1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>colprof</title>
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2> profile/colprof</h2>
<h3>Summary</h3>
Create an <a href="File_Formats.html#ICC">ICC</a> profile from
the <a href="File_Formats.html#.ti3">.ti3</a> test chart patch
values.<br>
<h3>Usage Summary</h3>
<tt><small>colprof [-<i>options</i>] inoutfile<br>
<a href="#v">-v</a>
Verbose mode<br>
<a href="#A">-A "manufacturer"</a> Set the
manufacturer description string<br>
<a href="#M">-M "model"</a>
Set the model
description string<br>
<a href="#D">-D "description"</a> Set the
profile Description string (Default "<span
style="font-style: italic;">inoutfile</span>")<br>
<a href="#C">-C "copyright"</a> Set the
copyright string<br>
<a href="#Za">-Z tmnb </a>
Attributes:
Transparency, Matte, Negative, BlackAndWhite<br>
</small></tt><tt><small> <a href="colprof.html#Zi">-Z prsa</a>
Default
intent: Perceptual, Rel. Colorimetric, Saturation, Abs.
Colorimetric</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#q">-q lmhu</a>
Quality - Low,
Medium (def), High, Ultra<br>
<a href="#b">-b [lmhun]</a>
Low quality B2A table - or specific B2A quality or none
for input device<br>
<a href="#y">-y</a>
Verify A2B profile<br>
<a href="#ni">-ni</a>
Don't create input (Device) shaper
curves<br>
</small></tt><tt><small> <a href="#np">-np</a>
Don't create input (Device) grid position curves</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#no">-no</a>
Don't create output (PCS) shaper
curves<br>
</small></tt><tt><small> <a href="#nc">-nc</a>
Don't put the input .ti3 data in the profile</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#k">-k zhxr</a>
Black generation: z = zero K,<br>
h
=
0.5
K
(def),
x
=
max K, r = ramp K<br>
<a href="#kp">-k p stle stpo enpo enle shape</a><br>
stle:
K
level
at
White
0.0
- 1.0<br>
stpo:
start
point
of
transition
Wh
0.0 - Bk 1.0<br>
enpo:
End
point
of
transition
Wh
0.0 - Bk 1.0<br>
enle:
K
level
at
Black
0.0 - 1.0<br>
shape:
1.0
=
straight,
0.0-1.0
concave,
1.0-2.0 convex<br>
<a href="#K">-K parameters</a>
Same as -k, but target is K locus rather than K value itself<br>
<a href="#l">-l <i>tlimit</i></a>
override CMYK total ink limit, 0 - 400%
(default from .ti3)<br>
<a href="#L">-L <i>klimit</i></a>
override black ink limit, 0 - 100% (default
from .ti3)<br>
<a href="#a">-a lxXgsmGS</a>
Algorithm type override<br>
l
=
Lab
cLUT
(def.),
x = XYZ cLUT, X = display XYZ cLUT + matrix<br>
g
=
gamma+matrix,
s
=
shaper+matrix, m = matrix only,<br>
G
=
single
gamma+matrix,
S
=
single shaper+matrix<br>
<a href="#u">-u</a>
If input profile, auto scale WP to allow extrapolation</small></tt><tt><br>
</tt><tt> </tt><tt><small><small> <a href="#uc">-uc</a>
If input profile, clip cLUT values above WP<br>
</small> </small></tt><tt><small><a href="#U">-U <span
style="font-style: italic;">scale</span></a>
If input
profile, scale media white point by scale</small></tt><tt><br>
</tt><tt> </tt><tt> </tt><tt><a href="#R">-R</a></tt><tt>
Restrict
white
<=
1.0,
black
and
primaries to be +ve</tt><tt><br>
</tt><tt> </tt><tt><small><small><a
href="file:///D:/src/argyll/doc/colprof.html#f">-f [<i>illum</i>]</a>
Use Fluorescent
Whitening Agent compensation [opt. simulated inst. illum.:<br>
M0, M1, M2, </small></small></tt><tt><small><small><small>A,
C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp ]</small></small></small></tt><tt><br>
</tt><tt><small><small><small><small> <a
href="file:///D:/src/argyll/doc/colprof.html#i">-i <i>illum</i></a>
Choose illuminant for
computation of CIE XYZ from spectral data & FWA:<br>
A,
C,
D50
(def.),
D50M2,
D65, F5, F8, F10 or file.sp</small></small></small><br>
<a href="#o">-o <i>observ</i></a>
Choose CIE Observer for spectral data:<br>
1931_2 </small></tt><tt><small>(def.)</small></tt><tt><small>,
1964_10, S&B 1955_2, shaw, J&V 1978_2<br>
<a href="#r">-r avgdev</a>
Average deviation of device+instrument readings as
a percentage (default 0.5%)<br>
<a href="#s">-s src.icc</a>
Apply
gamut
mapping
to
output
profile
perceptual
B2A
table
for
given source<br>
<a href="#S">-S src.icc</a>
Apply gamut mapping to output profile perceptual and saturation
B2A table<br>
<a href="#nP">-nP</a>
Use colormetric source gamut to make output profile perceptual
table<br>
<a href="#nS">-nS</a>
Use colormetric source gamut to make output profile saturation
table<br>
<a href="#g">-g src.gam</a>
Use source image
gamut as well for output profile gamut mapping<br>
<a href="#p">-p aprof.icm,...</a> Incorporate
abstract profile(s) into output tables<br>
<a href="#t">-t intent</a>
Override gamut
mapping intent for output profile perceptual table:<br>
<a href="#T">-T intent</a>
Override gamut mapping intent for output profile saturation
table:<br>
</small></tt><tt><small>
a - Absolute Colorimetric (in Jab) [ICC Absolute Colorimetric]<br>
aw - Absolute Colorimetric
(in Jab) with scaling to fit white point<br>
aa - Absolute Appearance<br>
r - White Point Matched
Appearance [ICC Relative Colorimetric]<br>
la - Luminance matched Appearance<br>
p - Perceptual (Preferred) [ICC
Perceptual]<br>
</small></tt><tt><small>
pa - Perceptual Appearance</small></tt><tt><br>
</tt><tt> </tt><tt><small>
ms - Saturation<br>
s - Enhanced Saturation [ICC
Saturation]<br>
al - Absolute Colorimetric (Lab)</small></tt><tt><small><br>
<a href="#c">-c viewcond</a>
set input viewing conditions for output profile CIECAM02 gamut
mapping,<br>
either an enumerated choice, or a parameter<br>
<a href="#d">-d viewcond</a>
set output viewing conditions for output profile CIECAM02, gamut
mapping<br>
either an enumerated choice, or a parameter:value change<br>
Also sets out of gamut clipping CAM space.<br>
Enumerated Viewing Conditions:<br>
</small></tt><tt><small>
pp - Practical Reflection Print (ISO-3664
P2)<br>
pe - Print evaluation environment (CIE
116-1995)<br>
</small></tt><tt><small>
pc - Critical print evaluation
environment (ISO-3664 P1)</small></tt><tt><br>
</tt><tt> </tt><tt><small>
mt - Monitor in typical work
environment<br>
mb - Monitor in bright work environment<br>
md - Monitor in darkened work environment<br>
jm - Projector in dim environment<br>
jd - Projector in dark environment<br>
pcd - Photo CD - original scene outdoors<br>
ob - Original scene - Bright Outdoors<br>
cx - Cut Sheet Transparencies on a viewing box</small></tt><tt><small><br>
s:surround n = auto, a = average, m =
dim, d = dark,<br>
c = transparency (default average)<br>
w:X:Y:Z Adapted white point
as XYZ (default media white)<br>
w:x:y Adapted
white point as x, y<br>
a:adaptation Adaptatation
luminance in cd.m^2 (default 50.0)<br>
b:background Background %
of image luminance (default 20)<br>
l:scenewhite
Scene white in cd.m^2 if surround = auto (default 250)<br>
f:flare Flare light % of
image luminance (default 1)<br>
f:X:Y:Z Flare color as XYZ
(default media white)<br>
f:x:y Flare
color as x, y<br>
<a href="#P">-P</a>
Create gamut gammap_p.wrl and gammap_s.wrl diagostics<br>
</small></tt><tt><small> <a href="#O">-O outputfile</a>
Override
the default output filename & extension.</small></tt><tt><br>
</tt><tt> </tt><tt><small> <a href="#p1"><i>inoutfile</i></a>
Base name for
input.ti3/output.icc file</small></tt><br>
<h3>Options<br>
</h3>
<b><a name="v"></a>-v</b> Turn on verbose mode. Gives progress
information as the profile is created. Since colprof can take a long
time to generate, this is often useful to monitor progress. If used
in combination with the <b>-y</b> flag, the error of each test
point to the resulting profile will be printed out.<br>
<br>
<a name="A"></a>The <b>-A</b> parameter allows setting of the
device manufacturer description tag. The parameter should be a
string that identifies the manufacturer of the device being
profiled. With most command line shells, it will be necessary to
enclose the parameter with double quotes, so that spaces and other
special characters are included in the parameter, and not mistaken
for the start of another flag, or as a final command line
parameters. By default no manufacturer description string tag will
be generated for the profile.<br>
<br>
<a name="M"></a>The <b>-M</b> parameter allows setting of the
device mode description tag. The parameter should be a string that
identifies the particular model of device being profiled. With most
command line shells, it will be necessary to enclose the parameter
with double quotes, so that spaces and other special characters are
included in the parameter, and not mistaken for the start of another
flag, or as a final command line parameters. By default no model
description string tag will be generated for the profile.<br>
<br>
<a name="D"></a>The <b>-D</b> parameter allows setting of the
profile description tag. The parameter should be a string that
describes the device and profile. On many systems, it will be this
string that will be used to identify the profile from a list of
possible profiles. With most command line shells, it will be
necessary to enclose the parameter with double quotes, so that
spaces and other special characters are included in the parameter,
and not mistaken for the start of another flag, or as a final
command line parameter. Many programs that deal with ICC profiles
use the description tag to identify a profile, rather than the
profile filename, so using a descriptive string is important in
being able to find a profile. By default, the base name of the
resulting profile will be used as the description.<br>
<br>
<a name="C"></a>The <b>-C</b> parameter allows setting of the
profile copyright tag. The parameter should be a string that
describes the copyright (if any) claimed on the profile being
generated.. With most command line shells, it will be necessary to
enclose the parameter with double quotes, so that spaces and other
special characters are included in the parameter, and not mistaken
for the start of another flag, or as a final command line
parameters. By default a generic copyright string will be generated
for the profile.<br>
<br>
<a name="Za"></a>The <b>-Z</b> parameter allows setting of the
profile attribute flags. There are four flags: <span
style="font-weight: bold;">t</span> to set Transparency, the
default being Reflective; <span style="font-weight: bold;">m</span>
to set Matte, the default is Glossy; <span style="font-weight:
bold;">n</span> to set Negative, the default is Positive; <span
style="font-weight: bold;">b</span> to set BlackAndWhite, the
default is Color.<br>
<br>
<a name="Zi"></a>The <b>-Z</b> parameter allows setting of the
profile default intent. The default intent can be one of the four
standard intents: <span style="font-weight: bold;">p</span> to set
Perceptual, <span style="font-weight: bold;">r</span> to set
Relative Colorimetric, <span style="font-weight: bold;">s</span> to
set Saturation, and <span style="font-weight: bold;">a</span> to
set Absolute colorimetric.<br>
<br>
<a name="q"></a> The <b>-q</b> parameter sets the level of effort
and/or detail in the resulting profile. For table based profiles
("cLUT" profiles), it sets the main lookup table size, and hence
detail in the resulting profile. For matrix profiles it sets the per
channel curve detail level and fitting "effort". It is <span
style="text-decoration: underline;">highly recommended</span> that
<span style="font-weight: bold;">-qm</span> be used as a starting
point, and other settings only tried after this has been evaluated.
<span style="font-weight: bold;">NOTE</span> that <span
style="font-weight: bold;">-qu</span> is a <span
style="text-decoration: underline;">test mode</span>, and
shouldn't be used, except to prove that it is not worth using.<br>
<br>
<a name="b"></a> The <b>-b</b> flag overrides the <b>-q</b>
parameter, and sets the lut resolution for the BtoA (inverse) to a
low value. The creation of the B2A table is fairly time consuming,
and if the profile is only going to be used by <a
href="targen.html">targen</a>, or if it will only be used as an
input space profile, or if it will only be linked as an output
profile using Argyll's <a href="collink.html">collink</a> tool
using the <b>-G</b> option (inverse AtoB option), then a high
detail BtoA table is not required, and some time and profile space
can be saved. If the profile is to be used as an output space
profile with another CMS, or is going to be linked using the simple
(-s) or mapping mode (-g) options, then a good quality B2A table is
needed, and the -b flag should <span style="font-weight: bold;">NOT</span>
be set. Optionally, a specific B2A table quality can be set.<br>
<br>
For input devices, the presence of a B2A table is not
mandatory, and it can be omitted entirely from the profile by using
<span style="font-weight: bold;">-bn</span>. Note that input
profiles and matrix profiles will only contain a colorimetric intent
table or matrix.<br>
<br>
<a name="y"></a> The <b>-y</b> flag does a verification check on
the AtoB profile. This is done by comparing what CIE colors the
profile predicts for the test chart test patches, and comparing them
to the actual values. A summary of the average and maximum Lab delta
E's will be printed out if this flag is set. If the <b>-v</b> flag
is also set, then information for each patch will also be printed.<br>
<br>
<a name="ni"></a><a name="np"></a><a name="no"></a>Normally cLUT
base profiles are generated with three major elements:- per device
channel (shaper) input curves, the multi-dimensional lut table, and
per PCS channel (shaper) output curves. The Using the <b>-ni</b>
flag disables the creation of the per device channel curves, while
using the <b>-no</b> flag disables the creation of the per PCS
channel curves.<br>
For cLUT based profiles, the input curves that are written to the
profile are composed of two components, a shape to best match the
detailed shape of the device behavior, and a shape to distribute the
input values evenly across the LUT input indexes. The <span
style="font-weight: bold;">-no</span> flag disables the former,
while the <span style="font-weight: bold;">-np</span> flag disables
the latter. <br>
<br>
<a name="nc"></a><span style="font-weight: bold;">-nc </span>Normally
the
device and CIE/spectral sample data and calibration curves used to
create a profile is stored in the <span style="font-weight: bold;">'targ'</span>
text tag in the resulting ICC profile. To suppress this and make the
resulting profile smaller, use the <span style="font-weight: bold;">-nc
</span>flag. <span style="font-weight: bold;">Note</span> that this
will then preclude final calibrated device value ink limits from
being computed for the resulting profile in subsequent use (ie. <a
href="collink.html">collink</a>, <a href="xicclu.html">xicclu</a>
etc.).<br>
<br>
<a name="k"></a> -<b>k</b> parameter sets the target level of black
(K) when creating a B2A CMYK output tables. This is often called a
black level, a black inking rule, black generation, or under color
removal. These set the target black level.<br>
<br>
Possible arguments to the <b>-k</b> flag are:<br>
<br>
<b> -kz</b> selects minimum black (0.0)<br>
<b> -kh</b> selects a black value of 0.5<br>
<b> -kx</b> selects the maximum possible black (1.0)<br>
<b> -kr</b> selects a linear black ramp, starting at minimum black
for highlight, and maximum black for shadow (equivalent to -kp 0 0 1
1 1). This is the default.<br>
<br>
<b><a name="kp"></a>-k p stle stpo enpo enle shape</b> allows
an arbitrary black value ramp to be defined, consisting of a
starting value (stle) for highlights, a breakpoint L value (stpo)
where it starts to transition to the shadow level, an end breakpoint
L (enpo) where it flattens out again, and the finishing black level
(enle) for the shadows. There is also a curve parameter, that
modifies the transition from stle to enle to either be concave
(ie. the transition starts gradually and and finished more
abruptly) using values 0.0-1.0, with 0.0 being most concave, or
convex (the transition starts more abruptly but finishes gradually),
using values 1.0-2.0, with 2.0 being the most convex.<br>
<br>
Typical black value generation curve with parameters something like:
-kp 0 .1 .9 1 .5<br>
<br>
<tt> 1.0 K |
enpo<br>
|
_______ enle<br>
| /<br>
| /<br>
| /<br>
| /<br>
stle | ------/<br>
+-------------------<br>
0.0 K
0.0
stpo 1.0<br>
White
Black<br>
</tt> <br>
For minimum sensitivity of printed output to the lighting spectrum,
it currently seems best to use the maximum possible black, but other
black generation levels (ie. 0.3 to 0.5) may well be preferred if
one wants to minimize the noisy appearance of black on an inkjet
device, or if the banding behaviour or other rendering flaws of the
printer is to be minimized. <br>
<br>
Note that the black level curve is applied throughout the gamut,
resulting in GCR (Grey Component Replacement). There is no facility
to restrict black to just neutral colors, hence UCR is not currently
supported.<br>
<br>
The <a href="xicclu.html">xicclu</a> tool can be used to plot out
the resulting black level for a given set of parameters, by using
the <a href="xicclu.html#g">-g</a> flag of a profile already
created from the same .ti3 file.<br>
<br>
<a name="K"></a> <span style="font-weight: bold;">-K parameters.</span>
Any of the <span style="font-weight: bold;">-k</span> options above
can use the <span style="font-weight: bold;">-K</span> version, in
which rather than a black value target being defined by the inking
rule, a black <span style="text-decoration: underline;">locus</span>
target is defined. For each lookup, the minimum possible black level
and the maximum possible black level is determined, the former
corresponding to a locus target of 0, and the latter corresponding
to a locus target of 1. For instance, at the white point, no black
will be used in the output, even if the black locus specifies a
maximum (since the maximum amount of black that can be used to print
white is actually zero). Similarly, at the black point, black may
well be used, even if the black locus specifies zero black (since a
certain amount of black is needed to achieve the desired density of
color). <br>
<tt> </tt><br>
<a name="l"></a> The <b>-l</b> <i>tlimit</i> parameter sets the
total ink limit (TAC, Total Area Coverage) for the CMYK separation,
as a total percentage from 0% to 400%, and overrides any ink limit
specified in the .ti3 file. The limit value should generally be set
a little below the value used in the test chart generation, to avoid
the very edges of the gamut. If the test chart ink limit has been
chosen to be a little beyond an acceptable level, then this number
should be the acceptable level. Although limits can be set below
200%, this will generally restrict the color gamut noticeably, as
fully saturated secondary colors will not be reproduced. Values are
between 220% and 300% for typical printing devices. Ink limits will
be in the final calibrated device values if the <span
style="font-weight: bold;">.ti3</span> includes the calibration
table.<br>
<br>
<a name="L"></a> The <b>-L</b> <i>klimit</i> parameter sets the
black channel ink limit for the CMYK separation, as a total
percentage from 0% to 100%. For printing press like devices, this
can be used to prevent the black channel screening pattern "filling
in". Typical values might be from 95% to 99%. Note that with the
current implementation this can slow down the creation of the
profile quite noticeably, so do not use <span style="font-weight:
bold;">-L</span> unless you really need to. Ink limits will be in
the final calibrated device values if the <span style="font-weight:
bold;">.ti3</span> includes the calibration table.<br>
<br>
<a name="a"></a> The <b>-a</b> parameter allows choosing an
alternate profile type. <br>
<br>
By default (equivalent to <b>-al</b>) profile creates a <span
style="font-weight: bold;">cLUT</span> based table profile with a
PCS (Profile Connection Space) of L*a*b*, which generally gives the
most accurate results, and allows for the four different rendering
intents that ICC profiles can support.<br>
<br>
A cLUT base table profile using a PCS of XYZ can be created if <b>-ax</b>
is used, and this may have the advantage of better accuracy for
additive type devices (displays, scanners, cameras etc.), may avoid
clipping for displays with a colorant chromaticity that can't be
encoded in L*a*b* PCS space, and may give a more accurate white
point for input devices by avoiding clipping of values above the
white point that can occur in L*a*b* based cLUT input profiles. By
default cLUT XYZ PCS Display profiles will also have a set of dummy
matrix tags included in them, for better compatibility with other
systems. The dummy matrix deliberately interchanges Red, Green and
Blue channels, so that it is obvious if the cLUT tables are not
being used. If it is important for both the cLUT and matrix be
accurate, use <span style="font-weight: bold;">-aX</span>, which
will create shaper/matrix tags.<br>
<br>
For RGB input or display profiles, a simpler type of profile using
either a gamma curves or a general shaper curves, combined with a
matrix can be created, although such a profile cannot support
perceptual or saturation intents. Gamma curve and matrix profiles
can be created by specifying <b>-ag</b> or <b>-aG</b>, the former
creating three independent gamma curves, one for each device
channel, and the latter creating one common curve for all the device
channels. The latter may be needed with certain applications that
will not accept different gamma curves for each channel. General
shaper curve and matrix profiles (which are superior to gamma curve
profiles) can be created by specifying <b>-as</b> or <b>-aS</b>,
the former creating three independent shaper curves, one for each
device channel, and the latter creating one common curve for all the
device channels. The latter may be needed with certain applications
that will not accept different shaper curves for each channel.<br>
<br>
The <span style="font-weight: bold;">-am</span> option will create
a matrix profile with linear (i.e. gamma = 1.0) curves. This may be
useful in creating a profile for a device that is known to have a
perfectly linear response, such as a camera in RAW mode.<br>
<br>
<a name="u"></a> <span style="font-weight: bold;">-u:</span> Input
profiles will normally be created such that the white patch of the
test chart will be mapped to perfect white when used with any of the
non-absolute colorimetric intents. This is the expected behavior for
input profiles. If such a profile is then used with a sample that
has a lighter color than the original test chart, then a cLUT
profile will clip the value, since it cannot be represented in the
lut table. Using the <b>-u</b> flag causes the media white point to
be automatically scaled (using the same type of scaling as the <span
style="font-weight: bold;">-U scale</span> option) to avoid
clipping values up to full device white. This flag can be useful
when an input profile is needed for using a scanner as a "poor mans"
colorimeter, or if the white point of the test chart doesn't
represent the white points of media that will be used in practice,
and that white point adjustment will be done individually in some
downstream application.<br>
<br>
<a name="uc"></a> <span style="font-weight: bold;">-uc:</span> For
input profiles it is sometimes desirable that any highlights
brighter than the white point, map exactly to white, and this option
post processes the cLUT entries to ensure this is the case. Note
that due to the finite nature of the cLUT grid, this may affect the
accuracy of colors near the light surface of the device gamut.<br>
<br>
<a name="U"></a><span style="font-weight: bold;"> -U <span
style="font-style: italic;">scale</span>:</span> Input profiles
will normally be created such that the white patch of the test chart
will be mapped to perfect white when used with any of the
non-absolute colorimetric intents. This is the expected behavior for
input profiles. Sometimes the test chart white is not quite the same
as the media being converted through the input profile, and it may
be desirable in these cases to adjust the input profile white point
to compensate for this. This can happen in the case of a camera
profile, where the test chart is not perfectly exposed. The <span
style="font-weight: bold;">-U</span> parameter allows this. If the
media converted is a little darker than the test chart white, then
use a scale factor slightly less than 1.0 to make sure that the
media white comes out as white on conversion (ie. try 0.9 for
instance). If the media is a little lighter than the test chart
white and is "blowing out" the highlights, try a value slightly
greater than 1.0 (ie. try 1.1 for instance). The <span
style="font-weight: bold;">-u</span> option sets the scale
automatically to accomodate a perfect white, but <span
style="font-weight: bold;">-U scale</span> can be used on top of
this automatic scaling.<br>
<br>
<a name="R"></a><span style="font-weight: bold;"> -</span><span
style="font-weight: bold;">R</span><span style="font-weight:
bold;">:</span> Normally the white point, black point and primary
locations (for matrix profiles) are computed so as to create
profiles that best match the sample data provided. Some programs are
not happy with the resulting locations if they have negative XYZ
values, or if the white point has a Y value > 1. The <span
style="font-weight: bold;">-R</span> option restricts the white,
black and primary values, so as to work with these programs, but
this will reduce the accuracy of the profile.<br>
<br>
<a name="f"></a> The <b>-f</b> flag enables Fluorescent Whitening
Agent (FWA) compensation. This only works if spectral data is
available and, the instrument is not UV filtered. FWA
compensation adjusts the spectral samples so that they appear to
have been measured using an illuminant that has a different level of
Ultra Violet to the one the instrument actually used in the
measurement. There are two ways this can be used:<br>
<br>
The first and most common is to use the <b>-f</b> flag with the <b>-i</b>
illuminant parameter, to make the color values more accurately
reflect their appearance under the viewing illuminant. This will
work accurately if you specify the <span style="text-decoration:
underline;">actual illuminant spectrum you are using to view the
print</span>, using the <span style="font-weight: bold;"><span
style="font-weight: bold;">-i</span></span> flag. If you are
doing proofing, you need to apply this to <span
style="text-decoration: underline;">both your source profile, and
your destination profile</span>. Note that it is not sufficient to
specify an illuminant with the same white point as the one you are
using, you should specify the spectrum of the illuminant you are <span
style="text-decoration: underline;">actually using</span> for the
proofing, including its <span style="text-decoration: underline;">Ultra
Violet</span> spectral content, otherwise FWA compensation won't
work properly. This means you ideally need to measure your
illuminant spectrum using an instrument that can measure down to
300nm. Such instruments are not easy to come by. The best
alternative is to use the <a href="illumread.html">illumread</a>
utility, which uses an indirect means of measuring an illuminant and
estimating its UV content. Another alternative is to simply try
different illuminant spectra in the <span style="font-weight:
bold;">ref </span>directory, and see if one gives you the result
you are after, although this will be fairly a tedious approach. The
ref/D50_X.X.sp set of illuminant spectra are the D50 spectrum with
different levels of U.V. added or subtracted, ref/D50_1.0.sp being
the standard D50 illuminant, and may be somewhere to start.<br>
[Note: Generally using <span style="font-weight: bold;">-f</span>
with the standard (<b>-i) </b>D50 illuminant spectrum will predict
that the device will produce bluer output than the default of not
FWA compensation. This is because most instruments use an
incandescent illuminant (A type illuminant), which has lower
relative levels of UV than D50, so the FWA compensation simulates
the effect of the greater UV in the D50. Also note that in an
absolute colorimetric color transformation, the more a profile
predicts the output device will have blue output, the yellower the
result will be, as the overall color correction compensates for the
blueness. The opposite will happen for an input profile.]<br>
<br>
The second way of using the <b>-f</b> flag is to provide it with a
instrument simulation illuminant spectrum parameter, in addition to
the default D50 or <b>-i</b> parameter CIE XYZ
calculation illuminant<b></b>. This more complicated scenario
simulates the measurement of the spectral reflectance of the samples
under a particular instrument illuminant, then computes the CIE XYZ
values of that reflectance spectrum under the default D50 or <b>-i</b>
parameter illuminant. This is <u>not</u> used to give a more
accurate real world result, but to provide simulations of various
standardized measurement conditions. For instance, to reproduce ISO
13655:2009 M2 measurement conditions, the <b>-f D50M2</b> could be
used (together with the default <b>-i D50</b> setting). There are
shortcuts provided for ISO 13655:2009 conditions:<br>
<br>
<b>-f M0</b>
equivalent to<b> -f A</b><br>
<b>-f M1</b>
equivalent to<b> -f D50</b><br>
<b>-f M2</b>
equivalent to<b> -f D50M2</b><b><br>
</b><br>
Note that using <span style="font-weight: bold;">-f</span> <b>M2</b>
gives a result that is comparable to that of a U.V. cut filter
instrument. See also the discussion <a href="FWA.html">About
Fluorescent Whitening Agent compensation</a>.<br>
<br>
<a name="i"></a> The <b>-i</b> parameter allows specifying a
standard or custom illumination spectrum, applied to spectral .ti3
data to compute PCS (Profile Connection Space) tristimulus values. <b>A</b>,
<b>D50</b>, <b>D65</b>, <b>F5</b>, <b>F8</b>, <b>F10</b> are a
selection of standard illuminant spectrums, with <b>D50</b> being
the default. If a filename is specified instead, it will be assumed
to be an Argyll specific <a href="File_Formats.html#.sp">.sp</a>
custom spectrum file. This only works if spectral data is available.
Illuminant details are:<br>
<br>
A CIE
tungsten filament lamp 2848K<br>
D50 CIE daylight 5000K<br>
D65 CIE daylight 6500K<br>
F5 CIE Fluorescent
6350K, CRI 72<br>
F8 CIE Fluorescent
5000K, CRI 95<br>
F10 CIE Fluorescent
5000K, CRI 81<br>
<br>
Custom illuminants are most often used when a viewing booth or
other known viewing conditions is going to be used to view results.
Other illuminant reference files could be created using a suitable
measuring instrument such as a spectrolino, or an eyeone using <a
href="spotread.html">spotread</a>, although such instruments do
not themselves provide the necessary response down to Ultra Violet
that is needed for accurate operation of Fluorescent Whitening Agent
compensation. The best way of measuring a custom illuminant is to
use <a href="illumread.html">illumread</a>, since it uses a special
method to estimate the illuminant UV in a way that complements FWA
compensation. (See the discussion above for the <b>-f</b> flag).<br>
<br>
Note that if an illuminant other than D50 is chosen, the resulting
ICC profile will not be standard, and may not work perfectly with
other profiles that that use the standard ICC D50 illuminant,
particularly if the absolute rendering intent is used. Profiles
should generally be linked with other profiles that have the same
illuminant and observer.<br>
<br>
<a name="o"></a> The <b>-o</b> flag allows specifying a tristimulus
observer, and is used to compute tristimulus values. The following
choices are available:<br>
<b> 1931_2</b> selects the standard CIE 1931 2 degree
observer. The default.<br>
<b>1964_10</b> selects the standard CIE 1964 10 degree
observer.<br>
<b>1955_2</b> selects the Stiles and Birch 1955 2 degree
observer<br>
<b>1978_2 </b>selects the Judd and Voss 1978 2 degree
observer<br>
<b>shaw</b> selects the Shaw and Fairchild 1997 2 degree
observer<br>
<br>
Note that if an observer other than 1931 2 degree is chosen, the
resulting ICC profile will not be standard, and cannot be freely
interchanged with other profiles that that use the standard 1931 2
degree observer. Profiles should only be linked with other profiles
that have the same illuminant and observer. The <b>1978_2</b>
observer or <span style="font-weight: bold;">shaw</span> observer
may give slightly better results than the <b>1931_2</b> observer.<br>
<br>
<br>
<a name="r"></a> The <b>-r</b> parameter specifies the average
deviation of device+instrument readings from the perfect, noiseless
values as a percentage. Knowing the uncertainty in the reproduction
and test patch reading can allow the profiling process to be
optimized in determining the behaviour of the underlying system. The
lower the uncertainty, the more each individual test reading can be
relied on to infer the underlying systems color behaviour at that
point in the device space. Conversely, the higher the uncertainty,
the less the individual readings can be relied upon, and the more
the collective response will have to be used. In effect, the higher
the uncertainty, the more the input test patch values will be
smoothed in determining the devices response. If the perfect,
noiseless test patch values had a uniformly distributed error of +/-
1.0% added to them, then this would be an average deviation of 0.5%.
If the perfect, noiseless test patch values had a normally
distributed error with a standard deviation of 1% added to
them, then this would correspond to an average deviation of 0.564%.
For a lower quality instrument (less than say a Gretag Spectrolino
or Xrite DTP41), or a more variable device (such as a xerographic
print engine, rather than a good quality inkjet), then you might be
advised to increase the <span style="font-weight: bold;">-r</span>
parameter above its default value (double or perhaps 4x would be
good starting values.) <br>
<br>
<a name="S"></a><a name="s"></a><span style="font-weight: bold;">-s
-S </span>In order to generate perceptual and saturation
intent B2A tables for output profiles, it is necessary to specify at
least one profile to define what source gamut should be used in the
source to destination gamut mapping. [For more information on <span
style="text-decoration: underline;">why</span> a source gamut is
needed, see <a href="iccgamutmapping.html">About ICC profiles and
Gamut Mapping</a>] The <b>-S</b> parameter is used to do this,
and doing so causes perceptual and saturation tables to be
generated. If only a perceptual intent is needed, then the <b>-s</b>
flag can be used, and the saturation intent will use the same table
as the perceptual intent. Note that a input, output, display or
device colororspace profile should be specified, not a non-device
colorspace, device link, abstract or named color profile.<br>
If no source gamut is specified for a cLUT Display profile, then an
ICC Version 2.2.0 profile will be created with only an A2B0 and B2A0
tag. If a source gamut is specified, then an ICC Version 2.4.0
profile will be created with a full complement of B2A tags to
support all intents. The source gamut is created from the
corresponding intent table of the provided profile to the output
table being created. A TIFF or JPEG file containing an embedded ICC
profile may be supplied as the argument.<br>
<span style="font-weight: bold;">Note</span> that input profiles and
matrix profiles will only contain a colorimetric intent table or
matrix, and hence the <span style="font-weight: bold;">-s</span>
and <span style="font-weight: bold;">-S</span> option is not
relevant.<br>
<br>
<a name="nP"></a><span style="font-weight: bold;">-nP</span>:
Normally when a source profile is provided to define the source
gamut for the output profile perceptual table gamut mapping, the
perceptual source table is used to determine this gamut. This is
because some profile have gamut transformations in their perceptual
A2B tables that is not in the colorimetric A2B table, and this needs
to be taken into account in creating the perceptual B2A table, so
that when the two profiles are linked together with the perceptual
intent, the gamut mapping works as intended. The <span
style="font-weight: bold;">-nP</span> option causes the source
gamut to be taken from the source profile colorimetric table
instead, causing the perceptual gamut mapping created for the
perceptual table to be from the natural source colorspace gamut to
the output space gamut.<br>
<br>
<a name="nS"></a><span style="font-weight: bold;">-nS</span>:
Normally when a source profile is provided to define the source
gamut for the output profile saturation table gamut mapping, the
saturation source table is used to determine this gamut. This is
because some profile have gamut transformations in their saturation
A2B tables that is not in the colorimetric A2B table, and this needs
to be taken into account in creating the saturation B2A table, so
that when the two profiles are linked together with the saturation
intent, the gamut mapping works as intended. The <span
style="font-weight: bold;">-nS</span> option causes the source
gamut to be taken from the source profile colorimetric table
instead, causing the saturation gamut mapping created for the
saturation table to be from the natural source colorspace gamut to
the output space gamut.<small><span style="font-family: monospace;"></span></small><br>
<br>
<a name="g"></a>The <span style="font-weight: bold;">-g</span> flag
and its argument allow the use of a specific source gamut instead of
that of the source profile. This is to allow optimizing the gamut
mapping to a source gamut of a particular image, which can
give slightly better results that gamut mapping from the gamut of
the source colorspace. Such a source image gamut can be created
using the <a href="tiffgamut.html"> tiffgamut</a> tool. The gamut
provided to the <span style="font-weight: bold;">-g</span> <span
style="font-weight: bold;"></span> flag should be in the same
colorspace that <span style="font-weight: bold;">colprof</span> is
using internally to connect the two profiles. For all intents except
the last one (no. <span style="font-weight: bold;">7</span>), the
space should be Jab appearance space, with the viewing conditions
generally being those of the input profile viewing conditions. The
input profile will normally be the one used to create a source image
gamut using <span style="font-weight: bold;">tiffgamut</span>.<br>
<br>
<b><a name="p"></a></b>The <b>-p</b> option allows specifying one
or more abstract profiles that will be applied to the output tables,
after any gamut mapping. An abstract profile is a way of specifying
a color adjustment in a device independent way. The abstract profile
might have been created using one of the <span style="font-weight:
bold;">tweak</span> tools, such as <a href="refine.html">refine</a>.<br>
If a single abstract profile is specified, then it will be applied
to all the output tables (colorimetric, perceptual and saturation).
To specify different abstract profiles for each output table, use a
contiguous comma separated list of filenames. Omit a filename
between the commas if no abstract profile is to be applied to a
table. For instance: -<span style="font-weight: bold;">p
colabst.icm,percabst.icm,satabst.icm</span> for three different
abstract transforms, or: <span style="font-weight: bold;">-p
,percabst.icm,</span> for just a perceptual table abstract
transform.<br>
<br>
One strategy for getting the best perceptual results with output
profile when using ICC profiles with systems that don't accept
device link profiles, is as follows: Specify a gamut mapping profile
of opposite type to the type of device being profiled, and when
linking, use the relative colorimetric intent if the two profiles
are of the same type, and perceptual intent if the two profiles are
of the opposite type. For instance, if you are creating a CMYK
output profile, specify an RGB profile for the <b>-s</b> or <b>-S</b>
parameter. If linking that profile with a CMYK source profile, use
relative colorimetric intent, or if linking with an RGB profile, use
the perceptual intent. Conversely, if creating an RGB output
profile, specify a CMYK profile for the <b>-s</b> or <b>-S</b>
parameter, and if linking that profile with an RGB source profile,
use relative colorimetric intent, or if linking with a CMYK profile,
use the perceptual intent.<br>
<br>
(Note that the perceptual and saturation table gamut mapping doesn't
make any allowance for the application of the abstract profile. This
is a bug.)<br>
<br>
<a name="t"></a><a name="T"></a><span style="font-weight: bold;"></span><span
style="font-weight: bold;"></span>Normally, the gamut mapping used
in creating the perceptual and saturation intent tables for output
profiles is set to perceptual and saturation gamut mapping (as would
be expected), but it is possible to override this default selection
for each intent using the <b>-t</b> and <b>-T</b> flags. The <b>-t</b>
flag can be used to set the gamut mapping for the perceptual table,
and the <b>-T</b> flag can be used to set the gamut mapping for the
saturation table. A more detailed description of the different
intents is given in <a href="collink.html#i">collink</a>. Note that
selecting any of the absolute intents will probably not function as
expected, since the perceptual and saturation tables are inherently
relative colorimetric in nature.<br>
<br>
<a name="c"></a><b><a name="d"></a></b>Since appearance space is
used in the gamut mapping (just as it is in <a href="collink.html">
collink</a>), the viewing conditions for the source and
destination colorspaces should really be specified. The source
colorspace is the profile specified with the <b>-s</b> or <b>-S</b>
flag, and the destination is the profile being created. The <b>-c</b>
and <b>-d</b> options allow specification of their respective,
associated viewing conditions. The viewing condition information is
used to map the profile PCS (Profile Connection Space, which us
either XYZ or L*a*b*) color into appearance space (CIECAM02), which
is a better colorspace to do gamut mapping in. The viewing
conditions allow the conversion into appearance space to take
account of how color will be seen under particular viewing
conditions.<br>
<br>
Viewing conditions can be specified in two basic ways. One is to
select from the list of "pre canned", enumerated viewing conditions,
choosing one that is closest to the conditions that are appropriate
for the media type and situation. Alternatively, the viewing
conditions parameters can be specified individually. If both methods
are used, them the chosen enumerated condition will be used as a
base, and its parameters will then be individually overridden.<br>
<br>
Appearance space is also used to provide a space to map any
remaining out of gamut colors (after a possible gamut mapping has
been applied) into the device gamut. <br>
<br>
<b><a name="P"></a></b>The <b>-P</b> option causes diagnostic 3D <a
href="File_Formats.html#VRML">VRML</a> plots to be created that
illustrate the gamut mappings generated for the perceptual and
saturation intent tables.<br>
<br>
<a name="O"></a>The <span style="font-weight: bold;">-O</span>
parameter allows the output file name & extension to be
specified independently of the final parameter basename. Note that
the full filename must be specified, including the extension.<span
style="font-weight: bold;"></span><br>
<br>
<a name="p1"></a> The final parameter is the file base name for the
<a href="File_Formats.html#.ti3">.ti3</a> input test point data, and
the resulting <a href="File_Formats.html#ICC">ICC</a> output
profile (.icm extension on the MSWindows platform, .icc on Apple or
Unix platforms). The <span style="font-weight: bold;">-O</span>
parameter will override this default.
<h3>Discussion</h3>
Note that monochrome profiling isn't currently supported. It may be
supported sometime in the future.<br>
<br>
If the <b>-v</b> flag is used (verbose), then at the end of
creating a profile, the maximum and average fit error of the input
points to the resulting profile will be reported. This is a good
guide as to whether things have gone smoothly in creating a profile.
Depending on the type of device, and the consistency of the
readings, average errors of 5 or less, and maximum errors of 15 or
less would normally be expected. If errors are grossly higher than
this, then this is an indication that something is seriously wrong
with the device testing, or profile creation.<br>
<br>
Given a .ti3 file from a display device that contains calibration
curves (generated by <a href="dispcal.html">dispcal</a>, passed
through <a href="dispread.html">dispread</a>) and the calibration
indicates that the VideoLUTs are accessible for the device, then <span
style="font-weight: bold;">colprof</span> will convert the
calibration into a <span style="font-weight: bold;">vcgt</span> tag
in the resulting profile so that the operating system tools can
configure the display hardware appropriately, whenever the profile
is used. If the VideoLUTs are not marked as being accessible, <span
style="font-weight: bold;">colprof</span> will do nothing with the
calibration curves. In this case, to apply calibration, the curves
have to be incorporated in the subsequent workflow, either by
incorporating them into the profile using <a
href="applycal.html#p1">applycal</a>, or including them after the
profile in a <a href="cctiff.html#p2">cctiff</a> profile chain.<br>
<br>
Given a .ti3 file from a print device that contains the per-channel
calibration information (generated by <a href="printcal.html">printcal</a>,
passed through <a href="printtarg.html">printtarg</a> and <a
href="chartread.html">chartread</a>), <span style="font-weight:
bold;">colprof</span> will save this along with the .ti3 file in
the <span style="font-weight: bold;">'targ'</span> text tag in the
profile, <span style="font-weight: bold;"></span> so that
subsequent evaluation of ink limits can compute the final calibrated
device values.<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|