x[k3], A[k3][k] * x[k3]);
}
rv += sm * sm;
}
return rv;
}
/* Print out the smoothness error sensitivity for each data location */
static void
print_smsens(mgtmp *m) {
rspl *s = m->s;
int di = s->di;
int gno = m->g.no, *gres = m->g.res, *gci = m->g.ci;
int i;
double **A = m->q.A; /* A matrix of interpoint weights */
int acols = m->q.acols; /* A matrix columns needed */
int *xcol = m->q.xcol; /* A array column translation from packed to sparse index */
double *x = m->q.x; /* x vector for result */
for (i = 0; i < gno; i++)
x[i] = 0.0;
for (i = 0; i < gno; i++) {
double ss;
x[i] = 1.0;
ss = smth_err(A, x, gno, acols, xcol);
x[i] = 0.0;
printf("Smoothness sens %d = %e\n",i,ss);
}
}
#endif /* NEVER */
/* Initialise the A[][] and b[] matricies ready to solve, given f */
/* (Can be used to re-initialize an mgtmp for changing curve/extra fit factors) */
/* We are setting up the matrix equation Ax = b to solve, where the aim is */
/* to solve the energy minimization problem by setting up a series of interconnected */
/* equations for each grid node value (x) in which the partial derivative */
/* of the equation to be minimized is zero. The A matrix holds the dependence on */
/* the grid points with regard to smoothness and interpolation */
/* fit to the scattered data points, while b holds constant values (e.g. the data */
/* point determined boundary conditions). A[][] stores the packed sparse triangular matrix. */
/*
The overall equation to be minimized is:
sum(curvature errors at each grid point) ^ 2
+ sum(data interpolation errors) ^ 2
The way this is solved is to take the partial derivative of
the above with respect to each grid point value, and simultaineously
solve all the partial derivative equations for zero.
Each row of A[][] and b[] represents the cooeficients of one of
the partial derivative equations (it does NOT correspond to one
grid points curvature etc.). Because the partial derivative
of any sum term that does not have the grid point in question in it
will have a partial derivative of zero, each row equation consists
of just those terms that have that grid points value in it,
with the vast majority of the sum terms omitted.
*/
static void setup_solve(
mgtmp *m, /* initialized grid temp structure */
mgtmp *sm /* Optional smoothing map for ausm mode */
) {
rspl *s = m->s;
int di = s->di;
int gno = m->g.no, dno = s->d.no;
int *gres = m->g.res, *gci = m->g.ci;
int f = m->f; /* Output dimensions being worked on */
double **A = m->q.A; /* A matrix of interpoint weights */
int acols = m->q.acols; /* A matrix packed columns needed */
int *xcol = m->q.xcol; /* A array column translation from packed to sparse index */
int *ixcol = m->q.ixcol; /* A array column translation from sparse to packed index */
double *b = m->q.b; /* b vector for RHS of simultabeous equation */
double *x = m->q.x; /* x vector for LHS of simultabeous equation */
int e, n,i,k;
double oawt; /* Overall adjustment weight */
double nbsum; /* normb sum */
#ifdef DEBUG
printf("setup_solve got sm = %p\n",sm);
#endif
/* Allocate and init the A array column sparse packing lookup and inverse. */
/* Note that this only works for a minumum grid resolution of 4/5. */
/* The sparse di dimension region allowed for is a +/-1 cube around the point */
/* question, plus +/-2 offsets in axis direction only, */
/* plus +/-3 offset in axis directions if SMOOTH2 is defined. */
if (A == NULL) { /* Not been allocated previously */
#ifdef SMOOTH2
DCOUNT(gc, MXDIDO, di, -3, -3, 4); /* Step through +/- 3 cube offset */
#else
DCOUNT(gc, MXDIDO, di, -2, -2, 3); /* Step through +/- 2 cube offset */
#endif
int ix; /* Grid point offset in grid points */
acols = 0;
DC_INIT(gc);
while (!DC_DONE(gc)) {
int n3 = 0, n2 = 0, nz = 0;
/* Detect +/-3 +/-2 and 0 elements */
for (k = 0; k < di; k++) {
if (gc[k] == 3 || gc[k] == -3)
n3++;
if (gc[k] == 2 || gc[k] == -2)
n2++;
if (gc[k] == 0)
nz++;
}
/* Accept only if doesn't have a +/-2, */
/* or if it has exactly one +/-2 and otherwise 0 */
if ((n3 == 0 && n2 == 0)
|| (n2 == 1 && nz == (di-1))
|| (n3 == 1 && nz == (di-1))
) {
for (ix = 0, k = 0; k < di; k++)
ix += gc[k] * gci[k]; /* Multi-dimension grid offset */
if (ix >= 0) {
if (acols >= XCOLPMAX)
error("rspl internal: exceeded xcol bounds");
xcol[acols++] = ix; /* We only store half, due to symetry */
}
}
DC_INC(gc);
}
ix = xcol[acols-1] + 1; /* Number of expanded rows */
/* Create inverse lookup */
if (ixcol == NULL) {
if ((ixcol = (int *) malloc(ix * sizeof(int))) == NULL)
error("rspl malloc failed - ixcol");
}
for (k = 0; k < ix; k++)
ixcol[k] = -0x7fffffff; /* Mark rows that aren't allowed for */
for (k = 0; k < acols; k++)
ixcol[xcol[k]] = k; /* Set inverse lookup */
#ifdef DEBUG
printf("Sparse array expansion = \n");
for (k = 0; k < acols; k++) {
printf("%d: %d\n",k,xcol[k]);
}
printf("\nSparse array encoding = \n");
for (k = 0; k < ix; k++) {
printf("%d: %d\n",k,ixcol[k]);
}
#endif /* DEBUG */
/* We store the packed diagonals of the sparse A matrix */
/* If re-initializing, zero matrices, else allocate zero'd matricies */
if ((A = dmatrixz(0,gno-1,0,acols-1)) == NULL) {
error("Malloc of A[][] failed with [%d][%d]",gno,acols);
}
if ((b = dvectorz(0,gno)) == NULL) {
free_dmatrix(A,0,gno-1,0,acols-1);
error("Malloc of b[] failed");
}
if ((x = dvector(0,gno-1)) == NULL) {
free_dmatrix(A,0,gno-1,0,acols-1);
free_dvector(b,0,gno-1);
error("Malloc of x[] failed");
}
/* Stash in the mgtmp */
m->q.A = A;
m->q.b = b;
m->q.x = x;
m->q.acols = acols;
m->q.ixcol = ixcol;
} else { /* re-initializing, zero matrices */
for (i = 0; i < gno; i++)
for (k = 0; k < acols; k++) {
A[i][k] = 0.0;
}
for (i = 0; i < gno; i++)
b[i] = 0.0;
}
/* Compute adjustment cooeficient */
{
for (oawt = 0.0, i = 1; i < 21; i++)
oawt += wvals[i];
oawt *= wvals[0];
}
/* Production version, without extra edge weight */
/* Accumulate curvature dependent factors to the triangular A matrix. */
/* Because it's triangular, we compute and add in all the weighting */
/* factors at and to the right of each cell. */
/* The ipos[] factor is to allow for the possibility that the */
/* grid spacing may be non-uniform in the colorspace where the */
/* function being modelled is smooth. Our curvature computation */
/* needs to make allowance for this fact in computing the */
/* node value differences that equate to zero curvature. */
/*
The old curvature fixed grid spacing equation was:
ki * (u[i-1] - 2 * u[i] + u[i+1])^2
with derivatives wrt each node:
ki-1 * 1 * 2 * eqn(i-1)
ki * -2 * 2 * eqn(i)
ki+1 * 1 * 2 * eqn(i+1)
Allowing for scaling of each grid difference by w[i-1] and w[i],
where w[i-1] corresponds to the width of cell i-1 to i,
and w[i] corresponds to the width of cell i to i+1:
ki * (w[i-1] * (u[i-1] - u[i]) + w[i] * (u[i+1] - u[i[))^2
= ki * (w[i-1] * u[i-1] - (w[i-1] + w[i]) * u[i]) + w[i] * u[i+1])^2
with derivatives wrt each node:
ki-1 * w[i-1] * w[i-1] * u[i-1]
ki * -(w[i-1] + w[i]) * -(w[i-1] + w[i]) * u[i])
ki+1 * w[i] * w[i] * u[i+1]
*/
#define V17 /* Enable V1.7 code */
{ /* Setting this up from scratch */
// double dwtw[MXDIDO]; /* Density weight normalizer = average grid widths */
ECOUNT(gc, MXDIDO, di, 0, gres, 0);
#ifdef NEVER /* We're not using density adjustment */
/* Compute the ipos[] weight normalisation factors */
for (e = 0; e < di; e++) {
if (m->g.ipos[e] == NULL)
continue;
dwtw[e] = 0.0;
for (i = 1; i < gres[e]; i++) {
double w;
w = fabs(m->g.ipos[e][i] - m->g.ipos[e][i-1]);
//printf("[%d][%d] w = %f\n",e,i,w);
// dwtw[e] += w;
dwtw[e] += 1.0/w;
}
dwtw[e] /= (gres[e] - 1.0); /* Average weights */
dwtw[e] = 1.0/dwtw[e];
//printf("dwtw[%d] = %f\n",e,dwtw[e]);
}
#endif
EC_INIT(gc);
for (i = 0; i < gno; i++) {
double smf = 1.0;
#ifdef AUTOSM
/* Lookup smoothing factor map */
if (sm != NULL) {
double p[MXDI];
double avgdev;
for (e = 0; e < di; e++)
p[e] = gc[e]/(gres[e] - 1.0);
avgdev = mgtmp_interp(sm, p);
smf = opt_smooth(s, di, s->d.no, avgdev, f);
}
#endif /* AUTOSM */
for (e = 0; e < di; e++) { /* For each curvature direction */
double dw, w0, w1, tt;
double cw = smf * 2.0 * m->sf.cw[e]; /* Overall curvature weight */
//printf("~1 cw %f = smf %f * 2 * sd.cw[%d] %f\n",cw,smf,e,m->sf.cw[e]);
/* Add influence on Curvature of cell below */
if ((gc[e]-2) >= 0 && (gc[e]+0) < gres[e]) {
/* double kw = cw * gp[UO_C(e,1)].k; */ /* Cell bellow k value */
double kw = cw;
w0 = w1 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]-1] - m->g.ipos[e][gc[e]-2]);
w1 = fabs(m->g.ipos[e][gc[e]-0] - m->g.ipos[e][gc[e]-1]);
//printf("raw [%d][%d] w0 = %f, w1 = %f\n",gc[e],i,w0,w1);
tt = 0.5 * (w0 + w1); /* Local full normalisation */
w0 = tt/w0;
w1 = tt/w1;
//printf("[%d][%d] w1 = %f\n",gc[e],i,w1);
}
A[i][ixcol[0]] += w1 * w1 * kw;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
}
/* Add influence on Curvature of this cell */
if ((gc[e]-1) >= 0 && (gc[e]+1) < gres[e]) {
/* double kw = cw * gp->k; */ /* This cells k value */
double kw = cw;
w0 = w1 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]-0] - m->g.ipos[e][gc[e]-1]);
w1 = fabs(m->g.ipos[e][gc[e]+1] - m->g.ipos[e][gc[e]-0]);
//printf("raw [%d][%d] w0 = %f, w1 = %f\n",gc[e],i,w0,w1);
tt = 0.5 * (w0 + w1);
w0 = tt/w0;
w1 = tt/w1;
//printf("[%d][%d] w0 = %f, w1 = %f\n",gc[e],i,w0,w1);
}
A[i][ixcol[0]] += -(w0 + w1) * -(w0 + w1) * kw;
A[i][ixcol[gci[e]]] += -(w0 + w1) * w1 * kw * oawt;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
//printf("A[%d][%d] = %f\n",i,1,A[i][ixcol[gci[e]]]);
}
/* Add influence on Curvature of cell above */
if ((gc[e]+0) >= 0 && (gc[e]+2) < gres[e]) {
/* double kw = cw * gp[UO_C(e,2)].k; */ /* Cell above k value */
double kw = cw;
w0 = w1 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]+1] - m->g.ipos[e][gc[e]+0]);
w1 = fabs(m->g.ipos[e][gc[e]+2] - m->g.ipos[e][gc[e]+1]);
//printf("raw [%d][%d] w0 = %f, w1 = %f\n",gc[e],i,w0,w1);
tt = 0.5 * (w0 + w1);
w0 = tt/w0;
w1 = tt/w1;
//printf("[%d][%d] w0 = %f, w1 = %f\n",gc[e],i,w0,w1);
}
A[i][ixcol[0]] += w0 * w0 * kw;
A[i][ixcol[1 * gci[e]]] += w0 * -(w0 + w1) * kw;
A[i][ixcol[2 * gci[e]]] += w0 * w1 * kw;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
//printf("A[%d][%d] = %f\n",i,1,A[i][ixcol[gci[e]]]);
//printf("A[%d][%d] = %f\n",i,2,A[i][ixcol[2 * gci[e]]]);
}
}
EC_INC(gc);
}
}
#ifdef DEBUG
printf("After adding 2nd order smoothing:\n");
for (i = 0; i < gno; i++) {
int *xcol = m->q.xcol;
printf("b[%d] = %f\n",i,b[i]);
for (k = acols-1; k > 0; k--) {
if ((i - xcol[k]) >= 0)
printf("A[%d][-%d] = %f\n",i,k,A[i-xcol[k]][k]);
}
for (k = 0; k < acols && (i + xcol[k]) < gno; k++)
printf("A[%d][%d] = %f\n",i,k,A[i][k]);
printf("\n");
}
#endif /* DEBUG */
#ifdef SMOOTH2
/* Accumulate curvature 2nd order dependent factors to the triangular A matrix. */
/* Because it's triangular, we compute and add in all the weighting */
/* factors at and to the right of each cell. */
/* The ipos[] factor is to allow for the possibility that the */
/* grid spacing may be non-uniform in the colorspace where the */
/* function being modelled is smooth. Our curvature computation */
/* needs to make allowsance for this fact in computing the */
/* node value differences that equate to zero curvature. */
/*
The old curvature fixed grid spacing equation was:
ki * (u[i-1] - 3 * u[i] + 3 * u[i+1] - u[i+2] )^2
with derivatives wrt each node:
ki-1 * 1 * 2 * eqn(i)
ki * -3 * 2 * eqn(i)
ki+1 * 3 * 2 * eqn(i)
ki+2 * 1 * 2 * eqn(i)
Allowing for scaling of each grid difference by w[i-1], w[i] and w[i+1],
where w[i-1] corresponds to the width of cell i-1 to i,
and w[i] corresponds to the width of cell i to i+1:
where w[i+1] corresponds to the width of cell i+1 to i+2,
w' = 1/w
ki * ( w'[i+1] * (u[i+2] - u[i+1])
- 2 * w'[i] * (u[i+1] - u[i])
+ w'[i-1] * (u[i] - u[i-1]) )^2
multiply out to group the node values:
ki * ( w'[i+1] * u[i+2]
- (w'[i+1] + 2 * w'[i]) * u[i+1]
+ (2 * w'[i] + w'[i-1]) * u[i]
+ w'[i-1] * u[i-1] )^2
with derivatives wrt each node:
~~~
*/
{ /* Setting this up from scratch */
double dwtw[MXDIDO]; /* Density weight normalizer */
ECOUNT(gc, MXDIDO, di, 0, gres, 0);
EC_INIT(gc);
/* Compute the ipos[] weight normalisation factors */
for (e = 0; e < di; e++) {
if (m->g.ipos[e] == NULL)
continue;
dwtw[e] = 0.0;
for (i = 1; i < gres[e]; i++) {
double w;
w = fabs(m->g.ipos[e][i] - m->g.ipos[e][i-1]);
//printf("[%d][%d] w = %f\n",e,i,w);
dwtw[e] += w;
}
dwtw[e] /= (gres[e] - 1.0); /* Average weights */
//printf("dwtw[%d] = %f\n",e,dwtw[e]);
}
/* We setup the equation to be solved for each grid point. */
/* Each grid point participates in four curvature equations, */
/* one centered on the grid line below, one that it's the center of, */
/* one centered on the grid line above, and one centered on the */
/* grid line two above. The equation setup is for the differential */
/* for each of these 2nd order curvature equations to be zero. */
for (i = 0; i < gno; i++) {
double smf = 1.0;
#ifdef AUTOSM
/* Lookup smoothing factor map */
if (sm != NULL) {
double p[MXDI];
double avgdev;
for (e = 0; e < di; e++)
p[e] = gc[e]/(gres[e] - 1.0);
avgdev = mgtmp_interp(sm, p);
smf = opt_smooth(s, di, s->d.no, avgdev, f);
}
#endif /* AUTOSM */
for (e = 0; e < di; e++) {
double w0, w1, w2, tt;
double cw = smf * 2.0 * m->sf.cw2[e]; /* Overall curvature weight */
//printf("gno %d dim %d cw %e\n",i,e,cw);
/* Add influence on Curvature eqation of cell below */
if ((gc[e]-3) >= 0 && (gc[e]+0) < gres[e]) {
/* double kw = cw * gp[UO_C(e,1)].k; */ /* Cell bellow k value */
double kw = cw;
w0 = w1 = w2 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]-2] - m->g.ipos[e][gc[e]-3]);
w1 = fabs(m->g.ipos[e][gc[e]-1] - m->g.ipos[e][gc[e]-2]);
w2 = fabs(m->g.ipos[e][gc[e]+0] - m->g.ipos[e][gc[e]-1]);
tt = 1.0/3.0 * (w0 + w1 + w2);
w0 = tt/w0;
w1 = tt/w1;
w2 = tt/w2;
}
A[i][ixcol[0]] += w2 * w2 * kw;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
}
/* Add influence on Curvature of this cell */
if ((gc[e]-2) >= 0 && (gc[e]+1) < gres[e]) {
/* double kw = cw * gp->k; */ /* This cells k value */
double kw = cw;
w0 = w1 = w2 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]-1] - m->g.ipos[e][gc[e]-2]);
w1 = fabs(m->g.ipos[e][gc[e]+0] - m->g.ipos[e][gc[e]-1]);
w2 = fabs(m->g.ipos[e][gc[e]+1] - m->g.ipos[e][gc[e]+0]);
tt = 1.0/3.0 * (w0 + w1 + w2);
w0 = tt/w0;
w1 = tt/w1;
w2 = tt/w2;
}
A[i][ixcol[0]] += -(2.0 * w1 + w2) * -(2.0 * w1 + w2) * kw;
A[i][ixcol[gci[e]]] += -(2.0 * w1 + w2) * w2 * kw;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
//printf("A[%d][%d] = %f\n",i,1,A[i][ixcol[gci[e]]]);
}
/* Add influence on Curvature of cell above */
if ((gc[e]-1) >= 0 && (gc[e]+2) < gres[e]) {
/* double kw = cw * gp[UO_C(e,2)].k; */ /* Cell above k value */
double kw = cw;
w0 = w1 = w2 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]+0] - m->g.ipos[e][gc[e]-1]);
w1 = fabs(m->g.ipos[e][gc[e]+1] - m->g.ipos[e][gc[e]+0]);
w2 = fabs(m->g.ipos[e][gc[e]+2] - m->g.ipos[e][gc[e]+1]);
tt = 1.0/3.0 * (w0 + w1 + w2);
w0 = tt/w0;
w1 = tt/w1;
w2 = tt/w2;
}
A[i][ixcol[0]] += (w0 + 2.0 * w1) * (w0 + 2.0 * w1) * kw;
A[i][ixcol[1 * gci[e]]] += (w0 + 2.0 * w1) * -(2.0 * w1 + w2) * kw;
A[i][ixcol[2 * gci[e]]] += (w0 + 2.0 * w1) * w2 * kw * oawt;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
//printf("A[%d][%d] = %f\n",i,1,A[i][ixcol[gci[e]]]);
//printf("A[%d][%d] = %f\n",i,2,A[i][ixcol[2 * gci[e]]]);
}
/* Add influence on Curvature of cell two above */
if ((gc[e]+0) >= 0 && (gc[e]+3) < gres[e]) {
/* double kw = cw * gp[UO_C(e,3)].k; */ /* Cell two above k value */
double kw = cw;
w0 = w1 = w2 = 1.0;
if (m->g.ipos[e] != NULL) {
w0 = fabs(m->g.ipos[e][gc[e]+1] - m->g.ipos[e][gc[e]+0]);
w1 = fabs(m->g.ipos[e][gc[e]+2] - m->g.ipos[e][gc[e]+1]);
w2 = fabs(m->g.ipos[e][gc[e]+3] - m->g.ipos[e][gc[e]+2]);
tt = 1.0/3.0 * (w0 + w1 + w2);
w0 = tt/w0;
w1 = tt/w1;
w2 = tt/w2;
}
A[i][ixcol[0]] += -w0 * -w0 * kw;
A[i][ixcol[1 * gci[e]]] += -w0 * (w0 + 2.0 * w1) * kw;
A[i][ixcol[2 * gci[e]]] += -w0 * -(2.0 * w1 + w2) * kw;
A[i][ixcol[3 * gci[e]]] += -w0 * w2 * kw;
//printf("A[%d][%d] = %f\n",i,0,A[i][ixcol[0]]);
//printf("A[%d][%d] = %f\n",i,1,A[i][ixcol[gci[e]]]);
//printf("A[%d][%d] = %f\n",i,2,A[i][ixcol[2 * gci[e]]]);
//printf("A[%d][%d] = %f\n",i,3,A[i][ixcol[3 * gci[e]]]);
}
}
EC_INC(gc);
}
}
#ifdef DEBUG
printf("After adding 3rd order smoothing:\n");
for (i = 0; i < gno; i++) {
int *xcol = m->q.xcol;
printf("b[%d] = %f\n",i,b[i]);
for (k = acols-1; k > 0; k--) {
if ((i - xcol[k]) >= 0)
printf("A[%d][-%d] = %f\n",i,k,A[i-xcol[k]][k]);
}
for (k = 0; k < acols && (i + xcol[k]) < gno; k++)
printf("A[%d][%d] = %f\n",i,k,A[i][k]);
printf("\n");
}
#endif /* DEBUG */
#ifdef DEBUG
printf("After adding 2nd and 3rd order smoothing equations:\n");
for (i = 0; i < gno; i++) {
printf("b[%d] = %f\n",i,b[i]);
for (k = 0; k < acols; k++) {
printf("A[%d][%d] = %f\n",i,k,A[i][k]);
}
printf("\n");
}
#endif /* DEBUG */
#endif /* SMOOTH2 */
nbsum = 0.0; /* Zero sum of b[] squared */
/* Accumulate weak default function factors. These are effectively a */
/* weak "data point" exactly at each grid point. */
/* (Note we're not currently doing this in a cache friendly order, */
/* and we're calling the function once for each output component..) */
if (s->dfunc != NULL && f >= 0) { /* Setting this up from scratch */
double iv[MXDI], ov[MXDO];
ECOUNT(gc, MXDIDO, di, 0, gres, 0);
EC_INIT(gc);
for (i = 0; i < gno; i++) {
double d, tt;
/* Get weak default function value for this grid point */
for (e = 0; e < s->di; e++)
iv[e] = m->g.l[e] + gc[e] * m->g.w[e]; /* Input sample values */
s->dfunc(s->dfctx, ov, iv);
/* Compute values added to matrix */
d = 2.0 * m->wdfw;
tt = d * ov[f]; /* Change in data component */
nbsum += (2.0 * b[i] + tt) * tt; /* += (b[i] + tt)^2 - b[i]^2 */
b[i] += tt; /* New data component value */
A[i][0] += d; /* dui component to itself */
EC_INC(gc);
}
#ifdef DEBUG
printf("After adding weak default equations:\n");
for (i = 0; i < gno; i++) {
printf("b[%d] = %f\n",i,b[i]);
for (k = 0; k < acols; k++) {
printf("A[%d][%d] = %f\n",i,k,A[i][k]);
}
printf("\n");
}
#endif /* DEBUG */
}
/* Accumulate data point dependent factors */
for (n = 0; n < dno; n++) { /* Go through all the data points */
int j,k;
int bp = m->d[n].b; /* index to base grid point in grid points */
/* For each point in the cube as the base grid point, */
/* add in the appropriate weighting for its weighted neighbors. */
for (j = 0; j < (1 << di); j++) { /* Binary sequence */
double d, w, tt;
int ai;
ai = bp + m->g.hi[j]; /* A matrix index */
w = m->d[n].w[j]; /* Base point grid weight */
d = 2.0 * s->d.a[n].k[f] * w; /* (2.0, w are derivtv factors, k data pnt wgt) */
tt = d * s->d.a[n].v[f]; /* Change in data component */
nbsum += (2.0 * b[ai] + tt) * tt; /* += (b[ai] + tt)^2 - b[ai]^2 */
b[ai] += tt; /* New data component value */
A[ai][0] += d * w; /* dui component to itself */
/* For all the other simplex points ahead of this one, */
/* add in linear interpolation derivative weightings */
for (k = j+1; k < (1 << di); k++) { /* Binary sequence */
int ii;
ii = ixcol[m->g.hi[k] - m->g.hi[j]]; /* A matrix column index */
A[ai][ii] += d * m->d[n].w[k]; /* dui component due to ui+1 */
}
}
}
/* Compute norm of b[] from sum of squares */
nbsum = sqrt(nbsum);
if (nbsum < 1e-4)
nbsum = 1e-4;
m->q.normb = nbsum;
#ifdef DEBUG
printf("After adding data point equations:\n");
for (i = 0; i < gno; i++) {
printf("b[%d] = %f\n",i,b[i]);
for (k = 0; k < acols; k++) {
printf("A[%d][%d] = %f\n",i,k,A[i][k]);
}
printf("\n");
}
#endif /* DEBUG */
// exit(0);
}
#ifdef AUTOSM
~~~~9999
#endif
#ifdef AUTOSM
/* Given that we've done a complete fit at the current resolution, */
/* compute the error of each data point. */
/* This is used to compute a smoothness factor map */
static void comp_fit_errors(
mgtmp *m /* Current resolution mgtmp */
) {
rspl *s = m->s;
int n;
int dno = s->d.no;
int di = s->di;
double *x = m->q.x; /* Grid solution values */
int f = m->f; /* Output dimensions being worked on */
double fea = 0.0; /* Average value */
/* Compute error for each data point */
for (n = 0; n < dno; n++) {
int j;
int bp = m->d[n].b; /* index to base grid point in grid points */
double val; /* Current interpolated value */
double err;
double gain = 1.0;
/* Compute the interpolated grid value for this data point */
for (val = 0.0, j = 0; j < (1 << di); j++) /* Binary sequence */
val += m->d[n].w[j] * x[bp + m->g.hi[j]];
err = s->d.a[n].v[f] - val;
err *= 0.8;
// s->d.a[n].fe = fabs(err);
//printf("~1 data %d fe = %f\n",n,s->d.a[n].fe);
fea += s->d.a[n].fe;
}
fea /= (double)dno;
// s->d.fea = fea; /* Average fit error */
}
#endif /* AUTOSM */
/* Return an interpolayed value */
static double mgtmp_interp(
mgtmp *m,
double p[MXDI] /* Input coord in normalised grid forms */
) {
rspl *s = m->s;
int di = s->di;
int e, n;
double we[MXRI]; /* 1.0 - Weight in each dimension */
double gw[POW2MXRI]; /* weight for each grid cube corner */
double *gp; /* Pointer to x2[] grid cube base */
double val;
/* Figure out which grid cell the point falls into */
{
double t;
int mi;
gp = m->q.x; /* Base of solution array */
for (e = 0; e < di; e++) {
t = (double)p[e] * (m->g.res[e] - 1.0);
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= (m->g.res[e] - 1))
mi = m->g.res[e] - 2;
gp += mi * m->g.ci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
}
}
/* Compute corner weights needed for interpolation */
{
int i, g;
gw[0] = 1.0;
for (e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
gw[g+i] = gw[i] * we[e];
gw[i] *= (1.0 - we[e]);
}
}
}
/* Compute the output values */
{
int i;
val = 0.0; /* Zero output value */
for (i = 0; i < (1 << di); i++) { /* For all corners of cube */
val += gw[i] * gp[m->g.hi[i]];
}
}
return val;
}
/* Transfer a solution from one mgtmp to another */
/* (We assume that they are for the same problem) */
static void init_soln(
mgtmp *m1, /* Destination */
mgtmp *m2 /* Source */
) {
rspl *s = m1->s;
int di = s->di;
int gno = m1->g.no;
int e, n;
ECOUNT(gc, MXDIDO, di, 0, m1->g.res, 0); /* Counter for output points */
/* For all output grid points */
EC_INIT(gc);
for (n = 0; n < gno; n++) {
double p[MXRI]; /* Grid relative location */
for (e = 0; e < di; e++)
p[e] = (double)gc[e]/(m1->g.res[e] - 1.0);
m1->q.x[n] = mgtmp_interp(m2, p);
EC_INC(gc);
}
}
#ifdef AUTOSM
#ifndef NEVER // Debug
/* Plot the 0'th dimension response */
void plot_mgtmp1(mgtmp *m) {
int i;
double xx[100];
double yy[100];
double p[MXDI];
for (i = 0; i < m->s->di; i++)
p[i] = 0.0;
for (i = 0; i < 100; i++) {
xx[i] = p[0] = (double)i/99.0;
yy[i] = mgtmp_interp(m, p);
}
do_plot(xx, yy, NULL, NULL, 100);
}
#endif /* NEVER */
#endif /* AUTOSM */
/* - - - - - - - - - - - - - - - - - - - -*/
static double one_itter1(cj_arrays *ta, double **A, double *x, double *b, double normb,
int gno, int acols, int *xcol, int di, int *gres, int *gci,
int max_it, double tol);
static void one_itter2(double **A, double *x, double *b, int gno, int acols, int *xcol,
int di, int *gres, int *gci, double ovsh);
static double soln_err(double **A, double *x, double *b, double normb, int gno, int acols, int *xcol);
static double cj_line(cj_arrays *ta, double **A, double *x, double *b, int gno, int acols,
int *xcol, int sof, int nid, int inc, int max_it, double tol);
/* Solve scattered data to grid point fit */
static void
solve_gres(mgtmp *m, cj_arrays *ta, double tol, int final)
{
rspl *s = m->s;
int di = s->di;
int gno = m->g.no, *gres = m->g.res, *gci = m->g.ci;
int i;
double **A = m->q.A; /* A matrix of interpoint weights */
int acols = m->q.acols; /* A matrix columns needed */
int *xcol = m->q.xcol; /* A array column translation from packed to sparse index */
double *b = m->q.b; /* b vector for RHS of simultabeous equation */
double *x = m->q.x; /* x vector for result */
/*
* The regular spline fitting problem to be solved here strongly
* resembles those involved in solving partial differential equation
* problems. The scattered data points equate to boundary conditions,
* while the smoothness criteria equate to partial differential equations.
*/
/*
* There are many approaches that can be used to solve the
* symetric positive-definite system Ax = b, where A is a
* sparse diagonal matrix with fringes. A direct method
* would be Cholesky decomposition, and this works well for
* the 1D case (no fringes), but for more than 1D, it generates
* fill-ins between the fringes. Given that the widest spaced
* fringes are at 2 * gres ^ (dim-1) spacing, this leads
* to an unacceptable storage requirement for A, at the resolutions
* and dimensions needed in color correction.
*
* The approaches that minimise A storage are itterative schemes,
* such as Gauss-Seidel relaxation, or conjugate-gradient methods.
*
* There are two methods allowed for below, depending on the
* value of JITTERS.
* If JITTERS is non-zero, then there will be JITTERS passes of
* a combination of multi-grid, Gauss-Seidel relaxation,
* and conjugate gradient.
*
* The outermost loop will use a series of grid resolutions that
* approach the final resolution. Each solution gives us a close
* starting point for the next higher resolution.
*
* The middle loop, uses Gauss-Seidel relaxation to approach
* the desired solution at a given grid resolution.
*
* The inner loop can use the conjugate-gradient method to solve
* a line of values simultaniously in a particular dimension.
* All the lines in each dimension are processed in red/black order
* to optimise convergence rate.
*
* (conjugate gradient seems to be slower than pure relaxation, so
* it is not currently used.)
*
* If JITTERS is zero, then a pure Gauss-Seidel relaxation approach
* is used, with the solution elements being updated in RED-BLACK
* order. Experimentation seems to prove that this is the overall
* fastest approach.
*
* The equation Ax = b solves the fitting for the derivative of
* the fit error == 0. The error metric used is the norm(b - A * x)/norm(b).
* I'm not sure if that is the best metric for the problem at hand though.
* b[] is only non-zero where there are scattered data points (or a weak
* default function), so the error metric is being normalised to number
* of scattered data points. Perhaps normb should always be == 1.0 ?
*
* The norm(b - A * x) is effectively the RMS error of the derivative
* fit, so it balances average error and peak error, but another
* approach might be to work on peak error, and apply Gauss-Seidel relaxation
* to grid points in peak error order (ie. relax the top 10% of grid
* points each itteration round) ??
*
*/
/* Note that we process the A[][] sparse columns in compact form */
#ifdef DEBUG_PROGRESS
printf("Target tol = %e\n",tol);
#endif
/* If the number of point is small, or it is just one */
/* dimensional, solve it more directly. */
if (m->g.bres <= 4) { /* Don't want to multigrid below this */
/* Solve using just conjugate-gradient */
cj_line(ta, A, x, b, gno, acols, xcol, 0, gno, 1, 10 * gno, tol);
#ifdef DEBUG_PROGRESS
printf("Solved at res %d using conjugate-gradient\n",gres[0]);
#endif
} else { /* Try relax till done */
double lerr = 1.0, err = tol * 10.0, derr, ovsh = 1.0;
int jitters = JITTERS;
/* Compute an initial error */
err = soln_err(A, x, b, m->q.normb, gno, acols, xcol);
#ifdef DEBUG_PROGRESS
printf("Initial error res %d is %f\n",gres[0],err);
#endif
for (i = 0; i < 500; i++) {
if (i < jitters) { /* conjugate-gradient and relaxation */
lerr = err;
err = one_itter1(ta, A, x, b, m->q.normb, gno, acols, xcol, di, gres, gci, (int)m->g.mres, tol * CONJ_TOL);
derr = err/lerr;
if (derr > 0.8) /* We're not improving using itter1() fast enough */
jitters = i-1; /* Move to just relaxation */
#ifdef DEBUG_PROGRESS
printf("one_itter1 at res %d has err %f, derr %f\n",gres[0],err,derr);
#endif
} else { /* Use just relaxation */
int j, ni = 0; /* Number of itters */
if (i == jitters) { /* Never done a relaxation itter before */
ni = 1; /* Just do one, to get estimate */
} else {
ni = (int)(((log(tol) - log(err)) * (double)ni)/(log(err) - log(lerr)));
if (ni < 1)
ni = 1; /* Minimum of 1 at a time */
else if (ni > MAXNI)
ni = MAXNI; /* Maximum of MAXNI at a time */
}
for (j = 0; j < ni; j++) /* Do them in groups for efficiency */
one_itter2(A, x, b, gno, acols, xcol, di, gres, gci, ovsh);
lerr = err;
err = soln_err(A, x, b, m->q.normb, gno, acols, xcol);
derr = pow(err/lerr, 1.0/ni);
#ifdef DEBUG_PROGRESS
printf("%d * one_itter2 at res %d has err %f, derr %f\n",ni,gres[0],err,derr);
#endif
if (s->verbose) {
printf("*"); fflush(stdout);
}
}
#ifdef OVERRLX
if (derr > 0.7 && derr < 1.0) {
ovsh = 1.0 * derr/0.7;
}
#endif /* OVERRLX */
if (err < tol || (derr <= 1.0 && derr > TOL_IMP)) /* within tol or < tol_improvement */
break;
}
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Do one relaxation itteration of applying */
/* cj_line to solve each line of x[] values, in */
/* each line of each dimension. Return the */
/* current solution error. */
static double
one_itter1(
cj_arrays *ta, /* cj_line temporary arrays */
double **A, /* Sparse A[][] matrix */
double *x, /* x[] matrix */
double *b, /* b[] matrix */
double normb, /* Norm of b[] */
int gno, /* Total number of unknowns */
int acols, /* Use colums in A[][] */
int *xcol, /* sparse expansion lookup array */
int di, /* number of dimensions */
int *gres, /* Grid resolution */
int *gci, /* Array increment for each dimension */
int max_it, /* maximum number of itterations to use (min gres) */
double tol /* Tollerance to solve line */
) {
int e,d;
/* For each dimension */
for (d = 0; d < di; d++) {
int ld = d == 0 ? 1 : 0; /* lowest dim */
int sof, gc[MXRI];
//printf("~1 doing one_itter1 for dim %d\n",d);
for (e = 0; e < di; e++)
gc[e] = 0; /* init coords */
/* Until we've done all lines in direction d, */
/* processed in red/black order */
for (sof = 0, e = 0; e < di;) {
/* Solve a line */
//printf("~~solve line start %d, inc %d, len %d\n",sof,gci[d],gres[d]);
cj_line(ta, A, x, b, gno, acols, xcol, sof, gres[d], gci[d], max_it, tol);
/* Increment index */
for (e = 0; e < di; e++) {
if (e == d) /* Don't go in direction d */
continue;
if (e == ld) {
gc[e] += 2; /* Inc coordinate */
sof += 2 * gci[e]; /* Track start point */
} else {
gc[e] += 1; /* Inc coordinate */
sof += 1 * gci[e]; /* Track start point */
}
if (gc[e] < gres[e])
break; /* No carry */
gc[e] -= gres[e]; /* Reset coord */
sof -= gres[e] * gci[e]; /* Track start point */
if ((gres[e] & 1) == 0) { /* Compensate for odd grid */
if ((gc[ld] & 1) == 1) {
gc[ld] -= 1; /* XOR lsb */
sof -= gci[ld];
} else {
gc[ld] += 1;
sof += gci[ld];
}
}
}
/* Stop on reaching 0 */
for(e = 0; e < di; e++)
if (gc[e] != 0)
break;
}
}
return soln_err(A, x, b, normb, gno, acols, xcol);
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Do one relaxation itteration of applying */
/* direct relaxation to x[] values, in */
/* red/black order */
static void
one_itter2(
double **A, /* Sparse A[][] matrix */
double *x, /* x[] matrix */
double *b, /* b[] matrix */
int gno, /* Total number of unknowns */
int acols, /* Use colums in A[][] */
int *xcol, /* sparse expansion lookup array */
int di, /* number of dimensions */
int *gres, /* Grid resolution */
int *gci, /* Array increment for each dimension */
double ovsh /* Overshoot to use, 1.0 for none */
) {
int e,i,k;
int gc[MXRI];
for (i = e = 0; e < di; e++)
gc[e] = 0; /* init coords */
for (e = 0; e < di;) {
int k0,k1,k2,k3;
double sm = 0.0;
/* Right of diagonal in 4's */
for (k = 1, k3 = i+xcol[k+3]; (k+3) < acols && k3 < gno; k += 4, k3 = i+xcol[k+3]) {
k0 = i + xcol[k+0];
k1 = i + xcol[k+1];
k2 = i + xcol[k+2];
sm += A[i][k+0] * x[k0];
sm += A[i][k+1] * x[k1];
sm += A[i][k+2] * x[k2];
sm += A[i][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = i + xcol[k]; k < acols && k3 < gno; k++, k3 = i + xcol[k])
sm += A[i][k] * x[k3];
/* Left of diagonal in 4's */
/* (We take advantage of A[][] symetry: what would be in the row */
/* to the left is repeated in the column above.) */
for (k = 1, k3 = i-xcol[k+3]; (k+3) < acols && k3 >= 0; k += 4, k3 = i-xcol[k+3]) {
k0 = i-xcol[k+0];
k1 = i-xcol[k+1];
k2 = i-xcol[k+2];
sm += A[k0][k+0] * x[k0];
sm += A[k1][k+1] * x[k1];
sm += A[k2][k+2] * x[k2];
sm += A[k3][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = i-xcol[k]; k < acols && k3 >= 0; k++, k3 = i-xcol[k])
sm += A[k3][k] * x[k3];
/* Compute x value that solves equation just for this point */
// x[i] = (b[i] - sm)/A[i][0];
x[i] += ovsh * ((b[i] - sm)/A[i][0] - x[i]);
#ifdef RED_BLACK
/* Increment index */
for (e = 0; e < di; e++) {
if (e == 0) {
gc[0] += 2; /* Inc coordinate by 2 */
i += 2; /* Track start point */
} else {
gc[e] += 1; /* Inc coordinate */
i += gci[e]; /* Track start point */
}
if (gc[e] < gres[e])
break; /* No carry */
gc[e] -= gres[e]; /* Reset coord */
i -= gres[e] * gci[e]; /* Track start point */
if ((gres[e] & 1) == 0) { /* Compensate for odd grid */
gc[0] ^= 1; /* XOR lsb */
i ^= 1;
}
}
/* Stop on reaching 0 */
for(e = 0; e < di; e++)
if (gc[e] != 0)
break;
#else
if (++i >= gno)
break;
#endif
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* This function returns the current solution error. */
static double
soln_err(
double **A, /* Sparse A[][] matrix */
double *x, /* x[] matrix */
double *b, /* b[] matrix */
double normb, /* Norm of b[] */
int gno, /* Total number of unknowns */
int acols, /* Use colums in A[][] */
int *xcol /* sparse expansion lookup array */
) {
int i, k;
double resid;
/* Compute norm of b - A * x */
resid = 0.0;
for (i = 0; i < gno; i++) {
int k0,k1,k2,k3;
double sm = 0.0;
/* Diagonal and to right in 4's */
for (k = 0, k3 = i+xcol[k+3]; (k+3) < acols && k3 < gno; k += 4, k3 = i+xcol[k+3]) {
k0 = i + xcol[k+0];
k1 = i + xcol[k+1];
k2 = i + xcol[k+2];
sm += A[i][k+0] * x[k0];
sm += A[i][k+1] * x[k1];
sm += A[i][k+2] * x[k2];
sm += A[i][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = i + xcol[k]; k < acols && k3 < gno; k++, k3 = i + xcol[k])
sm += A[i][k] * x[k3];
/* Left of diagonal in 4's */
/* (We take advantage of the symetry: what would be in the row */
/* to the left is repeated in the column above.) */
for (k = 1, k3 = i-xcol[k+3]; (k+3) < acols && k3 >= 0; k += 4, k3 = i-xcol[k+3]) {
k0 = i-xcol[k+0];
k1 = i-xcol[k+1];
k2 = i-xcol[k+2];
sm += A[k0][k+0] * x[k0];
sm += A[k1][k+1] * x[k1];
sm += A[k2][k+2] * x[k2];
sm += A[k3][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = i-xcol[k]; k < acols && k3 >= 0; k++, k3 = i-xcol[k])
sm += A[k3][k] * x[k3];
sm = b[i] - sm;
resid += sm * sm;
}
resid = sqrt(resid);
return resid/normb;
}
/* - - - - - - - - - - - - - - - - - - - - - - - -*/
/* Init temporary vectors */
static void init_cj_arrays(cj_arrays *ta) {
memset((void *)ta, 0, sizeof(cj_arrays));
}
/* Alloc, or re-alloc temporary vectors */
static void realloc_cj_arrays(cj_arrays *ta, int nid) {
if (nid > ta->l_nid) {
if (ta->l_nid > 0) {
free_dvector(ta->z,0,ta->l_nid);
free_dvector(ta->r,0,ta->l_nid);
free_dvector(ta->q,0,ta->l_nid);
free_dvector(ta->xx,0,ta->l_nid);
free_dvector(ta->n,0,ta->l_nid);
}
if ((ta->n = dvector(0,nid)) == NULL)
error("Malloc of n[] failed");
if ((ta->z = dvector(0,nid)) == NULL)
error("Malloc of z[] failed");
if ((ta->xx = dvector(0,nid)) == NULL)
error("Malloc of xx[] failed");
if ((ta->q = dvector(0,nid)) == NULL)
error("Malloc of q[] failed");
if ((ta->r = dvector(0,nid)) == NULL)
error("Malloc of r[] failed");
ta->l_nid = nid;
}
}
/* De-alloc temporary vectors */
static void free_cj_arrays(cj_arrays *ta) {
if (ta->l_nid > 0) {
free_dvector(ta->z,0,ta->l_nid);
free_dvector(ta->r,0,ta->l_nid);
free_dvector(ta->q,0,ta->l_nid);
free_dvector(ta->xx,0,ta->l_nid);
free_dvector(ta->n,0,ta->l_nid);
}
}
/* This function applies the conjugate gradient */
/* algorithm to completely solve a line of values */
/* in one of the dimensions of the grid. */
/* Return the normalised tollerance achieved. */
/* This is used by an outer relaxation algorithm */
static double
cj_line(
cj_arrays *ta, /* Temporary array data */
double **A, /* Sparse A[][] matrix */
double *x, /* x[] matrix */
double *b, /* b[] matrix */
int gno, /* Total number of unknowns */
int acols, /* Use colums in A[][] */
int *xcol, /* sparse expansion lookup array */
int sof, /* start offset of x[] to be found */
int nid, /* Number in dimension */
int inc, /* Increment to move in lines dimension */
int max_it, /* maximum number of itterations to use (min nid) */
double tol /* Normalised tollerance to stop on */
) {
int i, ii, k, it;
double sm;
double resid;
double alpha, rho = 0.0, rho_1 = 0.0;
double normb;
int eof = sof + nid * inc; /* End offset */
/* Alloc, or re-alloc temporary vectors */
realloc_cj_arrays(ta, nid);
/* Compute initial norm of b[] */
for (sm = 0.0, ii = sof; ii < eof; ii += inc)
sm += b[ii] * b[ii];
normb = sqrt(sm);
if (normb == 0.0)
normb = 1.0;
/* Compute r = b - A * x */
for (i = 0, ii = sof; i < nid; i++, ii += inc) {
int k0,k1,k2,k3;
sm = 0.0;
/* Diagonal and to right in 4's */
for (k = 0, k3 = ii+xcol[k+3]; (k+3) < acols && k3 < gno; k += 4, k3 = ii+xcol[k+3]) {
k0 = ii + xcol[k+0];
k1 = ii + xcol[k+1];
k2 = ii + xcol[k+2];
sm += A[ii][k+0] * x[k0];
sm += A[ii][k+1] * x[k1];
sm += A[ii][k+2] * x[k2];
sm += A[ii][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = ii + xcol[k]; k < acols && k3 < gno; k++, k3 = ii + xcol[k])
sm += A[ii][k] * x[k3];
/* Left of diagonal in 4's */
/* (We take advantage of the symetry around the diagonal: what would be in the row */
/* to the left is repeated in the column above, so for an unsparse matrix */
/* we simply swapt the row and column index, for sparse we use the mirror column */
/* offset (ie. to the right side) and subtract the column offset from the row.) */
for (k = 1, k3 = ii-xcol[k+3]; (k+3) < acols && k3 >= 0; k += 4, k3 = ii-xcol[k+3]) {
k0 = ii-xcol[k+0];
k1 = ii-xcol[k+1];
k2 = ii-xcol[k+2];
sm += A[k0][k+0] * x[k0];
sm += A[k1][k+1] * x[k1];
sm += A[k2][k+2] * x[k2];
sm += A[k3][k+3] * x[k3];
}
/* Finish any remaining */
for (k3 = ii-xcol[k]; k < acols && k3 >= 0; k++, k3 = ii-xcol[k])
sm += A[k3][k] * x[k3];
ta->r[i] = b[ii] - sm;
}
/* Transfer the x[] values we are trying to solve into */
/* temporary xx[]. The values of interest in x[] will be */
/* used to hold the p[] values, so that q = A * p can be */
/* computed in the context of the x[] values we are not */
/* trying to solve. */
/* We also zero out p[] (== x[] in range), to compute n[]. */
/* n[] is used to normalize the q = A * p calculation. If we */
/* were solving all x[], then q = A * p will be 0 for p = 0. */
/* Since we are only solving some x[], this will not be true. */
/* We compensate for this by computing q = A * p - n */
/* (Note that n[] could probably be combined with b[]) */
for (i = 0, ii = sof; i < nid; i++, ii += inc) {
ta->xx[i] = x[ii];
x[ii] = 0.0;
}
/* Compute n = A * 0 */
for (i = 0, ii = sof; i < nid; i++, ii += inc) {
sm = 0.0;
for (k = 0; k < acols && (ii+xcol[k]) < gno; k++)
sm += A[ii][k] * x[ii+xcol[k]]; /* Diagonal and to right */
for (k = 1; k < acols && (ii-xcol[k]) >= 0; k++)
sm += A[ii-xcol[k]][k] * x[ii-xcol[k]]; /* Left of diagonal */
ta->n[i] = sm;
}
/* Compute initial error = norm of r[] */
for (sm = 0.0, i = 0; i < nid; i++)
sm += ta->r[i] * ta->r[i];
resid = sqrt(sm)/normb;
/* Initial conditions don't need improvement */
if (resid <= tol) {
tol = resid;
max_it = 0;
}
/* Improve the solution */
for (it = 1; it <= max_it; it++) {
/* Aproximately solve for z[] given r[], */
/* and also compute rho = r.z */
for (rho = 0.0, i = 0, ii = sof; i < nid; i++, ii += inc) {
sm = A[ii][0];
ta->z[i] = sm != 0.0 ? ta->r[i] / sm : ta->r[i]; /* Simple aprox soln. */
rho += ta->r[i] * ta->z[i];
}
if (it == 1) {
for (i = 0, ii = sof; i < nid; i++, ii += inc)
x[ii] = ta->z[i];
} else {
sm = rho / rho_1;
for (i = 0, ii = sof; i < nid; i++, ii += inc)
x[ii] = ta->z[i] + sm * x[ii];
}
/* Compute q = A * p - n, */
/* and also alpha = p.q */
for (alpha = 0.0, i = 0, ii = sof; i < nid; i++, ii += inc) {
sm = A[ii][0] * x[ii];
for (k = 1; k < acols; k++) {
int pxk = xcol[k];
int nxk = ii-pxk;
pxk += ii;
if (pxk < gno)
sm += A[ii][k] * x[pxk];
if (nxk >= 0)
sm += A[nxk][k] * x[nxk];
}
ta->q[i] = sm - ta->n[i];
alpha += ta->q[i] * x[ii];
}
if (alpha != 0.0)
alpha = rho / alpha;
else
alpha = 0.5; /* ?????? */
/* Adjust soln and residual vectors, */
/* and also norm of r[] */
for (resid = 0.0, i = 0, ii = sof; i < nid; i++, ii += inc) {
ta->xx[i] += alpha * x[ii];
ta->r[i] -= alpha * ta->q[i];
resid += ta->r[i] * ta->r[i];
}
resid = sqrt(resid)/normb;
/* If we're done as far as we want */
if (resid <= tol) {
tol = resid;
max_it = it;
break;
}
rho_1 = rho;
}
/* Substitute solution xx[] back into x[] */
for (i = 0, ii = sof; i < nid; i++, ii += inc)
x[ii] = ta->xx[i];
// printf("~~ CJ Itters = %d, tol = %f\n",max_it,tol);
return tol;
}
/* ============================================ */