1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>cctiff</title>
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>imdi/cctiff</b></h2>
<h3>Summary</h3>
Color convert a TIFF or JPEG file using a sequence of compatible ICC
device profiles, abstract profiles, device link profiles and
calibration files. The sequence may be zero length, facilitating
format conversion and ICC profile embedding without otherwise
altering the pixel values.<br>
<h3>Usage<br>
</h3>
<small><span style="font-family: monospace;"></span> <span
style="font-family: monospace;"></span><span style="font-family:
monospace;">cctiff [-options] { [-i intent] <span
style="font-style: italic;">profile.icm</span> | [-d dir]
calibration.cal ...} <span style="font-style: italic;">infile.tif
outfile.tif</span></span></small><small><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"></span><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#v">-v</a><span
style="font-family: monospace;">
Verbose</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#c">-c</a><span
style="font-family: monospace;">
Combine linearisation curves into one transform</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p">-p</a><span
style="font-family: monospace;">
Use slow precise floating point conversion, rather
than fast integer routines.</span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#k">-k</a><span
style="font-family: monospace;">
Check fast result against precise, and report
differences.<br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#r">-r n<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
Override
the default CLUT resolution</span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"><br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#t">-t n<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
Choose
output encoding from 1..n<br>
<a href="#f">-f [T|J]</a>
Set output format to Tiff or Jpeg (Default is same as input)<br>
<a href="#q">-q quality</a>
Set JPEG quality 1..100 (Default 80)<br>
</span></small><small><span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#a">-a</a><span
style="font-family: monospace;">
Read and Write planes > 4 as
alpha planes<br>
</span></small><small><span style="font-family: monospace;"> <a
href="#I">-I</a>
Ignore
any file or profile colorspace mismatches<br>
<a href="#D">-D</a>
Don't
append or set the output TIFF description<br>
<br>
</span></small><small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"><br>
</span></small><small><a style="font-family: monospace;"
href="#e"><i>-e profile.[ic<span style="font-family: monospace;">m
| tiff | jpg]</span></i></a><span style="font-family:
monospace;"></span></small><small><span style="font-family:
monospace;"> Optionally embed a profile in the destination
TIFF or JPEG file.<br>
</span></small><small><span style="font-family: monospace;">This
may be an ICC file or TIFF or JPEG file with embedded profile.</span></small><br>
<small><span style="font-family: monospace;"><br>
Then
for each profile in the linked sequence:<br style="font-family:
monospace;">
</span></small><small><span style="font-family: monospace;"></span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"> </span><a style="font-family: monospace;"
href="#i">-i <span style="font-style: italic;">intent</span></a><span
style="font-family: monospace;">
Profile intent</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
p =
perceptual, r = relative colorimetric,</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
s = saturation, a = absolute colorimetric<br>
</span></small><small><span style="font-family: monospace;">
</span><a style="font-family: monospace;" href="#o">-o order<span
style="font-style: italic;"></span></a><span
style="font-family: monospace;">
n = normal (priority: lut
> matrix > monochrome)<br>
r
= reverse (priority: monochrome > matrix > lut)</span></small><small><span
style="font-family: monospace;"></span><br style="font-family:
monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p1"><i>profile.[ic<span
style="font-family: monospace;">m | tiff | jpg]</span></i></a><span
style="font-family: monospace;"> A Device, Link or
Abstract profile. This may be an ICC file<br>
(May
be embedded profile in TIFF or JPEG file)<br>
</span></small><small><span style="font-family: monospace;">
or
each calibration file in sequence:<br style="font-family:
monospace;">
</span></small><small><span style="font-family: monospace;"></span></small><small><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"> </span><a style="font-family: monospace;"
href="#d">-d <span style="font-style: italic;"><span
style="font-family: monospace;">dir</span></span></a><span
style="font-family: monospace;">
Calibration direction</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">
f =
forward cal. (default), b = backwards cal.</span><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"></span></small><small><span style="font-family:
monospace;"></span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><a
style="font-family: monospace;" href="#p2"><i>calibration.cal<span
style="font-family: monospace;"></span></i></a><span
style="font-family: monospace;">
A calibration file.</span></small><br>
<small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"></span><span style="font-family:
monospace;"></span><span style="font-family: monospace;"></span><br>
Then finally:<br style="font-family:
monospace;">
<span style="font-family: monospace;"></span><a
style="font-family: monospace;" href="#p3"><i>infile.tif</i></a><span
style="font-family: monospace;">
A </span><a style="font-family: monospace;"
href="File_Formats.html#TIFF">TIFF</a><span style="font-family:
monospace;">
or <a href="File_Formats.html#JPEG">JPEG</a> Raster file that
will be the input raster to be transformed.</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"></span><a
style="font-family: monospace;" href="#p4"><i>outfile.tif</i></a><span
style="font-family: monospace;">
A </span><a style="font-family: monospace;"
href="File_Formats.html#TIFF">TIFF</a><span style="font-family:
monospace;"> or <a href="File_Formats.html#JPEG">JPEG</a>
Raster file created from the input raster, using the given color
transform.</span></small><b><br>
</b><b><br>
Examples</b><br>
<br>
Convert an RGB file to a CMYK file using perceptual intent:<br>
<br>
cctiff -ip sRGB.icm -i cmyk.icm rgbinfile.tif
cmykoutfile.tif<br>
<br>
Same as above, but use the source file embedded profile, and embed
the resulting colorspace profile in the output:<br>
<br>
cctiff -e cmyk.icm -ip rgbfile.tif -ip
cmyk.icm rgbinfile.tif cmyout.tif<br>
<br>
Convert a raster file using a device link:<br>
<br>
cctiff devicelink.icm infile.tif outfile.tif<br>
<br>
Convert an RGB source to CMYK via an abstract adjustment, and then
convert the CMYK to CMYK using a device link, also apply CMYK
calibration:<br>
<br>
cctiff -ir sRGB.icm abstract.icm -ir CMYK.icm
devlink.icm CMYKcal.cal infile.tif outfile.tif<br>
<br>
Convert an RGB source file into a CIELab raster file:<br>
<br>
cctiff -t1 -ir sRGB.icm rgbfile.tif labfile.tif<br>
<h3>Comments<br>
</h3>
<a name="v"></a> The <span style="font-weight: bold;">-v</span>
flag reports extra information about the ICC profile.<br>
<br>
<a name="c"></a><a name="p"></a><a name="k"></a><a name="r"></a> The
<span style="font-weight: bold;">-c</span>, <span
style="font-weight: bold;">-p</span>, <span style="font-weight:
bold;">-k</span> and <span style="font-weight: bold;">-r</span>
options are intended to aid debugging.<br>
<br>
<a name="t"></a><span style="font-weight: bold;"></span><span
style="font-weight: bold;">-t </span>Some colorspaces can be
encoded in more than one way. If there is a choice, the choice
should be specified the <span style="font-weight: bold;">-t</span>
parameter. If this parameter is not given, then cctiff will print
the possible choices and choose the default. For TIFF LAB output
there are two choices <span style="font-weight: bold;">1</span> for
CIELab encoding (Default), and <span style="font-weight: bold;">2</span>
for ICCLab encoding. For JPEG RGB output there are two choices: <span
style="font-weight: bold;">1</span> for YCbCr encoding with
sub-sampled Cb and Cr (Default)\n", and <span style="font-weight:
bold;">2</span> RGB encoding which does not use sub sampling. For
JPEG CMYK output there are two choices: <span style="font-weight:
bold;">1</span> for YCCK encoding with sub-sampled C and C
(Default)\n", and <span style="font-weight: bold;">2</span> CMYK
encoding which does not use sub sampling<br>
<br>
<a name="f"></a><span style="font-weight: bold;"></span> <span
style="font-weight: bold;">-f</span> By default the output raster
file format will be the same as the input, and the <span
style="font-weight: bold;">-f</span> parameter will override this.
<span style="font-weight: bold;">-f T</span> will select <span
style="font-weight: bold;">TIFF</span> format output, and <span
style="font-weight: bold;">-f J</span> will select <span
style="font-weight: bold;">JPEG</span> format output.<span
style="font-weight: bold;"> </span><br>
<br>
<a name="q"></a><span style="font-weight: bold;"></span> <span
style="font-weight: bold;">-q</span> JPEG raster files use lossy
compression, and the <span style="font-weight: bold;">-q</span>
parameter controls how much compression is used in creating a JPEG
output file. The value can be between 1 and 100, with 1 being the
lowest quality and highest compression, and 100 being the highest
quality and lowest compression. The default value is 80.<br>
<br>
<a name="a"></a><span style="font-weight: bold;"></span> Normally
colorspaces that have more than 4 channels will be read and written
as multichannel TIFF files. These are not handled well by all
applications, so the <span style="font-weight: bold;">-a</span>
option causes extra channels above 4 to be stored as alpha planes,
providing more flexibility in using such files.<br>
<br>
<a name="I"></a>The <span style="font-weight: bold;">-I</span> flag
causes any mismatch between the color spaces of the image files and
each profile in the sequence to be ignored. The results might be
unpredictable unless you know exactly what you are doing.<br>
<br>
<a name="D"></a>The <span style="font-weight: bold;">-D</span> flag
stops the description tag being set or appended to by cctiff.<br>
<br>
<small><a name="e"></a></small><small>The <span style="font-weight:
bold;">-e profile.[icm | tiff | jpg]</span> option allows an ICC
profile to be embedded in the </small>destination TIFF or JPEG
file. The profile may either be an <small>ICC file or a TIFF or
JPEG file with embedded profile.</small><br>
<br>
Following these global options, you should specify the chain of
profiles and calibrations you want to apply. Each link of the chain
consists of the (optional) intent to be used for device profiles and
the filename of the profile, or the optional direction to be used
for the calibration and the filename of the calibration. The first
profile or calibrations input colorspace must be compatible with the
input TIFF file, and each profile or calibration output space must
be compatible with the next profile or calibrations input space. An
error will result if this is not the case.<br>
<br>
<div style="margin-left: 40px;"><a name="i"></a>The <span
style="font-weight: bold;">-i</span> parameters selects the
intent for the following device profile. Normally the same intent
should be used for all device profiles, but other combinations
allow special uses such as mixed proofing workflows.<br>
<br>
<a name="o"></a>The <span style="font-weight: bold;">-o</span>
parameter changes the order the profiles tags are searched in. A
profile is allowed to contain more than the minimum number of
elements or table needed to describe a certain transform, and may
contain redundant descriptions. By default, lut based table
information will be used first if present, followed by
matrix/shaper information, and only using monochrome information
if it is all that is present. <b>-o r</b> reverses this order. <br>
<br>
<a name="p1"></a>The file that will be the source of the ICC
profile. This can be either an ICC profile or a TIFF or JPEG file
that contains an embedded profile. Typically the first profile in
the chain might be taken from an embedded profile from the source
TIFF or JPEG file.<br>
<br>
<a name="d"></a>The <span style="font-weight: bold;">-d</span>
parameters selects the direction for the following calibration.
The default direction is the normal forward calibration, but if
-db is used, then a backwards (inverse) calibration will be
applied.<br>
<br>
<a name="p2"></a>The file that will be the source calibration.
This will be an Argyll <a href="File_Formats.html#.cal">.cal</a>
format file.<span style="font-weight: bold;"></span><br>
</div>
<br>
<a name="p3"></a>The second last argument should be the name of the
source TIFF or JPEG file that is to be processed.<br>
<br>
<a name="p4"></a>The last argument should be the name of the
destination TIFF or JPEG file to hold the results.<br>
<br>
<span style="font-weight: bold;">cctiff</span> uses very fast
integer conversion routines to process the raster. Both 8 and 16 bit
per component files can be handled, and up to 8 color channels (The
limit can be lifted to 15 re-compiling). JPEG files with no more
than 8 bit per component can be handled.<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|