1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>refine</title>
<meta http-equiv="content-type" content="text/html;
charset=ISO-8859-1">
<meta name="author" content="Graeme Gill">
</head>
<body>
<h2><b>tweak/refine</b></h2>
<h3>Summary</h3>
<span style="font-weight: bold;">Refine</span> creates an abstract
profile, by comparing CIE measurement values from two test charts.
The charts will usually be in <a href="File_Formats.html#.ti3">.ti3</a>
format, but only XYZ, Lab or spectral values will be used (ie. all
device space values are ignored). Typically the charts would be
printed on a target system (the one being emulated, say a printing
press, or created using an ideal target profile such as Rec709), and
the proofing system (the device that is being profiled). The
abstract profile that <span style="font-weight: bold;">refine</span>
produces will be a correction that makes the proofing system behave
more like the target. This can then be used to recreate the proofing
systems ICC profile, or device link. By feeding a previous abstract
correction profile in as well, iterative improvement can be made to
the proofing reproduction.<br>
<br>
<a href="colverify.html">colverify</a> is a useful tool to use on the two
test charts, to check how well the refinement is proceeding. If a
white point relative match is being created (refine -R), then use
veryify -N.<br>
<h3>Usage Summary</h3>
<tt><small>usage: refine [-options] cietarget ciecurrent [outdevicc]
[inabs] outabs<br>
-v
Verbose<br>
-c
Create
initial abstract correction profile<br>
-g
Don't
impose output device gamut limit<br>
-r res Set
abstract profile clut resolution (default 33)<br>
-d factor Override default damping
factor (default 0.950000)<br>
-R
Aim
for white point relative match rather than absolute<br>
</small></tt><tt><small><small></small><small><small>-f
[illum] Use Fluorescent Whitening Agent
compensation [opt. simulated inst. illum.:<br>
M0, M1, M2, A, C, D50 (def.), D50M2, D65, F5, F8, F10 or
file.sp]<br>
-i illum Choose
illuminant for computation of CIE XYZ from spectral data
& FWA:<br>
A, C, D50 (def.), D50M2, D65, F5, F8, F10 or file.sp</small></small><br>
-o observ Choose CIE Observer for
spectral data:<br>
1931_2,
1964_10, S&B 1955_2, J&V 1978_2 (def.)<br>
<span style="font-style: italic;">cietarget </span>
Target CIE or spectral values, CGATS file (e.g. .ti3)<br>
<span style="font-style: italic;">ciecurrent</span>
Actual CIE or spectral values, CGATS file (e.g. .ti3)<br>
[<span style="font-style: italic;">outdevicc</span>]
Output device ICC profile to set gamut limit (not used if -g)<br>
[<span style="font-style: italic;">inabs</span>]
Previous
abstract correction ICC profile (not used if -c)<br>
<span style="font-style: italic;">outabs</span>
Created/refined
abstract correction ICC profile</small></tt><br>
<h3>Usage Details</h3>
<b>refine</b> provides a way of improving the profile accuracy of a
proofing system.<br>
<br>
The <b>-v</b> flag prints out extra information during the
checking, and prints each patch value, rather than just a summary.<br>
<br>
The <b>-c</b> option is used when refine is being used for the
first time, and there is no previous abstract profile to continue
refining. If <span style="font-weight: bold;">-c</span> is used,
then the name of the previous abstract correction profile should not
be supplied.<br>
<br>
If the <b>-g </b>flag indicates that an output device profile is
not being supplied, and that corrections should be attempted, even
if the colors are outside the devices gamut. Normally an output
device profile is supplied, and corrections aren't applied to colors
outside the devices gamut, since this will not achieve anything
useful, and can distort the results.<br>
<br>
If the <b>-r </b>parameter overrides the resolution of the CLUT
grid used in the abstract profile. By default the value is 33, but
other<br>
values can be chosen. An odd number is recommended. <br>
<br>
If the <b>-d </b>parameter sets how aggressively refine should try
and correct errors. Normally it will try and exactly compensate for
the color errors revealed in comparing the two measurement files,
but if the device behaviour is unusual, or not very repeatable, this
may result in successive applications of refine making things worse,
rather than better. If this is the case, try using a smaller number,
such as 0.8, or 0.5.<br>
<br>
If the <span style="font-weight: bold;">-R</span> flag is used,
then refine creates an abstract profile for improving the match of
the patch values when interpreted in a white point relative
(ie. Relative Colorimetric) intent. If used to create a corrected
device link profile using <a href="collink.html">collink</a>,
remember to create a Relative colorimetric intent device link
profile.<br>
<br>
The <b>-f</b> flag enables Fluorescent Whitening Agent (FWA)
compensation. This only works if spectral data is available and, the
instrument is not UV filtered. FWA compensation adjusts the
spectral samples so that they appear to have been measured using an
illuminant that has a different level of Ultra Violet to the one the
instrument actually used in the measurement. The optional
illumination parameter allows specifying a standard or custom
illumination spectrum to be used as the similated instrument
illuminant, overriding the default <b>D50</b> or CIE computation
illuminant used for FWA (see <b>-i</b> below<b>). </b>See <a
href="colprof.html#f">colprof -f</a> for
a fuller explanation. The same value should be used as was used
during the creation of the profile.<br>
<br>
The <b>-i</b> flag allows specifying a standard or custom
illumination spectrum, applied to the spectral test point values to
compute CIE tristimulus values. <b>A</b>, <b>D50</b>, <b>D50M2,
D65</b>, <b>F5</b>, <b>F8</b>, <b>F10</b> are a selection of
standard illuminant spectrums, with <b>D50</b> being the default.
If a filename is specified instead, it will be assumed to be an
Argyll specific <a
href="File_Formats.html#.sp">.sp</a>
spectrum file. If FWA compensation is used during measurement, this
illuminant will be used by default as the simulated instrument
illuminant. The same value should be used as was used during the
creation of the profile.<br>
<br>
The <b>-o</b> flag allows specifying a tristimulus observer, and is
used to compute CIE tristimulus values. The following choices are
available:<br>
<b> 1931_2</b> selects the standard CIE 1931 2 degree
observer.<br>
<b>1964_10</b> selects the standard CIE 1964 10 degree
observer.<br>
<b>1955_2</b> selects the Stiles and Birch 1955 2 degree
observer<br>
<b>1978_2 </b>selects the Judd and Voss 1978 2 degree
observer<br>
<b>shaw</b> selects the Shaw and Fairchild 1997 2 degree
observer<br>
<br>
If both CIE and spectral values are present in the input files, the
CIE values will be used by default. Using the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flag will force spectral values to be used. The the <span
style="font-weight: bold;">-i</span>, <span style="font-weight:
bold;">-o</span> or <span style="font-weight: bold;">-f</span>
flags will apply to both the target and measured input files.<br>
<br>
<span style="font-style: italic; font-weight: bold;">cietarget</span>
Is
the filename of the target CIE or spectral values. This is a <a
href="File_Formats.html#CGATS">CGATS</a> file (e.g. a <a
href="File_Formats.html#.ti3">.ti3</a> made using <a
href="chartread.html">chartread</a>). These are the color values
wanted for each patch in the test chart, typically the product of
the target print system.<br>
<br>
<span style="font-style: italic; font-weight: bold;">ciecurrent</span>
Is the filename of the
actual, current measured CIE or spectral values. This is a <a
href="File_Formats.html#CGATS">CGATS</a> file (e.g. a <a
href="File_Formats.html#.ti3">.ti3</a> made using <a
href="chartread.html">chartread</a>). The errors between these
patches and the patches in the <span style="font-style: italic;
font-weight: bold;">cietarget</span> file will be used to create a
correction profile.<br>
<br>
[<span style="font-style: italic; font-weight: bold;">outdevicc</span>]
If
the <span style="font-weight: bold;">-g</span> flag is not used,
then the output device ICC profile should be supplied here, to allow
<span style="font-weight: bold;">refine</span> to limit its
corrections to colors that are within the gamut of the device.<br>
<br>
[<span style="font-weight: bold; font-style: italic;">inabs</span>]
After
the first correction has been created, subsequent corrections need
to improve upon previous ones, so the previous correction profile
should be provided here. For the first correction, the <span
style="font-weight: bold;">-c</span> flag should be used, and this
argument is omitted.<br>
<br>
<span style="font-weight: bold; font-style: italic;">outabs</span>
The
name of the created or refined abstract correction ICC profile<br>
<br>
<h3> Discussion</h3>
<span style="font-weight: bold;">Refine</span> is typically used in
a proofing situation, in which a verification chart is being used to
check the accuracy of a proofing system. (It might also be used for
more arbitrary color alterations by created two test chart files by
hand.) By using the errors between the target chart and the measured
values, refine attempts to improve the match between the proofing
system and its target.<br>
<br>
There is facility in <a href="collink.html">collink</a>, <a
href="colprof.html">colprof</a> and <a href="revfix.html">revfix</a>
to incorporate an abstract profile. <br>
<br>
For systems using two device profiles or a device link to convert
between the target space printing files and the proofing device
space, the following would be a typical scenario:<br>
<br>
<div style="margin-left: 40px;">We have a reference set of test
chart values, read from the target system <span
style="font-weight: bold;">reference.ti3</span>. The ICC profile
for the target system is <span style="font-weight: bold;">target.icm</span>.
The ICC profile for the proofing system is <span
style="font-weight: bold;">proofer.icm</span>. If using a device
link, the device link used to print proofer test charts is
currently <span style="font-weight: bold;">target_proofer.icm</span>:<br>
<br>
<br>
First we print the test chart out on the proofing system and read
it in, resulting in a <span style="font-weight: bold;">chart1.ti3</span>
file.<br>
<br>
Lets check how well the proofing system current matches using
colverify:<br>
<br>
colverify reference.ti3 chart1.ti3<br>
<br>
We then create our initial abstract correction fix profile <span
style="font-weight: bold;">fix1.icm</span> using refine:<br>
<br>
refine -v -c reference.ti3 chart1.ti3
proofer.icm fix1.icm<br>
<br>
Applying this to your process for creating the proofer device
profile or target to proofing device link (choose one of the three
options below, depending whether you are using the proofer profile
and just want to alter its colorimetric B2A table using <span
style="font-weight: bold;">revfix</span>, whether you are going
to recreate the proofer file from the original measurement data
using <span style="font-weight: bold;">colprof</span>, or
whether you are using a device link profile created using <span
style="font-weight: bold;">collink</span>):<br>
<br>
revfix -v -1 -ke -p fix1.icm proofer.icm
proofer_fix1.icm<br>
or<br>
copy proofer.ti3 proofer_fix1.ti3<br>
colprof -v -p fix1.icm proofer_fix1<br>
or<br>
collink -v -s -ia -oa -p fix1.icm target.icm
proofer.icm target_proofer_fix1.icm<br>
<br>
Note that the above example is a simple one - you should use all
the same options as you used to create your initial <span
style="font-weight: bold;"><span style="font-weight: bold;"></span>proofer.icm
</span>or <span style="font-weight: bold;">target_proofer.icm</span>,
with the addition of the "-p fix1.icm" option to specify the
abstract correction profile be applied.<br>
<br>
Use the <span style="font-weight: bold;">proofer_fix1.icm</span>
or <span style="font-weight: bold;">target_proofer_fix1.icm</span>
to print out the test chart again, and read it in, resulting in <span
style="font-weight: bold;">chart2.ti3</span> file.<br>
<br>
Lets check how well the proofing system matches after this first
round of refinement using colverify:<br>
<br>
colverify reference.ti3 chart2.ti3<br>
<br>
<br>
<span style="font-weight: bold;"><span style="font-weight: bold;">>>></span></span><br>
<span style="font-weight: bold;"><span style="font-weight: bold;"></span></span><br>
<span style="font-weight: bold;"><span style="font-weight: bold;"> </span></span>We
can
then start another round of improvement:<br>
<br>
We refine our previous abstract correction fix profile using
refine:<br>
<br>
refine -v reference.ti3 chart2.ti3
proofer.icm fix1.icm fix2.icm<br>
<br>
Applying this new abstract profile to our process for creating the
proofing device profile or link again:<br>
<br>
revfix -v -1 -ke -p fix2.icm proofer.icm
proofer_fix2.icm<br>
or<br>
copy proofer.ti3 proofer_fix2.ti3<br>
colprof -v -p fix2.icm proofer_fix2<br>
or<br>
collink -v -s -ia -oa -p fix2.icm target.icm
proofer.icm target_proofer_fix2.icm<br>
<br>
Use the <span style="font-weight: bold;">proofer_fix2.icm</span>
or <span style="font-weight: bold;">target_proofer_fix2.icm</span>
to print out the test chart again, and read it in, resulting in <span
style="font-weight: bold;">chart3.ti3</span> file.<br>
<br>
Check again how well the proofing system matches after this first
round of refinement using colverify:<br>
<br>
colverify reference.ti3 chart3.ti3<br>
<br>
Rounds of improvements can be continues by looping back to <span
style="font-weight: bold;">>>></span>, being careful to
increment the names of the <span style="font-weight: bold;">fixN.icm</span>,
<span style="font-weight: bold;">proofer_fixN.icm</span> or <span
style="font-weight: bold;">target_proofer_fixN.icm</span> and <span
style="font-weight: bold;">chartN.ti3</span>files. Stop when
exhausted, or if it looks like things are getting worse, rather
than better. If the latter happens, it might be good to revert to
the results from a previous round.<br>
</div>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>
|