1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
|
/*
* Argyll Color Correction System
* ChromCast dither pattern code
*
* Author: Graeme W. Gill
* Date: 11/12/2014
*
* Copyright 2014 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License2.txt file for licencing details.
*
*/
/*
* Locates minimal list of surrounders
* Find initial weight for them using minimizer
Itterates over
* Locate cell changes that match desired correction
with increasing randomness of choosing a poor match
* Reset to starting pattern when accumulated error over
best current is exceeded.
Problem is this is unreliable is locating good matches
for some cases.
Problem is that it doesn't seem to work - ChromeCast doesn't
decode the way we model it :-(
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <time.h>
#include "copyright.h"
#include "aconfig.h"
#include "counters.h"
#ifndef SALONEINSTLIB
#include "numlib.h"
#else
#include "numsup.h"
#endif
#include "conv.h"
#include "base64.h"
#include "yajl.h"
#include "ccmdns.h"
#include "ccpacket.h"
#include "ccmes.h"
#include "ccast.h"
#ifdef STANDALONE_TEST
# define DIAGNOSTICS
#endif
#undef TEST_POINT
/* Even/Odd filter filter index ranges (inclusive) and total size */
#define EV_NEG -4
#define EV_POS 4
#define EV_WIDTH (-(EV_NEG) + 1 + EV_POS)
#define OD_NEG -4
#define OD_POS 3
#define OD_WIDTH (-(OD_NEG) + 1 + OD_POS)
/* Weightings [horiz/vert] */
double filt_v_ev[2][EV_WIDTH] = {
{ -0.003467, -0.048341, 0.028688, 0.418873, 0.704674, 0.427551, 0.032480, -0.050146, -0.003793 },
{ -0.013477, 0.000081, -0.087119, 0.357627, 1.000252, 0.378473, -0.083496, -0.000155, -0.009850 }
};
/* Weightings [horiz/vert] */
double filt_v_od[2][OD_WIDTH] = {
{ -0.026810, -0.045190, 0.186825, 0.614579, 0.623721, 0.206987, -0.040217, -0.026419 },
{ 0.008396, -0.078987, -0.013733, 0.796594, 0.813578, 0.013555, -0.086466, 0.004781 }
};
/* [horiz/vert][phase] */
double *filt[2][2] = { { &filt_v_ev[0][-(EV_NEG)], &filt_v_od[0][-(OD_NEG)] },
{ &filt_v_ev[1][-(EV_NEG)], &filt_v_od[1][-(OD_NEG)] } };
/* [phase] */
int fneg[2] = { EV_NEG, OD_NEG };
int fpos[2] = { EV_POS, OD_POS };
/* Dither input size */
#ifdef TEST_POINT
# define DISIZE 8
#else
# define DISIZE CCDITHSIZE
#endif
#define DOSIZE ((DISIZE * 3)/2)
#ifdef DIAGNOSTICS
int vv = 0;
#endif
/* Upsample ipat to opat */
/* And return the average RGB value */
static void upsample(double ret[3], double iipat[DISIZE][DISIZE][3]) {
double ipat[DISIZE][DISIZE][3];
double tpat[DOSIZE][DISIZE][3]; /* Intermediate pattern - horizontal up-sampled */
double opat[DOSIZE][DOSIZE][3]; /* Output pattern */
int x, y;
int i, j;
//printf("~1 doing conversion\n");
/* Convert from RGB to YCbCr */
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
ccast2YCbCr(NULL, ipat[x][y], iipat[x][y]);
// ipat[x][y][0] = iipat[x][y][0];
// ipat[x][y][1] = iipat[x][y][1];
// ipat[x][y][2] = iipat[x][y][2];
//printf("[%d][%d] %f %f %f -> %f %f %f\n",x,y, iipat[x][y][0], iipat[x][y][1], iipat[x][y][2], ipat[x][y][0], ipat[x][y][1], ipat[x][y][2]);
}
}
//printf("~1 doing horiz\n");
/* Up-sample in horizontal direction */
for (y = 0; y < DISIZE; y++) {
/* Zero the intermediate pattern */
for (i = 0; i < DOSIZE; i++) {
tpat[i][y][0] = 0.0;
tpat[i][y][1] = 0.0;
tpat[i][y][2] = 0.0;
}
/* Distribute the input according to the filter */
for (x = 0; x < DISIZE; x++) {
int ph, ii, k;
ph = x & 1;
ii = (int)floor(x * 1.5 + 0.5);
/* For all the filter cooeficients */
for (k = fneg[ph]; k <= fpos[ph]; k++) {
i = (ii + k);
while (i < 0)
i += DOSIZE;
while (i >= DOSIZE)
i -= DOSIZE;
tpat[i][y][0] += filt[0][ph][k] * ipat[x][y][0];
tpat[i][y][1] += filt[0][ph][k] * ipat[x][y][1];
tpat[i][y][2] += filt[0][ph][k] * ipat[x][y][2];
}
}
}
//printf("~1 doing vert\n");
/* Up-sample in vertical direction */
for (i = 0; i < DOSIZE; i++) {
/* Zero the output pattern */
for (j = 0; j < DOSIZE; j++) {
opat[i][j][0] = 0.0;
opat[i][j][1] = 0.0;
opat[i][j][2] = 0.0;
}
/* Distribute the input according to the filter */
for (y = 0; y < DISIZE; y++) {
int ph, jj, k;
ph = y & 1;
jj = (int)floor(y * 1.5 + 0.5);
/* For all the filter cooeficients */
for (k = fneg[ph]; k <= fpos[ph]; k++) {
j = (jj + k);
while (j < 0)
j += DOSIZE;
while (j >= DOSIZE)
j -= DOSIZE;
opat[i][j][0] += filt[1][ph][k] * tpat[i][y][0];
opat[i][j][1] += filt[1][ph][k] * tpat[i][y][1];
opat[i][j][2] += filt[1][ph][k] * tpat[i][y][2];
}
}
}
//printf("~1 doing conversion\n");
/* Convert from YCbCr to RGB */
for (i = 0; i < DOSIZE; i++) {
for (j = 0; j < DOSIZE; j++) {
YCbCr2ccast(NULL, opat[i][j], opat[i][j]);
}
}
//printf("~1 done\n");
if (ret != NULL) {
ret[0] = ret[1] = ret[2] = 0.0;
for (j = 0; j < DOSIZE; j++) {
for (i = 0; i < DOSIZE; i++) {
ret[0] += opat[i][j][0];
ret[1] += opat[i][j][1];
ret[2] += opat[i][j][2];
}
}
ret[0] /= (double)(DOSIZE * DOSIZE);
ret[1] /= (double)(DOSIZE * DOSIZE);
ret[2] /= (double)(DOSIZE * DOSIZE);
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Result\n");
for (j = 0; j < DOSIZE; j++) {
for (i = 0; i < DOSIZE; i++) {
if (i > 0)
printf(", ");
printf("% 5.1f % 5.1f % 5.1f",opat[i][j][0],opat[i][j][1], opat[i][j][2]);
}
printf("\n");
}
}
#endif
}
/* ------------------------------------------------------------- */
/* Given a quantized RGB target, return a quantized RGB that either exactly */
/* maps to it through YCbCr conversion, or is the closest in the */
/* direction away from the target value, or the closest clipped value */
static void quant_rgb(int n, double out[3], double rgb[3]) {
double ycc[3], base[3];
double tmp[3], chval[3];
double dist, bdist = 1e6;
double brgb[3], borgb[3];
int ix, k;
//printf("Quant RGB %f %f %f n %d\n", rgb[0], rgb[1], rgb[2], n);
/* Search current rgb and surround in the same direction */
/* it is from the target value, for a quantized rgb */
/* that is in that direction */
for (k = 0; k < 3; k++)
base[k] = rgb[k];
for (ix = 0; ix < 8; ix++) {
double dist;
/* Comp trial RGB */
for (k = 0; k < 3; k++) {
tmp[k] = base[k];
if (ix & (1 << k)) {
if (n & (1 << k)) /* Move in direction base point is in */
tmp[k] += 1.0;
else
tmp[k] -= 1.0;
if (tmp[k] < 0.0 || tmp[k] > 255.0)
break;
}
}
if (k < 3) /* Trial is out of gamut */
continue;
/* Quantize it */
ccast2YCbCr(NULL, ycc, tmp);
YCbCr2ccast(NULL, chval, ycc);
//printf("Trial RGB %f %f %f\n", tmp[0], tmp[1], tmp[2]);
//printf(" result %f %f %f\n", chval[0], chval[1], chval[2]);
/* It's OK if it is eual or greater in the desired */
/* direction than the input rgb. */
/* Best would be closest to input. */
/* Least worst would be what ? */
dist = 0.0;
for (k = 0; k < 3; k++) {
double tt;
if (n & (1 << k)) {
tt = chval[k] - base[k];
} else {
tt = base[k] - chval[k];
}
if (tt >= 0.0)
dist += 0.1 * tt;
else
dist += 2.0 * -tt;
}
//printf(" dist %f\n", dist);
/* Pick it if it is at least in the right direction */
if (dist < bdist) {
for (k = 0; k < 3; k++) {
rgb[k] = tmp[k];
out[k] = chval[k];
}
bdist = dist;
}
}
#ifdef NEVER
if (bdist > 0.0
&& rgb[0] != 0.0 && rgb[0] != 1.0 && rgb[0] != 254.0 && rgb[0] != 255.0
&& rgb[1] != 0.0 && rgb[1] != 1.0 && rgb[1] != 254.0 && rgb[1] != 255.0
&& rgb[2] != 0.0 && rgb[2] != 1.0 && rgb[2] != 254.0 && rgb[2] != 255.0) {
printf("quant_rgb failed with bdist %f\n",bdist);
printf(" rgb in %f %f %f\n",base[0],base[1],base[2]);
printf(" returning rgb %f %f %f\n",rgb[0],rgb[1],rgb[2]);
printf(" resrgb %f %f %f\n",out[0],out[1],out[2]);
}
#endif /* NEVER */
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - */
typedef struct optcntx {
int di;
double *val; /* Target */
double (*ressur)[8][3]; /* resulting RGB surrounding values */
} optcntx;
static double optfunc(void *fdata, double tp[]) {
optcntx *cntx = (optcntx *)fdata;
int i, k;
double iw, tmp[3];
double err = 0.0;
/* Compute interpolated result */
for (k = 0; k < 3; k++)
tmp[k] = 0.0;
iw = 1.0;
for (i = 0; i < cntx->di; i++) {
if (tp[i] < 0.0)
err += 1000.0 * tp[i] * tp[i];
else if (tp[i] > 1.0)
err += 1000.0 * (tp[i] - 1.0) * (tp[i] - 1.0);
for (k = 0; k < 3; k++)
tmp[k] += tp[i] * (*cntx->ressur)[i][k];
iw -= tp[i];
}
for (k = 0; k < 3; k++)
tmp[k] += iw * (*cntx->ressur)[i][k];
/* Compute error */
for (k = 0; k < 3; k++) {
double tt = tmp[k] - cntx->val[k];
err += tt * tt;
}
//printf("Returning %f from %f %f\n",err,tp[0],tp[1]);
return err;
}
/* Compute pattern */
/* return the delta to the target */
double get_ccast_dith(double ipat[DISIZE][DISIZE][3], double val[3]) {
double itpat[DISIZE][DISIZE][3], tpat[DISIZE][DISIZE][3];
double irtpat[DISIZE][DISIZE][3], rtpat[DISIZE][DISIZE][3]; /* resulting for tpat */
double berr = 0.0;
int n, k;
int x, y;
int i, j;
int ii;
struct {
int x, y;
} order[16] = {
// Dispersed:
{ 3, 1 },{ 1, 3 },{ 1, 1 },{ 3, 0 },{ 3, 3 },{ 1, 2 },{ 3, 2 },{ 2, 0 },
{ 1, 0 },{ 0, 3 },{ 0, 1 },{ 2, 1 },{ 2, 2 },{ 0, 0 },{ 0, 2 },{ 2, 3 }
// Clustered:
// { 0, 0 },{ 0, 1 },{ 1, 1 },{ 1, 0 },{ 2, 0 },{ 3, 0 },{ 3, 1 },{ 2, 1 },
// { 2, 2 },{ 3, 2 },{ 3, 3 },{ 2, 3 },{ 1, 3 },{ 1, 2 },{ 0, 2 },{ 0, 3 }
};
int cix = 0;
int nsur = 8, ncomb = 4;
double sur[8][3]; /* RGB surrounding values to use */
double ressur[8][3]; /* resulting RGB surrounding values */
int bcc[8]; /* Best combination */
double bw[8]; /* Best weight */
int biw[8]; /* Best integer weight/16 */
double dval[3]; /* Dithered value */
double err[3], werr;
double errxs;
/* Tuning params */
int nitters = 300; /* No itters */
int rand_count = 150;
double rand_start = 4.5; /* Ramp with itters */
double rand_end = 0.2;
double rand_pow = 1.5;
double mxerrxs = 2.5; /* accumulated error reset threshold */
unsigned int randv = 0x1234;
/* 32 bit pseudo random sequencer based on XOR feedback */
/* generates number between 1 and 4294967295 */
#define PSRAND32F(S) (((S) & 0x80000000) ? (((S) << 1) ^ 0xa398655d) : ((S) << 1))
/* Locate the 8 surrounding RGB verticies */
for (n = 0; n < 8; n++) {
for (k = 0; k < 3; k++) {
if (n & (1 << k))
sur[n][k] = ceil(val[k]);
else
sur[n][k] = floor(val[k]);
}
//printf("Input sur %d: %f %f %f\n",n,sur[n][0], sur[n][1], sur[n][2], sur[n][3]);
/* Figure out what RGB values to use to surround the point, */
/* and what actual RGB values to expect from using them. */
quant_rgb(n, ressur[n], sur[n]);
//printf("Quant sur %d: %f %f %f\n",n,sur[n][0], sur[n][1], sur[n][2], sur[n][3]);
//printf(" ressur %d: %f %f %f\n",n,ressur[n][0], ressur[n][1], ressur[n][2], ressur[n][3]);
// printf("\n");
}
/* Reduce this to unique surrounders */
for (nsur = 0, i = 0; i < 8; i++) {
/* Check if the i'th entry is already in the list */
for (j = 0; j < nsur; j++) {
for (k = 0; k < 3; k++) {
if (ressur[i][k] != ressur[j][k])
break;
}
if (k < 3)
continue; /* Unique */
break; /* Duplicate */
}
if (j < nsur) /* Duplicate */
continue;
/* Copy i'th to nsur */
for (k = 0; k < 3; k++) {
sur[nsur][k] = sur[i][k];
ressur[nsur][k] = ressur[i][k];
}
nsur++;
}
#ifdef DIAGNOSTICS
if (vv) {
printf("There are %d unique surrounders:\n",nsur);
for (n = 0; n < nsur; n++) {
printf("sur %f %f %f\n",ressur[n][0], ressur[n][1], ressur[n][2]);
}
}
#endif
/* Use an optimzer to set the initial values using all the unique */
/* surrounders. */
{
double s[8];
optcntx cntx;
ncomb = nsur;
for (n = 0; n < nsur; n++) {
bcc[n] = n;
bw[n] = 1.0/nsur;
s[n] = 0.1;
}
cntx.di = nsur-1;
cntx.val = val;
cntx.ressur = &ressur;
powell(NULL, cntx.di, bw, s, 1e-4, 1000, optfunc, &cntx, NULL, NULL);
/* Compute baricentric values */
bw[nsur-1] = 0.0;
for (n = 0; n < (nsur-1); n++) {
if (bw[n] < 0.0)
bw[n] = 0.0;
else if (bw[n] > 1.0)
bw[n] = 1.0;
bw[nsur-1] += bw[n];
}
if (bw[nsur-1] > 1.0) { /* They summed to over 1.0 */
for (n = 0; n < (nsur-1); n++)
bw[n] *= 1.0/bw[nsur-1]; /* Scale them down */
bw[nsur-1] = 1.0;
}
bw[nsur-1] = 1.0 - bw[nsur-1]; /* Remainder */
}
/* Check the result */
#ifdef DIAGNOSTICS
if (vv) {
double tmp[3], err;
/* Compute interpolated result */
for (k = 0; k < 3; k++)
tmp[k] = 0.0;
for (n = 0; n < ncomb; n++) {
for (k = 0; k < 3; k++)
tmp[k] += bw[n] * ressur[bcc[n]][k];
}
/* Compute error */
err = 0.0;
for (k = 0; k < 3; k++) {
tmp[k] -= val[k];
err += tmp[k] * tmp[k];
}
err = sqrt(err);
for (n = 0; n < ncomb; n++)
printf("Comb %d weight %f rgb %f %f %f\n",bcc[n],bw[n],ressur[bcc[n]][0],ressur[bcc[n]][1],ressur[bcc[n]][2]);
printf("Error %f %f %f rms %f\n",tmp[0], tmp[1], tmp[2], err);
printf("\n");
}
#endif
/* Compute the number of pixels for each surounder value */
{
int sw[8], rem;
/* Sort the weightings from smallest to largest */
for (n = 0; n < 8; n++)
sw[n] = n;
for (i = 0; i < (ncomb-1); i++) {
for (j = i+1; j < ncomb; j++) {
if (bw[sw[j]] < bw[sw[i]]) {
int tt = sw[i]; /* Swap them */
sw[i] = sw[j];
sw[j] = tt;
}
}
}
/* Compute the nearest integer weighting out of 16 */
rem = 16;
for (i = 0; i < (ncomb-1) && rem > 0; i++) {
n = sw[i];
biw[n] = (int)(16.0 * bw[n] + 0.5);
rem -= biw[n];
if (rem <= 0)
rem = 0;
}
for (; i < ncomb; i++) {
n = sw[i];
biw[n] = rem;
}
#ifdef DIAGNOSTICS
if (vv) {
for (n = 0; n < ncomb; n++)
printf("Comb %d iweight %i rgb %f %f %f\n",bcc[n],biw[n],ressur[bcc[n]][0],ressur[bcc[n]][1],ressur[bcc[n]][2]);
}
#endif
}
/* Set the initial pattern according to the integer weighting */
for (cix = 0, n = 0; n < ncomb; n++) {
for (i = 0; i < biw[n]; i++) {
x = order[cix].x;
y = order[cix].y;
cix++;
for (k = 0; k < 3; k++) {
tpat[x][y][k] = itpat[x][y][k] = sur[bcc[n]][k];
rtpat[x][y][k] = irtpat[x][y][k] = ressur[bcc[n]][k];
}
}
}
#ifdef DIAGNOSTICS
/* Check initial pattern error */
if (vv) {
printf("Input pat:\n");
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
if (y > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
}
printf("\n");
}
}
#endif
upsample(dval, rtpat);
werr = 0.0;
for (k = 0; k < 3; k++) {
err[k] = dval[k] - val[k];
if (fabs(err[k]) > werr)
werr = fabs(err[k]);
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Target %f %f %f -> %f %f %f\n", val[0], val[1], val[2], dval[0], dval[1], dval[2]);
printf("Error %f %f %f werr %f\n", err[0], err[1], err[2], werr);
}
#endif
berr = werr;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++)
ipat[x][y][k] = tpat[x][y][k];
}
}
/* Improve fit if needed */
/* This is a bit stocastic */
errxs = 0.0;
for (ii = 0; ii < nitters; ii++) { /* Until we give up */
double corr[3]; /* Correction direction needed */
double bdot;
int bx, by;
double wycc, mm;
double cell[3]; /* Cell being modified value */
double ccell[3]; /* Corrected cell */
double pcell[3]; /* Proposed new cell value */
for (k = 0; k < 3; k++)
corr[k] = val[k] - dval[k];
#ifdef DIAGNOSTICS
if (vv)
printf("corr needed %f %f %f\n", corr[0], corr[1], corr[2]);
#endif
/* Scale it and limit it */
for (k = 0; k < 3; k++) {
double dd = 16.0 * corr[k];
if (dd >= 1.0)
dd = 1.0;
else if (dd <= -1.0)
dd = -1.0;
else
dd = 0.0;
corr[k] = dd;
}
if (corr[0] == 0.0 && corr[1] == 0 && corr[2] == 0.0) {
#ifdef DIAGNOSTICS
if (vv)
printf("No correction possible - done\n");
#endif
break;
}
#ifdef DIAGNOSTICS
if (vv)
printf("scaled corr %f %f %f\n", corr[0], corr[1], corr[2]);
#endif
/* Search dither cell and surrounder for a combination */
/* that is closest to the change we want to make. */
bdot = 1e6;
bx = by = n = 0;
for (x = 0; x < DISIZE; x++) {
double rlevel = rand_start + (rand_end - rand_start)
* pow((ii % rand_count)/rand_count, rand_pow);
for (y = 0; y < DISIZE; y++) {
for (i = 0; i < ncomb; i++) {
double dot = 0.0;
for (k = 0; k < 3; k++)
dot += (ressur[bcc[i]][k] - rtpat[x][y][k]) * corr[k];
/* Ramp the randomness up */
// dot += d_rand(0.0, 0.1 + (2.5-0.1) * ii/nitters);
// dot += d_rand(-rlevel, rlevel);
/* use a deterministic random element, so that */
/* the dither patterns are repeatable. */
randv = PSRAND32F(randv);
dot += rlevel * 2.0 * ((randv - 1)/4294967294.0 - 0.5);
if (dot <= 0.0)
dot = 1e7;
else {
dot = (dot - 1.0) * (dot - 1.0);
}
//printf("dot %f from sur %f %f %f to pat %f %f %f\n", dot, ressur[bcc[i]][0], ressur[bcc[i]][1], ressur[bcc[i]][2], rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
if (dot < bdot) {
bdot = dot;
bx = x;
by = y;
n = i;
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Changing cell [%d][%d] %f %f %f with dot %f\n",bx,by,rtpat[bx][by][0],rtpat[bx][by][1],rtpat[bx][by][2],bdot);
printf(" to sur %d: %f %f %f\n",n, ressur[bcc[n]][0], ressur[bcc[n]][1], ressur[bcc[n]][2]);
}
#endif
/* Substitute the best correction for this cell */
for (k = 0; k < 3; k++) {
tpat[bx][by][k] = sur[bcc[n]][k];
rtpat[bx][by][k] = ressur[bcc[n]][k];
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Input pat:\n");
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
if (y > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",rtpat[x][y][0], rtpat[x][y][1], rtpat[x][y][2]);
}
printf("\n");
}
}
#endif
upsample(dval, rtpat);
werr = 0.0;
for (k = 0; k < 3; k++) {
err[k] = dval[k] - val[k];
if (fabs(err[k]) > werr)
werr = fabs(err[k]);
}
if (werr > berr) {
errxs += werr - berr;
}
/* New best */
if (werr < berr) {
berr = werr;
errxs = 0.0;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++) {
ipat[x][y][k] = tpat[x][y][k];
itpat[x][y][k] = tpat[x][y][k];
irtpat[x][y][k] = rtpat[x][y][k];
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Target %f %f %f -> %f %f %f\n", val[0], val[1], val[2], dval[0], dval[1], dval[2]);
printf("Error %f %f %f werr %f\n", err[0], err[1], err[2], werr);
}
#endif
if (berr < 0.11) {
#ifdef DIAGNOSTICS
if (vv)
printf("best error %f < 0.11 - give up\n",berr);
#endif
break;
}
/* If we're not making progress, reset to the last best */
if (errxs > mxerrxs) {
#ifdef DIAGNOSTICS
if (vv)
printf("Restarting at ii %d \n",ii);
#endif
errxs = 0.0;
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
for (k = 0; k < 3; k++) {
tpat[x][y][k] = itpat[x][y][k];
rtpat[x][y][k] = irtpat[x][y][k];
}
}
}
}
}
#ifdef DIAGNOSTICS
if (vv) {
printf("Returning best error %f pat:\n",berr);
for (y = 0; y < DISIZE; y++) {
for (x = 0; x < DISIZE; x++) {
if (x > 0)
printf(", ");
printf("%3.0f %3.0f %3.0f",ipat[x][y][0], ipat[x][y][1], ipat[x][y][2]);
}
printf("\n");
}
}
#endif
return berr;
}
/* ====================================================================================== */
#ifdef STANDALONE_TEST
int
main(int argc,
char *argv[]
) {
double val[3], out[3], err;
double ipat[DISIZE][DISIZE][3];
double aerr, acount, xerr;
int x, y;
int i, j;
int k, nn;
printf("Hi there\n");
rand32(time(NULL));
#ifdef TEST_POINT
for (x = 0; x < DISIZE; x++) {
for (y = 0; y < DISIZE; y++) {
ipat[x][y][0] = 0.0;
ipat[x][y][1] = 0.0;
ipat[x][y][2] = 0.0;
}
}
ipat[5][4][0] = 255.0;
ipat[5][4][1] = 255.0;
ipat[5][4][2] = 255.0;
upsample(NULL, ipat);
#else
#ifdef NEVER
// val[0] = 201.500000;
// val[1] = 115.533403;
// val[2] = 76.300000;
// val[0] = 255.000000;
// val[1] = 115.533403;
// val[2] = 255.000000;
// val[0] = 221.689875;
// val[1] = 29.593255;
// val[2] = 140.820878;
// val[0] = 212.377797;
// val[1] = 228.338903;
// val[2] = 70.153296;
// val[0] = 231.554511;
// val[1] = 0.000000;
// val[2] = 51.958048;
// val[0] = 255.000000;
// val[1] = 144.768052;
// val[2] = 179.737212;
// val[0] = 194.854956;
// val[1] = 41.901887;
// val[2] = 20.434793;
// val[0] = 250.100121;
// val[1] = 83.484217;
// val[2] = 42.867603;
// val[0] = 255.000000;
// val[1] = 255.000000;
// val[2] = 228.534759;
// 1.71 -> 1.58, rand 2.2
// val[0] = 255.000000;
// val[1] = 176.894769;
// val[2] = 8.932806;
// 1.54 -> 0.762592, rand 0.3
// val[0] = 216.873703;
// val[1] = 250.908094;
// 1.05
// val[0] = 167.284458;
// val[1] = 248.945210;
// val[2] = 199.023452;
// 1.07
// val[0] = 211.045184;
// val[1] = 27.825141;
// val[2] = 63.883148;
// 1.928
// val[0] = 255.000000;
// val[1] = 0.439284;
// val[2] = 210.928135;
// 1.278
// val[0] = 218.693614;
// val[1] = 222.890101;
// val[2] = 174.779727;
// 1.334501
// val[0] = 253.931573;
// val[1] = 230.278945;
// val[2] = 185.677389;
// printf("In RGB %f %f %f\n",val[0],val[1],val[2]);
// ccast2YCbCr(NULL, out, val);
// printf("YCbCr %f %f %f\n",out[0],out[1],out[2]);
// YCbCr2ccast(NULL, out, out);
// printf("RGB %f %f %f\n",out[0],out[1],out[2]);
vv = 1;
err = get_ccast_dith(ipat, val);
printf("Got pat with err %f\n",err);
#else
aerr = 0.0;
acount = 0.0;
xerr = 0.0;
for (nn = 0; nn < 200000; nn++) {
for (k = 0; k < 3; k++) {
val[k] = d_rand(-5.0, 255.0 + 5.0);
if (val[k] < 0.0)
val[k] = 0.0;
else if (val[k] > 255.0)
val[k] = 255.0;
}
err = get_ccast_dith(ipat, val);
if (err >= 1.5 ||
( err >= 1.0
&& val[0] != 0.0 && val[0] != 255.0
&& val[1] != 0.0 && val[1] != 255.0
&& val[2] != 0.0 && val[2] != 255.0)) {
printf("Target RGB %f %f %f, err %f\n", val[0], val[1], val[2],err);
// vv = 1;
// comput_pat(ipat, val);
// break;
}
aerr += err;
acount++;
if (err > xerr)
xerr = err;
}
aerr /= acount;
printf("After %d trials, aerr = %f, maxerr = %f\n",nn,aerr,xerr);
#endif
#endif
return 0;
}
#endif /* STANDALONE_TEST */
|