1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
|
/*
* Argyll Color Correction System
* ChromCast up filter test code.
*
* Author: Graeme W. Gill
* Date: 28/8/2014
*
* Copyright 2014 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License2.txt file for licencing details.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <time.h>
#include "copyright.h"
#include "aconfig.h"
#ifndef SALONEINSTLIB
#include "numlib.h"
#else
#include "numsup.h"
#endif
#include "yajl.h"
#include "conv.h"
#include "base64.h"
#include "ccmdns.h"
#include "ccpacket.h"
#include "ccmes.h"
#include "yajl.h"
#include "ccast.h"
#define DO_WEIGHTING
#define SUM_CONSTRAINT
//#define VERT 1 /* 1 for vertical */
#ifndef DBL_PI
# define DBL_PI 3.1415926535897932384626433832795
#endif
double lanczos3(double wi, double x) {
double y;
x = fabs(1.0 * x/wi);
if (x >= 3.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/3.0)/(DBL_PI * x/3.0);
return y;
}
double lanczos2(double wi, double x) {
double y;
x = fabs(1.0 * x/wi);
if (x >= 2.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/2.0)/(DBL_PI * x/2.0);
return y;
}
double in[2][72] = {
{ // Horizontal
255, 0, 0, 0, 0, 0, 0, 0, 0,
255, 0, 0, 0, 0, 0, 0, 0, 0,
254, 0, 0, 0, 0, 0, 0, 0, 0,
254, 0, 0, 0, 0, 0, 0, 0, 0,
253, 0, 0, 0, 0, 0, 0, 0, 0,
253, 0, 0, 0, 0, 0, 0, 0, 0,
252, 0, 0, 0, 0, 0, 0, 0, 0,
252, 0, 0, 0, 0, 0, 0, 0, 0
}, { // Vertical slice input target
255, 0, 0, 0, 0, 0, 0, 0, 0,
255, 0, 0, 0, 0, 0, 0, 0, 0,
254, 0, 0, 0, 0, 0, 0, 0, 0,
254, 0, 0, 0, 0, 0, 0, 0, 0,
253, 0, 0, 0, 0, 0, 0, 0, 0,
253, 0, 0, 0, 0, 0, 0, 0, 0,
252, 0, 0, 0, 0, 0, 0, 0, 0,
252, 0, 0, 0, 0, 0, 0, 0, 0
} };
#ifdef NEVER
double out[2][] = {
{ // Horizontal
170, 110, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 57,
151, 153, 61, 7, 10, 16, 16, 16, 16, 17, 15, 5, 22,
107, 169, 109, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 57,
150, 152, 61, 7, 10, 16, 16, 16, 16, 17, 15, 5, 22,
107, 168, 109, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 56,
149, 151, 61, 7, 10, 16, 16, 16, 16, 17, 15, 6, 22,
106, 167, 108, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 56,
148, 150
},
{ // Vertical slice target output
235, 100, 0, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
191, 194, 19, 0, 20, 16, 16, 16, 16, 16, 16, 16, 0, 95,
234, 99, 0, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
190, 194, 19, 0, 20, 16, 16, 16, 16, 16, 16, 16, 0, 94,
233, 99, 0, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
189, 193, 19, 0, 20, 16, 16, 16, 16, 16, 16, 16, 0, 94,
232, 99, 0, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
188, 192
}
};
#else
//#define N1 -9
//#define N2 -8
#define N1 0
#define N2 0
//#define N3 1
#define N4 0
double out[2][96] = {
{ // Horozontal
170, 110, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 57,
151, 153, 61, 7, 10, 16, 16, 16, 16, 17, 15, 5, 22,
107, 169, 109, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 57,
150, 152, 61, 7, 10, 16, 16, 16, 16, 17, 15, 5, 22,
107, 168, 109, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 56,
149, 151, 61, 7, 10, 16, 16, 16, 16, 17, 15, 6, 22,
106, 167, 108, 23, 5, 15, 17, 16, 16, 16, 17, 10, 6, 56,
148, 150
},
{ // Vertical slice target output
235, 100, N2, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
191, 194, 19, N4, 20, 16, 16, 16, 16, 16, 16, 16, N1, 95,
234, 99, N2, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
190, 194, 19, N4, 20, 16, 16, 16, 16, 16, 16, 16, N1, 94,
233, 99, N2, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
189, 193, 19, N4, 20, 16, 16, 16, 16, 16, 16, 16, N1, 94,
232, 99, N2, 16, 16, 16, 16, 16, 16, 16, 20, 1, 13,
188, 192
}
};
#endif
// Computed the input to output filters.
// There will be two phases, depending on whether
// the input pixel has an even or odd address.
// Although in this case they seem like they
// almost interleave, they are actually mirror
// images with offset, so it's easier to keep them
// separate, rather than trying to figure the offset out.
// The index is the output pixel around the closest one
// to the scaled input pixel - ie. floor(in * 1.5 + 0.5)
#define FWIDTH 6
#define NWIDTH (2 * FWIDTH + 1)
double filt_v[2][2][NWIDTH];
double filt_vx[2][2][NWIDTH]; /* max */
double filt_vn[2][2][NWIDTH]; /* min */
double *filt[2][2] = { { &filt_v[0][0][FWIDTH], &filt_v[0][1][FWIDTH] },
{ &filt_v[1][0][FWIDTH], &filt_v[1][1][FWIDTH] } };
double *filtx[2][2] = { { &filt_vx[0][0][FWIDTH], &filt_vx[0][1][FWIDTH] },
{ &filt_vx[1][0][FWIDTH], &filt_vx[1][1][FWIDTH] } };
double *filtn[2][2] = { { &filt_vn[0][0][FWIDTH], &filt_vn[0][1][FWIDTH] },
{ &filt_vn[1][0][FWIDTH], &filt_vn[1][1][FWIDTH] } };
//int fneg[2] = { -5, -4 }; /* Negative index range (inclusive) */
//int fpos[2] = { 5, 3 }; /* Positive index range (inclusive) */
int fneg[2][2] = { { -4, -4 }, /* Negative index range (inclusive) */
{ -4, -4 } };
int fpos[2][2] = { { 4, 3 }, /* Positive index range (inclusive) */
{ 4, 3 } };
/* Weightings [horiz/vert][phase] */
double filtw_v[2][2][NWIDTH] = {
/* -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6 */
// { { 1.0, 1.0, 1.0, 5.0, 3.0, 42.0, 80.0, 43.0, 3.0, 5.0, 1.0, 1.0, 1.0 },
// { 1.0, 1.0, 3.0, 4.0, 19.0, 62.0, 62.0, 21.0, 4.0, 3.0, 1.0, 1.0, 1.0 } },
{ { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 } },
/* -6, -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, +5, +6 */
// { { 1.0, 1.0, 1.0, 3.0, 17.0, 36.0, 100.0, 40.0, 15.0, 1.0, 3.0, 1.0, 1.0 },
// { 1.0, 1.0, 1.0, 8.0, 2.0, 80.0, 81.0, 2.0, 8.0, 2.0, 1.0, 1.0, 1.0 } }
{ { 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 4.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0 },
{ 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 3.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 } },
};
double *filtw[2][2] = { { &filtw_v[0][0][FWIDTH], &filtw_v[0][1][FWIDTH] },
{ &filtw_v[1][0][FWIDTH], &filtw_v[1][1][FWIDTH] } };
#define MX 2.0
#define MN -0.5
// Compute the filter shapes
// vv = 0 for horizontal, 1 for vertical
static void compute(int vv) {
int ph, ii, i, jj, j;
double iv, ov;
int fcount[2];
int niv = sizeof(in[vv])/sizeof(double);
int nov = sizeof(out[vv])/sizeof(double);
// Clear the filters
for (ph = 0; ph < 2; ph++) {
for (j = -FWIDTH; j <= FWIDTH; j++) {
filt[vv][ph][j] = 0.0;
filtx[vv][ph][j] = MX;
filtn[vv][ph][j] = MN;
}
fcount[ph] = 0;
}
// Discover an input value
for (ii = 0; ii < niv; ii++) {
double rgb[3], ycc[3];
double prop, propx, propn;
if (in[ii] == 0)
continue;
iv = in[vv][ii];
rgb[0] = rgb[1] = rgb[2] = iv;
ccast2YCbCr(NULL, ycc, rgb);
iv = ycc[0];
ph = ii & 1;
jj = (int)floor(ii * 1.5 + 0.5);
for (j = -FWIDTH; j <= FWIDTH; j++) {
int k = jj + j;
if (k < 0 || k >= nov)
continue;
ov = out[vv][k];
prop = ((ov - 16.0)/219.0)/((iv - 16.0)/219.0);
propx = ((ov - 16.0)/219.0)/((iv - 0.5 - 16.0)/219.0);
propn = ((ov - 16.0)/219.0)/((iv + 0.5 - 16.0)/219.0);
if (propx < propn) {
double tt = propn;
propn = propx;
propx = tt;
}
//printf("~1 phase %d, off %d, iv %f ov %f, prop %f\n",ph,j,iv,ov,prop);
filt[vv][ph][j] += prop;
if (propx < filtx[vv][ph][j])
filtx[vv][ph][j] = propx;
if (propn > filtn[vv][ph][j])
filtn[vv][ph][j] = propn;
}
fcount[ph]++;
}
// Compute average values
for (ph = 0; ph < 2; ph++) {
for (j = -FWIDTH; j <= FWIDTH; j++)
filt[vv][ph][j] /= (double)fcount[ph];
}
}
#define FCO2IX(bank, off) (bank ? fpos[vv][0] - fneg[vv][0] + 1 + off - fneg[vv][1] : off - fneg[vv][0])
// Compute the filter shapes using SVD
// vv = 0 for horizontal, 1 for vertical
static void compute2(int vv) {
int niv = sizeof(in[vv])/sizeof(double); /* Number of input values */
int nov = sizeof(out[vv])/sizeof(double); /* Number of output values */
int novextra = 0;
int nfc = fpos[vv][0] - fneg[vv][0] + 1
+ fpos[vv][1] - fneg[vv][1] + 1; /* Number of filter coeficients */
double **A, *b;
int oe; /* Even or odd */
int j, i;
#ifdef SUM_CONSTRAINT
novextra = 3;
#endif
nov += novextra; /* Extra constraint of sum */
/* We assume nov > nfc */
A = dmatrixz(0, nov-1, 0, nfc-1);
b = dvectorz(0, nov-1);
/* For each output value */
for (j = 0; j < (nov-novextra); j++) {
double ww = 1.0;
#ifdef DO_WEIGHTING
/* Figure out the weighting */
for (oe = 0; oe < 2; oe++) {
int fix; /* Filter index */
/* For offset range of filter */
for (fix = fneg[vv][oe]; fix <= fpos[vv][oe]; fix++) {
int ocx, icx, ph;
ocx = j - fix; /* Output center of filter */
if (ocx < 0 || ocx >= nov)
continue; /* Filter would never get applied */
if (((2 * ocx) % 3) == 2)
continue; /* Would never get applied */
icx = (int)floor(ocx / 1.5); /* Input center index for this output */
if (icx < 0 || icx >= niv)
continue; /* Filter would never get applied */
ph = icx & 1; /* Phase of filter */
if (ph != oe) /* Not a filter that would appear at this ouput */
continue;
if (in[vv][icx] >= 200.0)
ww = filtw[vv][ph][fix];
}
}
#endif /* DO_WEIGHTING */
/* For even and odd filters */
for (oe = 0; oe < 2; oe++) {
int fix; /* Filter index */
/* For offset range of filter */
for (fix = fneg[vv][oe]; fix <= fpos[vv][oe]; fix++) {
double rgb[3], ycc[3];
int ocx, icx, ph;
ocx = j - fix; /* Output center of filter */
if (ocx < 0 || ocx >= nov)
continue; /* Filter would never get applied */
if (((2 * ocx) % 3) == 2)
continue; /* Would never get applied */
icx = (int)floor(ocx / 1.5); /* Input center index for this output */
if (icx < 0 || icx >= niv)
continue; /* Filter would never get applied */
ph = icx & 1; /* Phase of filter */
if (ph != oe) /* Not a filter that would appear at this ouput */
continue;
//printf("j = %d/%d, k = %d/%d, ix = %d/%d\n",j,nov,oe * NWIDTH + FWIDTH + fix,nfc,ix,niv);
rgb[0] = rgb[1] = rgb[2] = in[vv][icx];
ccast2YCbCr(NULL, ycc, rgb);
A[j][FCO2IX(oe, fix)] += ww * ycc[0];
//printf("A[%d][%d] = %f\n",j,FCO2IX(oe, fix),A[j][FCO2IX(oe, fix)]);
}
}
b[j] = ww * out[vv][j];
//printf("b[%d] = %f\n",j,b[j]);
}
#ifdef SUM_CONSTRAINT
/* Add sum constraints */
/* For 3 repeating output slots */
for (j = nov-novextra; j < nov; j++) {
double ww = 10000.0;
int jj = j - (nov-novextra);
b[j] = ww;
/* For even and odd filters */
for (oe = 0; oe < 2; oe++) {
int fix; /* Filter index */
/* For offset range of filter */
for (fix = fneg[vv][oe]; fix <= fpos[vv][oe]; fix++) {
double rgb[3], ycc[3];
int ocx, ocx2, icx, ph;
ocx = j - fix; /* Output center of filter */
ocx2 = 2 * ocx;
while (ocx2 < 0)
ocx2 += 3;
while (ocx2 >= 3)
ocx2 -= 3;
if (ocx2 == 2)
continue; /* Would never get applied */
while (ocx < 0)
ocx += 3;
while (ocx >= 3)
ocx -= 3;
icx = (int)floor(ocx / 1.5); /* Input center index for this output */
ph = icx & 1; /* Phase of filter */
if (ph != oe) /* Not a filter that would appear at this ouput */
continue;
A[j][FCO2IX(oe, fix)] = ww;
printf("A[%d][%d] = %f\n",j,FCO2IX(oe, fix),A[j][FCO2IX(oe, fix)]);
}
}
}
#endif /* SUM_CONSTRAINT */
/* Solve the equation A.x = b using SVD */
/* (The w[] values are thresholded for best accuracy) */
/* Return non-zero if no solution found */
if (svdsolve(A, b, nov, nfc))
error("svdsolve failed");
/* Print the filter shape */
/* and copy to the filter */
printf("SVD computed for %s:\n", vv ? "vertical" : "horizontal");
for (oe = 0; oe < 2; oe++) {
int fix; /* Filter index */
double sum = 0.0;
printf("Phase %d\n",oe);
// for (fix = -FWIDTH; fix <= FWIDTH; fix++) {
for (fix = fneg[vv][oe]; fix <= fpos[vv][oe]; fix++) {
printf(" %d -> %f\n",fix, b[FCO2IX(oe, fix)]);
sum += b[FCO2IX(oe, fix)];
filt[vv][oe][fix] = b[FCO2IX(oe, fix)];
}
printf("sum = %f\n",sum);
}
}
void check(int vv) {
double *chout;
int niv = sizeof(in[vv])/sizeof(double); /* Number of input values */
int nov = sizeof(out[vv])/sizeof(double); /* Number of output values */
int range, i, ii, j;
double xc, x, iv, tw, w, y;
double cout, terr = 0.0;
printf("~1 nov = %d\n",nov);
if ((chout = (double *)malloc(sizeof(double) * nov)) == NULL)
error("Malloc failed");
// Clear the output
for (i = 0; i < nov; i++)
chout[i] = 0.0;
// For all the input value
for (ii = 0; ii < niv; ii++) {
int ph, jj;
double rgb[3], ycc[3];
double prop;
iv = in[vv][ii];
rgb[0] = rgb[1] = rgb[2] = iv;
ccast2YCbCr(NULL, ycc, rgb);
iv = ycc[0];
ph = ii & 1;
jj = (int)floor(ii * 1.5 + 0.5);
for (j = -FWIDTH; j <= FWIDTH; j++) {
int k = jj + j;
if (k < 0 || k >= nov)
continue;
//if ((jj + j) == 4) printf("[%d] += w %f * iv %f\n",jj + j, filt[ph][j], iv);
chout[k] += filt[vv][ph][j] * iv;
}
}
for (i = 0; i < nov; i++) {
double ov, ee;
ov = chout[i];
ov = floor(ov + 0.5);
#ifdef NEVER
if (ov < 0.0)
ov = 0.0;
else if (ov > 255.0)
ov = 255.0;
#endif
ee = ov - out[vv][i];
terr += ee * ee;
printf("out %d = %f should be %f err %f\n",i,chout[i],out[vv][i],ee);
}
printf("Total err = %f RMS\n",sqrt(terr));
}
int
main(int argc,
char *argv[]
) {
int ph, vv, j;
double err;
double cp[2]; /* Initial starting point */
double s[2]; /* Size of initial search area */
printf("Hi there\n");
#ifdef NEVER
compute(1);
// Print filter shape
printf("Directly computed:\n");
for (ph = 0; ph < 2; ph++) {
printf("Phase %d\n",ph);
for (j = -FWIDTH; j <= FWIDTH; j++)
printf(" %d -> min %f, avg %f, max %f\n",j,filtn[1][ph][j],filt[1][ph][j],filtx[1][ph][j]);
}
#endif
for (vv = 0; vv < 2; vv++) {
compute2(vv);
check(vv);
}
/* Output code to stdout */
for (ph = 0; ph < 2; ph++) {
fprintf(stderr,"/* Weightings [horiz/vert] */\n");
fprintf(stderr,"double filt_v_%s[2][%s_WIDTH] = {\n",ph ? "od" : "ev", ph ? "OD" : "EV");
for (vv = 0; vv < 2; vv++) {
int fix; /* Filter index */
fprintf(stderr,"{ ");
for (fix = fneg[vv][ph]; fix <= fpos[vv][ph]; fix++) {
if (fix > fneg[vv][ph])
fprintf(stderr,", ");
fprintf(stderr,"%f", filt[vv][ph][fix]);
}
fprintf(stderr," }%s\n",vv == 0 ? "," : "");
}
fprintf(stderr,"};\n\n");
}
return 0;
}
|