1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>fakeread</title>
<meta http-equiv="content-type"
content="text/html; charset=ISO-8859-1">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>spectro/fakeread</b></h2>
<h3>Summary</h3>
Simulate the measurement of a devices response, using an existing
device profile, or measured test point data set. The device profile can
be either
an <a href="File_Formats.html#ICC">ICC</a> or <a
href="File_Formats.html#MPP">MPP</a> profile, or the data set can be a
<a href="File_Formats.html#.ti3">.ti3</a> file. A device link
separation or color space conversion can be applied before the
print/measure simulation.<br>
<h3>Usage</h3>
<small><span style="font-family: monospace;">fakeread [-v] [-s] </span></small><small><span
style="font-family: monospace;">[<span style="font-style: italic;">separation.ic<span
style="font-family: monospace;">m</span></span>] </span></small><small><span
style="font-family: monospace;"></span><i
style="font-family: monospace;">profile.</i><span
style="font-family: monospace;">[icm|mpp|ti3] </span><i
style="font-family: monospace;">inoutfile</i><br
style="font-family: monospace;">
<span style="font-family: monospace;"> -v
Verbose mode</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"> -s
Lookup </span><a style="font-family: monospace;"
href="File_Formats.html#MPP">MPP</a><span
style="font-family: monospace;"> spectral values</span><br
style="font-family: monospace;">
<span style="font-family: monospace;"> -p
Use
separation profile</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> -l
Output
Lab rather than XYZ<br>
-k
file.cal
Apply
calibration (after sep.) and include in .ti3<br>
-i
file.cal
Include
calibration in .ti3 (but don't apply it)<br>
</span></small><small><span style="font-family: monospace;"> -r
level
Add
average random deviation of <level>% to input device values
(after sep. & cal.)</span></small><br
style="font-family: monospace;">
<small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"> -0
pow
Apply
power to input device chanel 0-9 (after sep. cal. & rand.)</span><br
style="font-family: monospace;">
<span style="font-family: monospace;">-R
level
Add
average random deviation of <level>% to output PCS values<br>
</span></small><small><span style="font-family: monospace;"> -u
Make
random deviations have uniform distributions rather than normal<br>
-S
seed
Set
random seed<br style="font-family: monospace;">
</span></small><small><span style="font-family: monospace;"></span><span
style="font-family: monospace;"> -b
L,a,b
Scale
black point to target Lab value<br>
-I
intent
r = relative colorimetric, a = absolute (default)<br
style="font-family: monospace;">
</span><span style="font-family: monospace;"> [<span
style="font-style: italic;">separation.ic<span
style="font-family: monospace;">m</span></span>]
Device
link separation profile</span><br style="font-family: monospace;">
<span style="font-family: monospace;"> </span><i
style="font-family: monospace;">profile.</i><span
style="font-family: monospace;">[icm|mpp|ti3] </span><a
style="font-family: monospace;" href="File_Formats.html#ICC">ICC</a><span
style="font-family: monospace;">, </span><a
style="font-family: monospace;" href="File_Formats.html#MPP">MPP</a><span
style="font-family: monospace;">
or </span><a style="font-family: monospace;"
href="File_Formats.html#.ti3">.ti3</a><span
style="font-family: monospace;">
profile/file to use</span><br style="font-family: monospace;">
<span style="font-family: monospace;"></span><i
style="font-family: monospace;">inoutfile</i><span
style="font-family: monospace;">
Base name for
input[</span><a style="font-family: monospace;"
href="File_Formats.html#.ti1">.ti1</a><span
style="font-family: monospace;">]/output[</span><a
style="font-family: monospace;" href="File_Formats.html#.ti3">.ti3</a><span
style="font-family: monospace;">] file</span></small><br>
<b><br>
Examples</b><br>
<br>
fakeread profile.icm testvalues<br>
fakeread -p separation.icm profile.icm testvalues<br>
<h3>Comments<br>
</h3>
The <span style="font-weight: bold;">-v</span> flag does nothing at
the moment.<br>
The <span style="font-weight: bold;">-s</span> flag works only with
MPP profiles that contain spectral model
information.<br>
The <span style="font-weight: bold;">-p</span> flag enables a device
to device value conversion before
converting to expected PCS values.<br>
The <span style="font-weight: bold;">-l</span> flag causes the CIE
output values to be L*a*b* rather than the
default XYZ values.<br>
<br>
The <b>-k file.cal</b> parameter specifies a printer
calibration file created by <a href="printcal.html">printcal</a>, and
the supplied calibration curves will be applied to the chart device
values after any separation. This allows emulating a system that uses
per device channel calibration. The calibration curves will also be
included in
the resulting .ti3 file, so that they can be passed through to the ICC
profile allowing accurate computation of ink
limits.<br>
<br>
<a name="i"></a> The <b>-i file.cal</b> parameter specifies a printer
calibration file created by <a href="printcal.html">printcal</a>,
and the calibration curves will be
included in the included in
the resulting .ti3 file, so that they can be passed through to the ICC
profile, to allow accurate computation of ink limits.
The calibration <span style="font-weight: bold;">is not applied</span>
to tchart values. <span style="font-weight: bold;">Note</span> that if
the supplied ICC profile contains calibration curves, that these will
be included in the resulting .ti3 by default.<br>
<span style="font-weight: bold;"></span><br>
The <span style="font-weight: bold;">-r</span> parameter is a way of
simulating instability in the behaviour of
the simulated
printing system. The parameter supplied to the flag will be used to
scale a random offset added to the device values (after any separation
and calibration is applied). The offset will be a normally distributed
error with an
average deviation of level%. A typically value supplied
might be 1.0 to simulate 1% randomness.<br>
<br>
The <span style="font-weight: bold;">-0, -1, -2 .. -9</span>
parameters are a way of simulating changes in the
behaviour of the simulated printing system. The parameter supplied to
the flag will be used to modify the device values (after any
separation, calibration and device randomness
is applied) by raising them to the power of the parameter. This applies
a transfer curve to the simulated device response.<br>
<br>
The <span style="font-weight: bold;">-R</span> parameter is a way of
simulating instability in the behaviour of
the simulated
measuring system. The parameter supplied to the flag will be used to
scale a random offset added to the PCS values. The offset will be a
normally distributed error with an average deviation of level%. A
typically value supplied
might be 1.0 to simulate 1% randomness. <br>
<br>
The <span style="font-weight: bold;">-u</span> flag changes the
distribution of the random offsets applied using the <span
style="font-weight: bold;">-r</span> or <span
style="font-weight: bold;">-R</span> flags, from the default standard
deviation, to a uniform deviation distribution. The level is still
specified as an average deviation.<br>
<br>
The <span style="font-weight: bold;">-S</span> parameter lets a
particular random seed be used when generating random offsets, so that
the randomness can be made repeatable. Normally a different seed will
be used for each run. <br>
<br>
The <span style="font-weight: bold;">-b</span> parameter is a way of
simulating devices that have a different black point to the profile
used. This only works if an ICC profile is used, and scales the black
point to the parameter value. This will be done in XYZ space by
default, and in L*a*b* space if the <span style="font-weight: bold;">-l</span>
flag is used.<br>
<br>
The <span style="font-weight: bold;">-I</span> parameter allows
changing the intent used in looking up the ICC profile colors to
relative colorimetric. This would <span
style="text-decoration: underline;">not</span> be used if you intend
to make a profile from the resulting .ti3 file, since profiles are
always made from absolute colorimetric measurement values. Note that
this flag does nothing if the profile is an MPP or .ti3 file.<br>
<br>
Fakeread is useful in creating artificial test value for testing <a
href="colprof.html">colprof</a>, as well as providing one path for
turning an MPP profile into an ICC profile. If a <a
href="File_Formats.html#.ti3">.ti3</a> file is
specified instead of an <a href="File_Formats.html#ICC">ICC</a> or <a
href="File_Formats.html#MPP">MPP</a> profile,
then the closest matching measured points in the .<a
href="File_Formats.html#.ti3">.ti3</a> are substituted
for the test values in the <a href="File_Formats.html#.ti1">.ti1</a>
file on
output. If the <a href="File_Formats.html#.ti1">.ti1</a>
file is a monochrome test file with a White device value, then an RGB <a
href="File_Formats.html#ICC">ICC</a> profile, <a
href="File_Formats.html#MPP">MPP</a> or <a
href="File_Formats.html#.ti3">.ti3</a> may be used, and the White
values will be translated to equal RGB values. If the <a
href="File_Formats.html#.ti1">.ti1</a>
file is a monochrome test file with a Black device value, then a CMYK <a
href="File_Formats.html#ICC">ICC</a> profile, <a
href="File_Formats.html#MPP">MPP</a> or <a
href="File_Formats.html#.ti3">.ti3</a> may be used, and the Black
values will be translated to equal CMY = 0, K = grey values. <span
style="font-weight: bold;">Note</span> that
any calibration within a supplied ICC profile is <span
style="text-decoration: underline;">not</span> applied during the
conversion, although it will be included in the .ti3 output (see <span
style="font-weight: bold;">-k</span> and <span
style="font-weight: bold;">-i</span> flags for how apply calibration
curves during the conversion and/or include
a specific calibration curves in the output).<br>
<br>
If a separation device profile is provided (e.g. from CMY -> CMYK,
or perhaps CMYK->CMYK, to simulate a color correction step before
"printing"), then this will be applied to the .ti1 device values,
before converting the the device values into .ti3 PCS values.<br>
<br>
<br>
<br>
</body>
</html>
|