/* * cam02, unoptimised, untweaked reference version for testing. * with optional trace/range error flags. * * Color Appearance Model. * * Author: Graeme W. Gill * Date: 17/1/2004 * Version: 1.00 * * This file is based on cam97s3.c by Graeme Gill. * * Copyright 2004, 2007 Graeme W. Gill * Please refer to COPYRIGHT file for details. * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :- * see the License.txt file for licencing details. */ /* Note that XYZ values are normalised to 1.0 consistent */ /* with the ICC convention (not 100.0 as assumed by the CIECAM spec.) */ /* Note that all whites are assumed to be normalised (ie. Y = 1.0) */ #undef DIAG /* Print internal value diagnostics for each conversion */ /* ---------------------------------- */ #ifdef NEVER struct _cam02ref { /* Public: */ void (*del)(struct _cam02ref *s); /* We're done with it */ int (*set_view)( struct _cam02ref *s, ViewingCondition Ev, /* Enumerated Viewing Condition */ double Wxyz[3], /* Reference/Adapted White XYZ (Y scale 1.0) */ double La, /* Adapting/Surround Luminance cd/m^2 */ double Yb, /* Luminance of Background relative to reference white (range 0.0 .. 1.0) */ double Lv, /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */ /* Ignored if Ev is set */ double Yf, /* Flare as a fraction of the reference white (range 0.0 .. 1.0) */ double Yg, /* Glare as a fraction of the adapting/surround (range 0.0 .. 1.0) */ double Gxyz[3], /* The Glare white coordinates (typically the Ambient color) */ int hk /* Flag, NZ to use Helmholtz-Kohlraush effect */ ); /* Conversions */ int (*XYZ_to_cam)(struct _cam02ref *s, double *out, double *in); /* Private: */ /* Scene parameters */ ViewingCondition Ev; /* Enumerated Viewing Condition */ double Lv; /* Luminance of white in the Viewing/Image cd/m^2 */ double La; /* Adapting/Surround Luminance cd/m^2 */ double Wxyz[3]; /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */ double Yb; /* Relative Luminance of Background to reference white (Y range 0.0 .. 1.0) */ double Yf; /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */ double Fxyz[3]; /* The Flare white coordinates (typically the Ambient color) */ /* Internal parameters */ double C; /* Surround Impact */ double Nc; /* Chromatic Induction */ double F; /* Adaptation Degree */ /* Pre-computed values */ double Fsc; /* Flare scale */ double Fisc; /* Inverse flare scale */ double Fsxyz[3]; /* Scaled Flare color coordinates */ double rgbW[3]; /* Sharpened cone response white values */ double D; /* Degree of chromatic adaption */ double Drgb[3]; /* Chromatic transformation value */ double rgbcW[3]; /* Chromatically transformed white value */ double rgbpW[3]; /* Hunt-Pointer-Estevez cone response space white */ double n; /* Background induction factor */ double nn; /* Precomuted function of n */ double Fl; /* Lightness contrast factor ?? */ double Nbb; /* Background brightness induction factors */ double Ncb; /* Chromatic brightness induction factors */ double z; /* Base exponential nonlinearity */ double rgbaW[3]; /* Post-adapted cone response of white */ double Aw; /* Achromatic response of white */ /* Option flags */ int hk; /* Use Helmholtz-Kohlraush effect */ int trace; /* Trace internal values */ double range; /* Return error if there is a range error */ double nldlimit; /* range error if nlinear is less than this */ double jlimit; /* range error if J is less than this */ }; typedef struct _cam02ref cam02ref; #else typedef struct _cam02 cam02ref; #endif /* ---------------------------------- */ /* Utility function */ /* Return a viewing condition enumeration from the given Ambient and */ /* Adapting/Surround Luminance. */ static ViewingCondition cam02ref_Ambient2VC( double La, /* Ambient Luminence (cd/m^2) */ double Lv /* Luminence of white in the Viewing/Scene/Image field (cd/m^2) */ ) { double r; if (fabs(La) < 1e-10) /* Hmm. */ r = 1.0; else r = La/Lv; if (r < 0.01) return vc_dark; if (r < 0.2) return vc_dim; return vc_average; } static void cam02ref_free(cam02ref *s); static int cam02ref_set_view(cam02ref *s, ViewingCondition Ev, double Wxyz[3], double Yb, double La, double Lv, double Yf, double Yg, double Gxyz[3], int hk); static int cam02ref_XYZ_to_cam(cam02ref *s, double *Jab, double *xyz); static int cam02ref_cam_to_XYZ(cam02ref *s, double XYZ[3], double Jab[3]); /* Create a cam02 conversion object, with default viewing conditions */ cam02ref *new_cam02ref(void) { cam02ref *s; if ((s = (cam02ref *)malloc(sizeof(cam02ref))) == NULL) { fprintf(stderr,"cam02: malloc failed allocating object\n"); exit(-1); } /* Initialise methods */ s->del = cam02ref_free; s->set_view = cam02ref_set_view; s->XYZ_to_cam = cam02ref_XYZ_to_cam; s->cam_to_XYZ = cam02ref_cam_to_XYZ; return s; } static void cam02ref_free(cam02ref *s) { if (s != NULL) free(s); } static int cam02ref_set_view( cam02ref *s, ViewingCondition Ev, /* Enumerated Viewing Condition */ double Wxyz[3], /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */ double La, /* Adapting/Surround Luminance cd/m^2 */ double Yb, /* Relative Luminence of Background to reference white */ double Lv, /* Luminence of white in the Viewing/Scene/Image field (cd/m^2) */ /* Ignored if Ev is set to other than vc_none */ double Yf, /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */ double Yg, /* Glare as a fraction of the adapting/surround (Y range 0.0 .. 1.0) */ double Gxyz[3], /* The Glare white coordinates (typically the Ambient color) */ int hk /* Flag, NZ to use Helmholtz-Kohlraush effect */ ) { double tt; if (Ev == vc_none) /* Compute enumerated viewing condition */ Ev = cam02ref_Ambient2VC(La, Lv); /* Transfer parameters to the object */ s->Ev = Ev; s->Wxyz[0] = Wxyz[0]; s->Wxyz[1] = Wxyz[1]; s->Wxyz[2] = Wxyz[2]; s->Yb = Yb > 0.005 ? Yb : 0.005; /* Set minimum to avoid divide by 0.0 */ s->La = La; s->Yf = Yf; if (Gxyz[0] > 0.0 && Gxyz[1] > 0.0 && Gxyz[2] > 0.0) { tt = Wxyz[1]/Gxyz[1]; /* Scale to white ref white */ s->Gxyz[0] = tt * Gxyz[0]; s->Gxyz[1] = tt * Gxyz[1]; s->Gxyz[2] = tt * Gxyz[2]; } else { s->Gxyz[0] = Wxyz[0]; s->Gxyz[1] = Wxyz[1]; s->Gxyz[2] = Wxyz[2]; } s->hk = hk; /* Compute the internal parameters by category */ switch(s->Ev) { case vc_dark: s->C = 0.525; s->Nc = 0.8; s->F = 0.8; Lv = La/0.033; break; case vc_dim: s->C = 0.59; s->Nc = 0.95; s->F = 0.9; Lv = La/0.1; break; case vc_average: default: /* average */ s->C = 0.69; s->Nc = 1.0; s->F = 1.0; Lv = La/0.2; break; case vc_cut_sheet: s->C = 0.41; s->Nc = 0.8; s->F = 0.8; Lv = La/0.02; // ??? break; } s->Lv = Lv; /* Compute values that only change with viewing parameters */ /* Figure out the Flare contribution to the flareless XYZ input */ s->Fsxyz[0] = s->Yf * s->Wxyz[0]; s->Fsxyz[1] = s->Yf * s->Wxyz[1]; s->Fsxyz[2] = s->Yf * s->Wxyz[2]; /* Add in the Glare contribution from the adapting/surround */ tt = s->Yg * s->La/s->Lv; s->Fsxyz[0] += tt * s->Gxyz[0]; s->Fsxyz[1] += tt * s->Gxyz[1]; s->Fsxyz[2] += tt * s->Gxyz[2]; /* Sharpened cone response white values */ s->rgbW[0] = 0.7328 * s->Wxyz[0] + 0.4296 * s->Wxyz[1] - 0.1624 * s->Wxyz[2]; s->rgbW[1] = -0.7036 * s->Wxyz[0] + 1.6975 * s->Wxyz[1] + 0.0061 * s->Wxyz[2]; s->rgbW[2] = 0.0000 * s->Wxyz[0] + 0.0000 * s->Wxyz[1] + 1.0000 * s->Wxyz[2]; /* Degree of chromatic adaption */ s->D = s->F * (1.0 - exp((-s->La - 42.0)/92.0)/3.6); /* Precompute Chromatic transform values */ s->Drgb[0] = s->D * (s->Wxyz[1]/s->rgbW[0]) + 1.0 - s->D; s->Drgb[1] = s->D * (s->Wxyz[1]/s->rgbW[1]) + 1.0 - s->D; s->Drgb[2] = s->D * (s->Wxyz[1]/s->rgbW[2]) + 1.0 - s->D; /* Chromaticaly transformed white value */ s->rgbcW[0] = s->Drgb[0] * s->rgbW[0]; s->rgbcW[1] = s->Drgb[1] * s->rgbW[1]; s->rgbcW[2] = s->Drgb[2] * s->rgbW[2]; /* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */ s->rgbpW[0] = 0.7409744840453773 * s->rgbcW[0] + 0.2180245944753982 * s->rgbcW[1] + 0.0410009214792244 * s->rgbcW[2]; s->rgbpW[1] = 0.2853532916858801 * s->rgbcW[0] + 0.6242015741188157 * s->rgbcW[1] + 0.0904451341953042 * s->rgbcW[2]; s->rgbpW[2] = -0.0096276087384294 * s->rgbcW[0] - 0.0056980312161134 * s->rgbcW[1] + 1.0153256399545427 * s->rgbcW[2]; /* Background induction factor */ s->n = s->Yb/ s->Wxyz[1]; s->nn = pow(1.64 - pow(0.29, s->n), 0.73); /* Pre computed value */ /* Lightness contrast factor ?? */ { double k; k = 1.0 / (5.0 * s->La + 1.0); s->Fl = 0.2 * pow(k , 4.0) * 5.0 * s->La + 0.1 * pow(1.0 - pow(k , 4.0) , 2.0) * pow(5.0 * s->La , 1.0/3.0); } /* Background and Chromatic brightness induction factors */ s->Nbb = 0.725 * pow(1.0/s->n, 0.2); s->Ncb = s->Nbb; /* Base exponential nonlinearity */ s->z = 1.48 + pow(s->n , 0.5); /* Post-adapted cone response of white */ tt = pow(s->Fl * s->rgbpW[0], 0.42); s->rgbaW[0] = (400.1 * tt + 2.713) / (tt + 27.13); tt = pow(s->Fl * s->rgbpW[1], 0.42); s->rgbaW[1] = (400.1 * tt + 2.713) / (tt + 27.13); tt = pow(s->Fl * s->rgbpW[2], 0.42); s->rgbaW[2] = (400.1 * tt + 2.713) / (tt + 27.13); /* Achromatic response of white */ s->Aw = (2.0 * s->rgbaW[0] + s->rgbaW[1] + (1.0/20.0) * s->rgbaW[2] - 0.305) * s->Nbb; #ifdef DIAG printf("Ref. Scene parameters:\n"); printf("Viewing condition Ev = %d\n",s->Ev); printf("Ref white Wxyz = %f %f %f\n", s->Wxyz[0], s->Wxyz[1], s->Wxyz[2]); printf("Relative liminance of background Yb = %f\n", s->Yb); printf("Adapting liminance La = %f\n", s->La); printf("Flare Yf = %f\n", s->Yf); printf("Flare color Fxyz = %f %f %f\n", s->Fxyz[0], s->Fxyz[1], s->Fxyz[2]); printf("Internal parameters:\n"); printf("Surround Impact C = %f\n", s->C); printf("Chromatic Induction Nc = %f\n", s->Nc); printf("Adaption Degree F = %f\n", s->F); printf("Pre-computed values\n"); printf("Sharpened cone white rgbW = %f %f %f\n", s->rgbW[0], s->rgbW[1], s->rgbW[2]); printf("Degree of chromatic adaption D = %f\n", s->D); printf("Chromatic transform values Drgb = %f %f %f\n", s->Drgb[0], s->Drgb[1], s->Drgb[2]); printf("Chromatically transformed white rgbcW = %f %f %f\n", s->rgbcW[0], s->rgbcW[1], s->rgbcW[2]); printf("Hunter-P-E cone response white rgbpW = %f %f %f\n", s->rgbpW[0], s->rgbpW[1], s->rgbpW[2]); printf("Background induction factor n = %f\n", s->n); printf("Lightness contrast factor Fl = %f\n", s->Fl); printf("Background brightness induction factor Nbb = %f\n", s->Nbb); printf("Chromatic brightness induction factor Ncb = %f\n", s->Ncb); printf("Base exponential nonlinearity z = %f\n", s->z); printf("Post adapted cone response white rgbaW = %f %f %f\n", s->rgbaW[0], s->rgbaW[1], s->rgbaW[2]); printf("Achromatic response of white Aw = %f\n", s->Aw); printf("\n"); #endif return 0; } /* A version of the pow() function that preserves the */ /* sign of its first argument. */ static double spow(double x, double y) { return x < 0.0 ? -pow(-x,y) : pow(x,y); } #define REFTRACE(xxxx) if (s->trace) printf xxxx ; /* Conversion. Returns NZ and -1, -1, -1 if input is out of range */ static int cam02ref_XYZ_to_cam( cam02ref *s, double Jab[3], double XYZ[3] ) { int i; double xyz[3], rgb[3], rgbp[3], rgba[3], rgbaW[3], rgbc[3], rgbcW[3]; double a, b, rS, J, C, h, e, A, ss; double ttd, tt; REFTRACE(("\nReference forward conversion:\n")) REFTRACE(("XYZ %f %f %f\n",XYZ[0], XYZ[1], XYZ[2])) /* Add in flare */ xyz[0] = s->Fsc * XYZ[0] + s->Fsxyz[0]; xyz[1] = s->Fsc * XYZ[1] + s->Fsxyz[1]; xyz[2] = s->Fsc * XYZ[2] + s->Fsxyz[2]; REFTRACE(("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2])) /* Spectrally sharpened cone responses */ rgb[0] = 0.7328 * xyz[0] + 0.4296 * xyz[1] - 0.1624 * xyz[2]; rgb[1] = -0.7036 * xyz[0] + 1.6975 * xyz[1] + 0.0061 * xyz[2]; rgb[2] = 0.0000 * xyz[0] + 0.0000 * xyz[1] + 1.0000 * xyz[2]; REFTRACE(("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2])) /* Chromaticaly transformed sample value */ rgbc[0] = s->Drgb[0] * rgb[0]; rgbc[1] = s->Drgb[1] * rgb[1]; rgbc[2] = s->Drgb[2] * rgb[2]; REFTRACE(("Chromatically transformed sample value rgbc = %f %f %f\n", rgb[0], rgb[1], rgb[2])) /* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */ rgbp[0] = 0.7409744840453773 * rgbc[0] + 0.2180245944753982 * rgbc[1] + 0.0410009214792244 * rgbc[2]; rgbp[1] = 0.2853532916858801 * rgbc[0] + 0.6242015741188157 * rgbc[1] + 0.0904451341953042 * rgbc[2]; rgbp[2] = -0.0096276087384294 * rgbc[0] - 0.0056980312161134 * rgbc[1] + 1.0153256399545427 * rgbc[2]; REFTRACE(("rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2])) /* Post-adapted cone response of sample. */ /* rgba[] has a minimum value of 0.1 for XYZ[] = 0 and no flare. */ /* We add a symetric negative compression region */ for (i = 0; i < 3; i++) { if (s->range && (rgbp[i] < 0.0 || rgbp[i] < s->nldlimit)) { Jab[0] = Jab[1] = Jab[2] = -1.0; return 1; } if (rgbp[i] < 0.0) { tt = pow(s->Fl * -rgbp[i], 0.42); rgba[i] = (2.713 - 397.387 * tt) / (tt + 27.13); } else { tt = pow(s->Fl * rgbp[i], 0.42); rgba[i] = (400.1 * tt + 2.713) / (tt + 27.13); } } REFTRACE(("rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2])) /* Preliminary red-green & yellow-blue opponent dimensions */ a = rgba[0] - 12.0 * rgba[1]/11.0 + rgba[2]/11.0; b = (1.0/9.0) * (rgba[0] + rgba[1] - 2.0 * rgba[2]); rS = sqrt(a * a + b * b); /* Normalised a, b */ /* Preliminary Saturation */ /* Note that the minimum values for rgba[] for XYZ = 0 is 0.1 */ /* Hence magic 0.305 below comes from the following weighting of rgba[] */ ttd = rgba[0] + rgba[1] + (21.0/20.0) * rgba[2]; /* Achromatic response */ /* Note that the minimum values of rgba[] for XYZ = 0 is 0.1, */ /* hence magic 0.305 below comes from the following weighting of rgba[], */ /* to base A at 0.0 */ A = (2.0 * rgba[0] + rgba[1] + (1.0/20.0) * rgba[2] - 0.305) * s->Nbb; REFTRACE(("a = %f, b = %f, ttd = %f, rS = %f, A = %f\n", a, b, ttd, rS, A)) /* Lightness */ J = pow(A/s->Aw, s->C * s->z); /* J/100 - keep Sign */ /* Hue angle */ h = (180.0/DBL_PI) * atan2(b,a); h = (h < 0.0) ? h + 360.0 : h; /* Eccentricity factor */ e = (cos(h * DBL_PI/180.0 + 2.0) + 3.8); if (s->range && (J < DBL_EPSILON || J < s->jlimit || ttd < DBL_EPSILON)) { REFTRACE(("J = %f, ttd = %f, exit with error\n", J, ttd)) Jab[0] = Jab[1] = Jab[2] = -1.0; return 1; } ss = (12500.0/13.0 * s->Nc * s->Ncb * rS * e) / ttd; /* Chroma */ C = pow(ss, 0.9) * sqrt(J) * s->nn; REFTRACE(("ss = %f, C = %f\n", ss, C)) /* Helmholtz-Kohlraush effect */ if (s->hk && J < 1.0) { double JJ, kk = C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0); if (kk > 0.9) /* Limit kk to a reasonable range */ kk = 0.9; JJ = J + (1.0 - J) * kk; REFTRACE(("JJ = %f from J = %f, kk = %f\n",JJ,J,kk)) J = JJ; } J *= 100.0; /* Scale J */ /* Compute Jab value */ Jab[0] = J; if (rS >= DBL_EPSILON) { Jab[1] = C * a/rS; Jab[2] = C * b/rS; } else { Jab[1] = 0.0; Jab[2] = 0.0; } REFTRACE(("Returning Jab %f %f %f\n", Jab[0],Jab[1],Jab[2])) #ifdef DIAG printf("Processing:\n"); printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]); printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]); printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]); printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]); printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]); printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]); printf("Prelim red green a = %f, b = %f\n", a, b); printf("Hue angle h = %f\n", h); printf("Eccentricity factor e = %f\n", e); printf("Achromatic response A = %f\n", A); printf("Lightness J = %f\n", J); printf("Prelim Saturation ss = %f\n", ss); printf("Chroma C = %f\n", C); printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]); printf("\n"); #endif return 0; } static int cam02ref_cam_to_XYZ( cam02ref *s, double XYZ[3], double Jab[3] ) { int i; double xyz[3], rgb[3], rgbp[3], rgba[3], rgbaW[3], rgbc[3], rgbcW[3]; double ja, jb, aa, ab, a, b, J, C, h, e, A, ss; double tt, ttA, tte; J = Jab[0] * 0.01; /* J/100 */ ja = Jab[1]; jb = Jab[2]; /* Compute hue angle */ h = (180.0/DBL_PI) * atan2(jb, ja); h = (h < 0.0) ? h + 360.0 : h; /* Compute chroma value */ C = sqrt(ja * ja + jb * jb); /* Must be Always +ve */ /* Helmholtz-Kohlraush effect */ if (s->hk && J < 1.0) { double kk = C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0); if (kk > 0.9) /* Limit kk to a reasonable range */ kk = 0.9; J = (J - kk)/(1.0 - kk); } /* Eccentricity factor */ e = (cos(h * DBL_PI/180.0 + 2.0) + 3.8); /* Achromatic response */ A = spow(J, 1.0/(s->C * s->z)) * s->Aw; /* Keep sign of J */ /* Preliminary Saturation - keep +ve */ tt = fabs(J); ss = pow(C/(sqrt(tt) * s->nn), 1.0/0.9); /* keep +ve */ /* Compute a & b, taking care of numerical problems */ aa = fabs(ja); ab = fabs(jb); ttA = (A/s->Nbb)+0.305; /* Common factor */ tte = 12500.0/13.0 * e * s->Nc * s->Ncb; /* Common factor */ if (aa < 1e-10 && ab < 1e-10) { a = ja; b = jb; } else if (aa > ab) { double tanh = jb/ja; double sign = (h > 90.0 && h <= 270.0) ? -1.0 : 1.0; if (ttA < 0.0) sign = -sign; a = (ss * ttA) / (sign * sqrt(1.0 + tanh * tanh) * tte + (ss * (11.0/23.0 + (108.0/23.0) * tanh))); b = a * tanh; } else { /* ab > aa */ double itanh = ja/jb; double sign = (h > 180.0 && h <= 360.0) ? -1.0 : 1.0; if (ttA < 0.0) sign = -sign; b = (ss * ttA) / (sign * sqrt(1.0 + itanh * itanh) * tte + (ss * (108.0/23.0 + (11.0/23.0) * itanh))); a = b * itanh; } /* Post-adapted cone response of sample */ rgba[0] = (20.0/61.0) * ttA + ((41.0 * 11.0)/(61.0 * 23.0)) * a + ((288.0 * 1.0)/(61.0 * 23.0)) * b; rgba[1] = (20.0/61.0) * ttA - ((81.0 * 11.0)/(61.0 * 23.0)) * a - ((261.0 * 1.0)/(61.0 * 23.0)) * b; rgba[2] = (20.0/61.0) * ttA - ((20.0 * 11.0)/(61.0 * 23.0)) * a - ((20.0 * 315.0)/(61.0 * 23.0)) * b; /* Hunt-Pointer_Estevez cone space */ tt = 1.0/s->Fl; for (i = 0; i < 3; i++) { if (rgba[i] < 0.1) { double ta = rgba[i] > -396.387 ? rgba[i] : -396.387; rgbp[i] = -tt * pow((2.713 - 27.13 * rgba[i] )/(397.387 + ta), 1.0/0.42); } else { double ta = rgba[i] < 399.1 ? rgba[i] : 399.1; rgbp[i] = tt * pow((27.13 * rgba[i] -2.713)/(400.1 - ta), 1.0/0.42); } } /* Chromaticaly transformed sample value */ rgbc[0] = 1.5591523979049677 * rgbp[0] - 0.5447226796590880 * rgbp[1] - 0.0144453097698588 * rgbp[2]; rgbc[1] = -0.7143267176368630 * rgbp[0] + 1.8503099728895096 * rgbp[1] - 0.1359761119854705 * rgbp[2]; rgbc[2] = 0.0107755117023383 * rgbp[0] + 0.0052187662221759 * rgbp[1] + 0.9840056143203700 * rgbp[2]; /* Spectrally sharpened cone responses */ rgb[0] = rgbc[0]/s->Drgb[0]; rgb[1] = rgbc[1]/s->Drgb[1]; rgb[2] = rgbc[2]/s->Drgb[2]; /* XYZ values */ xyz[0] = 1.0961238208355140 * rgb[0] - 0.2788690002182872 * rgb[1] + 0.1827451793827730 * rgb[2]; xyz[1] = 0.4543690419753590 * rgb[0] + 0.4735331543074120 * rgb[1] + 0.0720978037172291 * rgb[2]; xyz[2] = -0.0096276087384294 * rgb[0] - 0.0056980312161134 * rgb[1] + 1.0153256399545427 * rgb[2]; /* Subtract flare */ XYZ[0] = s->Fisc * (xyz[0] - s->Fsxyz[0]); XYZ[1] = s->Fisc * (xyz[1] - s->Fsxyz[1]); XYZ[2] = s->Fisc * (xyz[2] - s->Fsxyz[2]); #ifdef DIAG printf("Processing:\n"); printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]); printf("Chroma C = %f\n", C); printf("Preliminary Saturation ss = %f\n", ss); printf("Lightness J = %f\n", J * 100.0); printf("Achromatic response A = %f\n", A); printf("Eccentricity factor e = %f\n", e); printf("Hue angle h = %f\n", h); printf("Prelim red green a = %f, b = %f\n", a, b); printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]); printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]); printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]); printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]); printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]); printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]); printf("\n"); #endif return 0; }