/* inflate.c -- Not copyrighted 1992 by Mark Adler version c10p1, 10 January 1993 Copied from gzip version 1.2.4 source. Adapted for use in i1d3ccss */ #include #include #include #include #include #include #ifndef SALONEINSTLIB #include "copyright.h" #include "aconfig.h" #include "numlib.h" #else /* SALONEINSTLIB */ #include #include "sa_config.h" #include "numsup.h" #endif /* SALONEINSTLIB */ #undef PKZIP_BUG_WORKAROUND #undef DEBUG #ifdef DEBUG #define DBG(text) printf text ; #else #define DBG(text) #endif typedef unsigned char uch; typedef unsigned short ush; typedef unsigned int ulg; #define memzero(s, n) memset((void *)(s), 0, (n)) #define slide window /* Huffman code lookup table entry--this entry is four bytes for machines that have 16-bit pointers (e.g. PC's in the small or medium model). Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16 means that v is a literal, 16 < e < 32 means that v is a pointer to the next table, which codes e - 16 bits, and lastly e == 99 indicates an unused code. If a code with e == 99 is looked up, this implies an error in the data. */ struct huft { uch e; /* number of extra bits or operation */ uch b; /* number of bits in this code or subcode */ union { ush n; /* literal, length base, or distance base */ struct huft *t; /* pointer to next level of table */ } v; }; /* Interface to i1d3ccss.c */ extern unsigned int inflate_get_byte(); extern void inflate_unget_byte(); extern int inflate_write_output(unsigned char *buf, unsigned int len); /* Function prototypes */ static int huft_build(unsigned *, unsigned, unsigned, ush *, ush *, struct huft **, int *); static int huft_free(struct huft *); static int inflate_codes(struct huft *, struct huft *, int, int); static int inflate_stored(void); static int inflate_fixed(void); static int inflate_dynamic(void); static int inflate_block(int *); int inflate(void); /* The inflate algorithm uses a sliding 32K byte window on the uncompressed stream to find repeated byte strings. This is implemented here as a circular buffer. The index is updated simply by incrementing and then and'ing with 0x7fff (32K-1). */ /* It is left to other modules to supply the 32K area. It is assumed to be usable as if it were declared "uch slide[32768];" or as just "uch *slide;" and then malloc'ed in the latter case. The definition must be in unzip.h, included above. */ /* unsigned wp; current position in slide */ #define WSIZE 0x8000 unsigned int wp; /* current position in slide */ uch slide[32768]; static int flush_output(unsigned int w) { wp = w; if (wp == 0) return 0; if (inflate_write_output(slide, wp)) return 1; wp = 0; return 0; } /* Tables for deflate from PKZIP's appnote.txt. */ static unsigned border[] = { /* Order of the bit length code lengths */ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; static ush cplens[] = { /* Copy lengths for literal codes 257..285 */ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; /* note: see note #13 above about the 258 in this list. */ static ush cplext[] = { /* Extra bits for literal codes 257..285 */ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; static ush cpdext[] = { /* Extra bits for distance codes */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; /* Macros for inflate() bit peeking and grabbing. The usage is: NEEDBITS(j) x = b & mask_bits[j]; DUMPBITS(j) where NEEDBITS makes sure that b has at least j bits in it, and DUMPBITS removes the bits from b. The macros use the variable k for the number of bits in b. Normally, b and k are register variables for speed, and are initialized at the beginning of a routine that uses these macros from a global bit buffer and count. If we assume that EOB will be the longest code, then we will never ask for bits with NEEDBITS that are beyond the end of the stream. So, NEEDBITS should not read any more bytes than are needed to meet the request. Then no bytes need to be "returned" to the buffer at the end of the last block. However, this assumption is not true for fixed blocks--the EOB code is 7 bits, but the other literal/length codes can be 8 or 9 bits. (The EOB code is shorter than other codes because fixed blocks are generally short. So, while a block always has an EOB, many other literal/length codes have a significantly lower probability of showing up at all.) However, by making the first table have a lookup of seven bits, the EOB code will be found in that first lookup, and so will not require that too many bits be pulled from the stream. */ ulg bb; /* bit buffer */ unsigned bk; /* bits in bit buffer */ ush mask_bits[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff }; #define NEXTBYTE() (uch)inflate_get_byte() #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<>=(n);k-=(n);} /* Huffman code decoding is performed using a multi-level table lookup. The fastest way to decode is to simply build a lookup table whose size is determined by the longest code. However, the time it takes to build this table can also be a factor if the data being decoded is not very long. The most common codes are necessarily the shortest codes, so those codes dominate the decoding time, and hence the speed. The idea is you can have a shorter table that decodes the shorter, more probable codes, and then point to subsidiary tables for the longer codes. The time it costs to decode the longer codes is then traded against the time it takes to make longer tables. This results of this trade are in the variables lbits and dbits below. lbits is the number of bits the first level table for literal/ length codes can decode in one step, and dbits is the same thing for the distance codes. Subsequent tables are also less than or equal to those sizes. These values may be adjusted either when all of the codes are shorter than that, in which case the longest code length in bits is used, or when the shortest code is *longer* than the requested table size, in which case the length of the shortest code in bits is used. There are two different values for the two tables, since they code a different number of possibilities each. The literal/length table codes 286 possible values, or in a flat code, a little over eight bits. The distance table codes 30 possible values, or a little less than five bits, flat. The optimum values for speed end up being about one bit more than those, so lbits is 8+1 and dbits is 5+1. The optimum values may differ though from machine to machine, and possibly even between compilers. Your mileage may vary. */ int lbits = 9; /* bits in base literal/length lookup table */ int dbits = 6; /* bits in base distance lookup table */ /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ #define BMAX 16 /* maximum bit length of any code (16 for explode) */ #define N_MAX 288 /* maximum number of codes in any set */ unsigned hufts; /* track memory usage */ static int huft_build(b, n, s, d, e, t, m) unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ unsigned n; /* number of codes (assumed <= N_MAX) */ unsigned s; /* number of simple-valued codes (0..s-1) */ ush *d; /* list of base values for non-simple codes */ ush *e; /* list of extra bits for non-simple codes */ struct huft **t; /* result: starting table */ int *m; /* maximum lookup bits, returns actual */ /* Given a list of code lengths and a maximum table size, make a set of tables to decode that set of codes. Return zero on success, one if the given code set is incomplete (the tables are still built in this case), two if the input is invalid (all zero length codes or an oversubscribed set of lengths), and three if not enough memory. */ { unsigned a; /* counter for codes of length k */ unsigned c[BMAX+1]; /* bit length count table */ unsigned f; /* i repeats in table every f entries */ int g; /* maximum code length */ int h; /* table level */ register unsigned i; /* counter, current code */ register unsigned j; /* counter */ register int k; /* number of bits in current code */ int l; /* bits per table (returned in m) */ register unsigned *p; /* pointer into c[], b[], or v[] */ register struct huft *q; /* points to current table */ struct huft r; /* table entry for structure assignment */ struct huft *u[BMAX]; /* table stack */ unsigned v[N_MAX]; /* values in order of bit length */ register int w; /* bits before this table == (l * h) */ unsigned x[BMAX+1]; /* bit offsets, then code stack */ unsigned *xp; /* pointer into x */ int y; /* number of dummy codes added */ unsigned z; /* number of entries in current table */ /* Generate counts for each bit length */ memzero(c, sizeof(c)); p = b; i = n; do { // Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), n-i, *p)); c[*p]++; /* assume all entries <= BMAX */ p++; /* Can't combine with above line (Solaris bug) */ } while (--i); if (c[0] == n) /* null input--all zero length codes */ { *t = (struct huft *)NULL; *m = 0; return 0; } /* Find minimum and maximum length, bound *m by those */ l = *m; for (j = 1; j <= BMAX; j++) if (c[j]) break; k = j; /* minimum code length */ if ((unsigned)l < j) l = j; for (i = BMAX; i; i--) if (c[i]) break; g = i; /* maximum code length */ if ((unsigned)l > i) l = i; *m = l; /* Adjust last length count to fill out codes, if needed */ for (y = 1 << j; j < i; j++, y <<= 1) if ((y -= c[j]) < 0) { DBG(("huft_buildd, bad input: more codes than bits\n")) return 2; /* bad input: more codes than bits */ } if ((y -= c[i]) < 0) { DBG(("huft_buildd, less than zero\n")) return 2; } c[i] += y; /* Generate starting offsets into the value table for each length */ x[1] = j = 0; p = c + 1; xp = x + 2; while (--i) { /* note that i == g from above */ *xp++ = (j += *p++); } /* Make a table of values in order of bit lengths */ p = b; i = 0; do { if ((j = *p++) != 0) v[x[j]++] = i; } while (++i < n); /* Generate the Huffman codes and for each, make the table entries */ x[0] = i = 0; /* first Huffman code is zero */ p = v; /* grab values in bit order */ h = -1; /* no tables yet--level -1 */ w = -l; /* bits decoded == (l * h) */ u[0] = (struct huft *)NULL; /* just to keep compilers happy */ q = (struct huft *)NULL; /* ditto */ z = 0; /* ditto */ /* go through the bit lengths (k already is bits in shortest code) */ for (; k <= g; k++) { a = c[k]; while (a--) { /* here i is the Huffman code of length k bits for value *p */ /* make tables up to required level */ while (k > w + l) { h++; w += l; /* previous table always l bits */ /* compute minimum size table less than or equal to l bits */ z = (z = g - w) > (unsigned)l ? l : z; /* upper limit on table size */ if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ { /* too few codes for k-w bit table */ f -= a + 1; /* deduct codes from patterns left */ xp = c + k; while (++j < z) /* try smaller tables up to z bits */ { if ((f <<= 1) <= *++xp) break; /* enough codes to use up j bits */ f -= *xp; /* else deduct codes from patterns */ } } z = 1 << j; /* table entries for j-bit table */ /* allocate and link in new table */ if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == (struct huft *)NULL) { if (h) huft_free(u[0]); DBG(("huft_buildd, not enough memory\n")) return 3; /* not enough memory */ } hufts += z + 1; /* track memory usage */ *t = q + 1; /* link to list for huft_free() */ *(t = &(q->v.t)) = (struct huft *)NULL; u[h] = ++q; /* table starts after link */ /* connect to last table, if there is one */ if (h) { x[h] = i; /* save pattern for backing up */ r.b = (uch)l; /* bits to dump before this table */ r.e = (uch)(16 + j); /* bits in this table */ r.v.t = q; /* pointer to this table */ j = i >> (w - l); /* (get around Turbo C bug) */ u[h-1][j] = r; /* connect to last table */ } } /* set up table entry in r */ r.b = (uch)(k - w); if (p >= v + n) r.e = 99; /* out of values--invalid code */ else if (*p < s) { r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ r.v.n = (ush)(*p); /* simple code is just the value */ p++; /* one compiler does not like *p++ */ } else { r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ r.v.n = d[*p++ - s]; } /* fill code-like entries with r */ f = 1 << (k - w); for (j = i >> w; j < z; j += f) q[j] = r; /* backwards increment the k-bit code i */ for (j = 1 << (k - 1); i & j; j >>= 1) i ^= j; i ^= j; /* backup over finished tables */ while ((i & ((1 << w) - 1)) != x[h]) { h--; /* don't need to update q */ w -= l; } } } /* Return true (1) if we were given an incomplete table */ return y != 0 && g != 1; } static int huft_free(t) struct huft *t; /* table to free */ /* Free the malloc'ed tables built by huft_build(), which makes a linked list of the tables it made, with the links in a dummy first entry of each table. */ { register struct huft *p, *q; /* Go through linked list, freeing from the malloced (t[-1]) address. */ p = t; while (p != (struct huft *)NULL) { q = (--p)->v.t; free((char*)p); p = q; } return 0; } static int inflate_codes(tl, td, bl, bd) struct huft *tl, *td; /* literal/length and distance decoder tables */ int bl, bd; /* number of bits decoded by tl[] and td[] */ /* inflate (decompress) the codes in a deflated (compressed) block. Return an error code or zero if it all goes ok. */ { register unsigned e; /* table entry flag/number of extra bits */ unsigned n, d; /* length and index for copy */ unsigned w; /* current window position */ struct huft *t; /* pointer to table entry */ unsigned ml, md; /* masks for bl and bd bits */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ /* make local copies of globals */ b = bb; /* initialize bit buffer */ k = bk; w = wp; /* initialize window position */ /* inflate the coded data */ ml = mask_bits[bl]; /* precompute masks for speed */ md = mask_bits[bd]; for (;;) /* do until end of block */ { NEEDBITS((unsigned)bl) if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) do { if (e == 99) return 1; DUMPBITS(t->b) e -= 16; NEEDBITS(e) } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); DUMPBITS(t->b) if (e == 16) /* then it's a literal */ { slide[w++] = (uch)t->v.n; // Tracevv((stderr, "%c", slide[w-1])); if (w == WSIZE) { flush_output(w); w = 0; } } else /* it's an EOB or a length */ { /* exit if end of block */ if (e == 15) break; /* get length of block to copy */ NEEDBITS(e) n = t->v.n + ((unsigned)b & mask_bits[e]); DUMPBITS(e); /* decode distance of block to copy */ NEEDBITS((unsigned)bd) if ((e = (t = td + ((unsigned)b & md))->e) > 16) do { if (e == 99) return 1; DUMPBITS(t->b) e -= 16; NEEDBITS(e) } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); DUMPBITS(t->b) NEEDBITS(e) d = w - t->v.n - ((unsigned)b & mask_bits[e]); DUMPBITS(e) // Tracevv((stderr,"\\[%d,%d]", w-d, n)); /* do the copy */ do { n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); #if !defined(NOMEMCPY) && !defined(DEBUG) if (w - d >= e) /* (this test assumes unsigned comparison) */ { memcpy(slide + w, slide + d, e); w += e; d += e; } else /* do it slow to avoid memcpy() overlap */ #endif /* !NOMEMCPY */ do { slide[w++] = slide[d++]; // Tracevv((stderr, "%c", slide[w-1])); } while (--e); if (w == WSIZE) { flush_output(w); w = 0; } } while (n); } } /* restore the globals from the locals */ wp = w; /* restore global window pointer */ bb = b; /* restore global bit buffer */ bk = k; /* done */ return 0; } static int inflate_stored() /* "decompress" an inflated type 0 (stored) block. */ { unsigned n; /* number of bytes in block */ unsigned w; /* current window position */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ /* make local copies of globals */ b = bb; /* initialize bit buffer */ k = bk; w = wp; /* initialize window position */ /* go to byte boundary */ n = k & 7; DUMPBITS(n); /* get the length and its complement */ NEEDBITS(16) n = ((unsigned)b & 0xffff); DUMPBITS(16) NEEDBITS(16) if (n != (unsigned)((~b) & 0xffff)) { DBG(("stored, error in compressed data\n")) return 1; /* error in compressed data */ } DUMPBITS(16) /* read and output the compressed data */ while (n--) { NEEDBITS(8) slide[w++] = (uch)b; if (w == WSIZE) { flush_output(w); w = 0; } DUMPBITS(8) } /* restore the globals from the locals */ wp = w; /* restore global window pointer */ bb = b; /* restore global bit buffer */ bk = k; return 0; } static int inflate_fixed() /* decompress an inflated type 1 (fixed Huffman codes) block. We should either replace this with a custom decoder, or at least precompute the Huffman tables. */ { int i; /* temporary variable */ struct huft *tl; /* literal/length code table */ struct huft *td; /* distance code table */ int bl; /* lookup bits for tl */ int bd; /* lookup bits for td */ unsigned l[288]; /* length list for huft_build */ /* set up literal table */ for (i = 0; i < 144; i++) l[i] = 8; for (; i < 256; i++) l[i] = 9; for (; i < 280; i++) l[i] = 7; for (; i < 288; i++) /* make a complete, but wrong code set */ l[i] = 8; bl = 7; if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) { DBG(("fixed, huft_build return nz\n")) return i; } /* set up distance table */ for (i = 0; i < 30; i++) /* make an incomplete code set */ l[i] = 5; bd = 5; if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) { huft_free(tl); DBG(("fixed, huft_build return > 1\n")) return i; } /* decompress until an end-of-block code */ if (inflate_codes(tl, td, bl, bd)) { DBG(("fixed, inflate_codes return nz\n")) return 1; } /* free the decoding tables, return */ huft_free(tl); huft_free(td); return 0; } static int inflate_dynamic() /* decompress an inflated type 2 (dynamic Huffman codes) block. */ { int i; /* temporary variables */ unsigned j; unsigned l; /* last length */ unsigned m; /* mask for bit lengths table */ unsigned n; /* number of lengths to get */ struct huft *tl; /* literal/length code table */ struct huft *td; /* distance code table */ int bl; /* lookup bits for tl */ int bd; /* lookup bits for td */ unsigned nb; /* number of bit length codes */ unsigned nl; /* number of literal/length codes */ unsigned nd; /* number of distance codes */ #ifdef PKZIP_BUG_WORKAROUND unsigned ll[288+32]; /* literal/length and distance code lengths */ #else unsigned ll[286+30]; /* literal/length and distance code lengths */ #endif register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ /* make local bit buffer */ b = bb; k = bk; /* read in table lengths */ NEEDBITS(5) nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ DUMPBITS(5) NEEDBITS(5) nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ DUMPBITS(5) NEEDBITS(4) nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ DUMPBITS(4) #ifdef PKZIP_BUG_WORKAROUND if (nl > 288 || nd > 32) #else if (nl > 286 || nd > 30) #endif { DBG(("dynamic, bad length\n")) return 1; /* bad lengths */ } /* read in bit-length-code lengths */ for (j = 0; j < nb; j++) { NEEDBITS(3) ll[border[j]] = (unsigned)b & 7; DUMPBITS(3) } for (; j < 19; j++) ll[border[j]] = 0; /* build decoding table for trees--single level, 7 bit lookup */ bl = 7; if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) { if (i == 1) huft_free(tl); DBG(("dynamic, huft_build failed\n")) return i; /* incomplete code set */ } /* read in literal and distance code lengths */ n = nl + nd; m = mask_bits[bl]; i = l = 0; while ((unsigned)i < n) { NEEDBITS((unsigned)bl) j = (td = tl + ((unsigned)b & m))->b; DUMPBITS(j) j = td->v.n; if (j < 16) /* length of code in bits (0..15) */ ll[i++] = l = j; /* save last length in l */ else if (j == 16) /* repeat last length 3 to 6 times */ { NEEDBITS(2) j = 3 + ((unsigned)b & 3); DUMPBITS(2) if ((unsigned)i + j > n) { DBG(("dynamic, i + j > n\n")) return 1; } while (j--) ll[i++] = l; } else if (j == 17) /* 3 to 10 zero length codes */ { NEEDBITS(3) j = 3 + ((unsigned)b & 7); DUMPBITS(3) if ((unsigned)i + j > n) { DBG(("dynamic, i + j > n\n")) return 1; } while (j--) ll[i++] = 0; l = 0; } else /* j == 18: 11 to 138 zero length codes */ { NEEDBITS(7) j = 11 + ((unsigned)b & 0x7f); DUMPBITS(7) if ((unsigned)i + j > n) { DBG(("dynamic, i + j > n\n")) return 1; } while (j--) ll[i++] = 0; l = 0; } } /* free decoding table for trees */ huft_free(tl); /* restore the global bit buffer */ bb = b; bk = k; /* build the decoding tables for literal/length and distance codes */ bl = lbits; if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) { if (i == 1) { fprintf(stderr, " incomplete literal tree\n"); huft_free(tl); } DBG(("dynamic, incomplete code set\n")) return i; /* incomplete code set */ } bd = dbits; if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) { if (i == 1) { fprintf(stderr, " incomplete distance tree\n"); #ifdef PKZIP_BUG_WORKAROUND i = 0; } #else huft_free(td); } huft_free(tl); DBG(("dynamic, incomplete distance tree\n")) return i; /* incomplete code set */ #endif } /* decompress until an end-of-block code */ if (inflate_codes(tl, td, bl, bd)) { DBG(("dynamic, an end-of-block code\n")) return 1; } /* free the decoding tables, return */ huft_free(tl); huft_free(td); return 0; } static int inflate_block(e) int *e; /* last block flag */ /* decompress an inflated block */ { unsigned t; /* block type */ register ulg b; /* bit buffer */ register unsigned k; /* number of bits in bit buffer */ /* make local bit buffer */ b = bb; k = bk; /* read in last block bit */ NEEDBITS(1) *e = (int)b & 1; DUMPBITS(1) /* read in block type */ NEEDBITS(2) t = (unsigned)b & 3; DUMPBITS(2) /* restore the global bit buffer */ bb = b; bk = k; /* inflate that block type */ if (t == 2) return inflate_dynamic(); if (t == 0) return inflate_stored(); if (t == 1) return inflate_fixed(); /* bad block type */ return 2; } int inflate() /* decompress an inflated entry */ { int e; /* last block flag */ int r; /* result code */ unsigned h; /* maximum struct huft's malloc'ed */ /* initialize window, bit buffer */ wp = 0; bk = 0; bb = 0; /* decompress until the last block */ h = 0; do { hufts = 0; if ((r = inflate_block(&e)) != 0) return r; if (hufts > h) h = hufts; } while (!e); /* Undo too much lookahead. The next read will be byte aligned so we * can discard unused bits in the last meaningful byte. */ while (bk >= 8) { bk -= 8; inflate_unget_byte(); } /* flush out slide */ flush_output(wp); /* return success */ #ifdef DEBUG fprintf(stderr, "<%u> ", h); #endif /* DEBUG */ return 0; }