1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>colverify</title>
<meta http-equiv="content-type" content="text/html;
charset=windows-1252">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>profile/colverify</b></h2>
<h3>Summary</h3>
Verify a color transform by comparing CIE measurement values from
two test charts. The charts can be any suitably formatted CGATS or <a
href="File_Formats.html#.ti3">.ti3</a> format that contains
corresponding XYZ, Lab or spectral values. The overall average and
worst case delta E will be reported, as well as the worst 10% and
best 90% of values.<br>
<h3>Usage Summary</h3>
<tt><small>colverify [-options] target.ti3 measured.ti3<br>
-v
[n]
Verbose mode, n >= 2 print each value<br>
-l
Match patches by sample location rather than id<br>
-n
Normalise
each files reading to white Y<br>
-N
Normalise
each files reading to white XYZ<br>
-m
Normalise each files reading to its white X+Y+Z<br>
-M
Normalise both files reading to mean white XYZ<br>
-D
Use
D50 100.0 as L*a*b* white reference<br>
-c
Show CIE94 delta E values<br>
-k
Show CIEDE2000 delta E values<br>
-h
Plot a histogram of delta E's<br>
-s
Sort patch value by error<br>
-w
create X3DOM vector visualisation (measured.x3d.html)<br>
</small></tt><tt><small> -W
create X3DOM marker & vector visualisation
(measured.x3d.html)</small></tt><tt><br>
</tt><tt> </tt><tt><small> -x
Use X3DOM axes<br>
</small></tt><tt><small><small>-f
[illum] Use Fluorescent
Whitening Agent compensation [opt. simulated inst. illum.:<br>
M0, M1, M2, A, C, D50 (def.), D50M2, D65, F5, F8, F10 or
file.sp]<br>
-i illum
Choose illuminant for computation of CIE XYZ from spectral
data & FWA:<br>
A, C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp<br>
-o observ Choose
CIE Observer for spectral data:<br>
</small><small>
1931_2 </small><small>(def.)</small><small>, 1964_10, </small></small></tt><tt><small><small><tt><small>2012_2,
2012_10, </small></tt>S&B 1955_2, shaw, J&V
1978_2 or file.cmf<br>
-L profile.icm Skip any first file, out of
profile gamut patches<br>
-X file.ccmx Apply Colorimeter
Correction Matrix to second file<br>
</small> <i>target.ti3</i>
Target or reference patch data file<br>
<i>measured.ti3</i> Measured or actual patch
data file</small></tt><br>
<h3>Usage Details and Discussion</h3>
<b> colverify</b> provides a way of verifying how well a color
transformation (such a proofing) performs.<br>
<br>
The <b>-v</b> flag prints out extra information during the
checking, and prints each patch value, rather than just a summary.<br>
<br>
The <b>-l</b> flag makes colverify look for the SAMPLE_LOC fields
to match patches by, rather than the default SAMPLE_ID field.<br>
<br>
The <b>-n</b> flag causes the two sets of values to be normalized
to the Y value of white for each set before comparison. White is
assumed to be the patch with the largest Y value.<br>
<br>
The <b>-N</b> flag causes the two sets of values to be normalized
to the XYZ of white for each set before comparison. White is assumed
to be the patch with the largest Y value.<br>
<br>
The <b>-m</b> flag causes the two sets of values to be normalized
to the X+Y+Z of white for each set before comparison. White is
assumed to be the patch with the largest Y value.<br>
<br>
The <b>-M</b> flag causes the two sets of values to be normalized
to the average XYZ of the whites from each set before comparison.
White is assumed to be the patch with the largest Y value.<br>
<br>
The <b>-D</b> flag causes the white reference point for the
conversion to L*a*b* to be D50 with a Y value of 100%. By default
the sample with the largest Y value is found, and the L*a*b* white
reference scaled to have that Y value. This allows sensible delta E
values when comparing absolute color values, such as those from
emission or display measurements.<br>
<br>
The <b>-c</b> option causes the differences between the test values
and the profile prediction of the color for each device value to be
displayed in CIE94 delta E, rather than plain L*a*b* delta E. CIE94
delta E has a closer correspondence with perceived color differences
than the default CIE76 delta E values.<br>
<br>
The <b>-k</b> option causes the differences between the test values
and the profile prediction of the color for each device value to be
displayed in CIEDE2000 delta E, rather than plain L*a*b* delta E.
CIEDE2000 delta E has a closer correspondence with perceived color
differences than either CIE76 or CIE94 delta E values.<br>
<br>
The <b>-h</b> flag will display a histogram plot of the fit delta
E's. The X scale is delta E, the Y scale is %<br>
<br>
If the <b>-s </b>flag is used in combination with the <b>-v</b>
flag, then the test point by test point output will be sorted from
worst to best.<br>
<br>
The <b>-w</b> creates a <a href="File_Formats.html#X3DOM">X3DOM</a>
3D visualization of the differences between the test points in D50
L*a*b* space, each difference being shown as a line vector. If the <span
style="font-weight: bold;">-W</span> flag is used, then the target
and measured values will also be marked by a small sphere. This can
be used to visualize the placement of values in a .ti3 (or other
CGATS file) by using the same file for both "target" and "measured"
values.<br>
<br>
The <b>-x</b> flag adds Lab axes to the X3DOM output.<br>
<br>
The <b>-f</b> flag enables Fluorescent Whitening Agent (FWA)
compensation. This only works if spectral data is available and, the
instrument is not UV filtered. FWA compensation adjusts the
spectral samples so that they appear to have been measured using an
illuminant that has a different level of Ultra Violet to the one the
instrument actually used in the measurement. The optional
illumination parameter allows specifying a standard or custom
illumination spectrum to be used as the similated instrument
illuminant, overriding the default <b>D50</b> or CIE computation
illuminant used for FWA (see <b>-i</b> below<b>). </b>See <a
href="colprof.html#f">colprof -f</a> for a fuller explanation. The
same value should be used as was used during the creation of the
profile.<br>
<br>
The <b>-i</b> flag allows specifying a standard or custom
illumination spectrum, applied to the spectral test point values to
compute CIE tristimulus values. <b>A</b>, <b>D50</b>, <b>D50M2,
D65</b>, <b>F5</b>, <b>F8</b>, <b>F10</b> are a selection of
standard illuminant spectrums, with <b>D50</b> being the default.
If a filename is specified instead, it will be assumed to be an
Argyll specific <a href="File_Formats.html#.sp">.sp</a> spectrum
file. If FWA compensation is used during measurement, this
illuminant will be used by default as the simulated instrument
illuminant. The same value should be used as was used during the
creation of the profile.<br>
<br>
The <b>-o</b> flag allows specifying a tristimulus observer, and is
used to compute PCS (Profile Connection Space) tristimulus values.
The following choices are available:<br>
<b> 1931_2</b> selects the standard CIE 1931 2 degree
observer. The default.<br>
<b>1964_10</b> selects the standard CIE 1964 10 degree
observer.<br>
<b> 2012_2</b> selects the proposed CIE 2012 2 degree
observer.<br>
<b>2012_10</b> selects the proposed CIE 2012 10 degree
observer.<br>
<b>1955_2</b> selects the Stiles and Birch 1955 2 degree
observer<br>
<b>1978_2 </b>selects the Judd and Voss 1978 2 degree
observer<br>
<b>shaw</b> selects the Shaw and Fairchild 1997 2 degree
observer<br>
<i><b>file.cmf</b></i> selects an observer specified by the
given <a href="File_Formats.html#.cmf">.cmf</a> file.<br>
<br>
The same parameter value should be used as was used during the
creation of the profile.<br>
<br>
The <b>-L</b><b> profile.icm</b> parameter causes colverify to
ignore any patches from the first file that are out of gamut
according to the profile. This can be useful in evaluating accuracy
without tainting it by impossible to reach colors.<br>
<br>
The <b>-X</b><b> file.ccmx</b> option applies the given 3x3
calibration matrix to the values from the second file before doing
any verification. This can be useful in evaluating the effects of a
calibration matrix on raw colorimeter values, against reference
values measured using a spectrometer.<br>
<br>
If both CIE and spectral values are present in the input files, the
CIE values will be used by default. Using the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flag will force spectral values to be used. The the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flags will apply to both the target and measured input files.<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|