summaryrefslogtreecommitdiff
path: root/gamut/gammap.c
blob: 638a2cd677934e1166b3fe9c25b7ef8765a81d08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638

/* 
 * Argyll Gamut Mapping Library
 *
 * Author:  Graeme W. Gill
 * Date:    1/10/00
 * Version: 2.00
 *
 * Copyright 2000 - 2006 Graeme W. Gill
 * All rights reserved.
 *
 * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
 * see the License.txt file for licencing details.
 *
 * For a discussion of gamut mapping strategy used,
 * see gammap.txt
 */

/*
 * TTBD:
 *       Improve error handling.
 *
 *	There is a general expectation (especially in comparing products)
 *  that the profile colorimetric intent be not strictly minimum delta E,
 *  but that it correct neutral axis, luminence range and keep hue
 *  proportionality. Ideally there should be an intent that matches
 *  this, that can be selected for the colorimetric table (or perhaps be default).
 *
 *	It might be good to offer the black mapping method as an option (icx_BPmap),
 *  as well as offering different profile (xicc/xlut.c) black point options
 *  (neutral, K hue max density, CMY max density, any max density).
 *  Perhaps print RGB & CMY should default to neutral black, rather than 0,0,0 ??
 *
 *  The gamut mapping code here and the near smooth code don't actually mesh
 *  very well. For instance, the black point bend approach in < V1.3.4
 *  means that the dest gamut isn't actually contained within the source,
 *  messing up the guide vector mappings. Even if this is fixed, the
 *  actual neutral aim point within nearsmooth is Jab 0,0, while
 *  the mapping in gammap is from the source neutral to the chosen
 *  ??????
 */



#define VERBOSE			/* [Def] Print out extra interesting information when verbose is set */
#undef PLOT_DIAG_WRL	/* [Und] Always plot "gammap.wrl" */

	/* What do display when user requests disgnostic VRML/X3D */
#define PLOT_SRC_GMT	/* [Def] Plot the source surface to "gammap.wrl" as well */
#define PLOT_DST_GMT	/* [Def] Plot the dest surface to "gammap.wrl" as well */
#undef PLOT_SRC_CUSPS	/* [Und] Plot the source surface cusps to "gammap.wrl" as well */
#undef PLOT_DST_CUSPS	/* [Und] Plot the dest surface cusps to "gammap.wrl" as well */
#undef PLOT_TRANSSRC_CUSPS	/* [Und] Plot the gamut mapped source surface cusps to "gammap.wrl" */
#define PLOT_AXES		/* [Und] Plot the axes to "gammap.wrl" as well */
#undef SHOW_VECTOR_INDEXES	/* [Und] Show the mapping vector index numbers */
#define SHOW_MAP_VECTORS	/* [Def] Show the mapping vectors - yellow to red, green to red */
							/*       if no clear direction. */
#undef SHOW_SUB_SURF	/* [Und] Show the sub-surface mapping vector - grey to purple. */
#undef SHOW_SUB_PNTS	/* [Und] Show the sub-surface sv2 (red), div2 (green), sd3 (yellow) pnts */
#undef SHOW_CUSPMAP		/* [Und] Show the cusp mapped vectors rather than final vectors */
#undef SHOW_ACTUAL_VECTORS		/* [Und] Show how the source vectors actually map thought xform */
#undef SHOW_ACTUAL_VEC_DIFF		/* [Und] Show how the difference between guide and actual vectors */

	/* Other diagnostics */
#undef PLOT_LMAP		/* [Und] Plot L map */
#undef PLOT_GAMUTS		/* [Und] Save (part mapped) input and output gamuts as */
						/* src.wrl, img.wrl, dst.wrl, gmsrc.wrl */
#undef PLOT_3DKNEES		/* [Und] Plot the 3D compression knees */
#undef CHECK_NEARMAP	/* [Und] Check how accurately near map vectors are represented by rspl */

#define USE_GLUMKNF		/* [Define] Enable luminence knee function points */
#define USE_GREYMAP		/* [Define] Enable 3D->3D mapping points down the grey axis */
#define USE_GAMKNF		/* [Define] Enable 3D knee function points */
#define USE_BOUND		/* [Define] Enable grid boundary anchor points */

#undef SHOW_NEIGBORS	/* [Und] Show nearsmth neigbors in gammap.wrl */

#undef PLOT_DIGAM		/* [Und] Rather than DST_GMT - don't free it (#def in nearsmth.c too) */


#define XRES 100		/* [100] Res of plots */

/* The locus.ts file can contain source locus(es) that will be plotted */
/* as cones in red, with the destination plotted in white. They can */
/* be created from .tif files using xicc/tiffgmts utility. */

/* Optional marker points for gamut mapping diagnosotic */
struct {
	int type;		/* 1 = src point (xlate), 2 = dst point (no xlate) */
					/* 0 = end marker */
	double pos[3];	/* Position, (usually in Jab space) */
	double col[3];	/* RGB color */
} markers[] = {
	{ 0, },								/* End marker */
	{ 1, { 37.18, 17.78, 20.28 }, { 0.545, 0.357, 0.256 } },	/* Dark Baby skin */
	{ 1, { 12.062, -0.87946, 0.97008 }, { 1.0, 0.3, 0.3 } },	/* Black point */
	{ 1, { 67.575411, -37.555250, -36.612862 }, { 1.0, 0.3, 0.3 } },	/* bad source in red (Red) */
	{ 1, { 61.003078, -44.466554, 1.922585 }, { 0.0, 1.0, 0.3 } },	/* good source in green */
	{ 2, { 49.294793, 50.749543, -51.383167 }, { 1.0, 0.0, 0.0 } },	
	{ 2, { 42.783425, 49.089363, -37.823712 }, { 0.0, 1.0, 0.0 } },	
	{ 2, { 41.222695, 63.911823, 37.695310 }, { 0.0, 1.0, 0.3 } },	/* destination in green */
	{ 1, { 41.951770, 60.220284, 34.788195 }, { 1.0, 0.3, 0.3 } },	/* source in red (Red) */
	{ 2, { 41.222695, 63.911823, 37.695310 }, { 0.3, 1.3, 0.3 } },		/* Dest in green */
	{ 1, { 85.117353, -60.807580, -22.195118 }, { 0.3, 0.3, 1 } },		/* Cyan Source (Blue) */
	{ 2, { 61.661622, -38.164411, -18.090824 }, { 1.0, 0.3, 0.3 } },	/* CMYK destination (Red) */
	{ 0 }								/* End marker */
};

/* Optional marker rings for gamut mapping diagnosotic */
struct {
	int type;		/* 1 = src ring point, 2 = ignore, */
					/* 0 = end marker */
	double ppoint[3];	/* Location of a point on the plane in source space */
	double pnorm[3];	/* Plane normal direction in source space */
	int    nverts;		/* Number of points to make ring */
	double rad;			/* Relative Radius from neutral to source surface (0.0 - 1.0) */
	double scol[3];	/* Source RGB color */
	double dcol[3];	/* Destination RGB color */
} rings[] = {
	{ 0 },								/* End marker */
	{ 1,
		{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 },		/* plane point and normal */
		100, 1.0,									/* 20 vertexes at source radius */
		{ 0.0, 1.0, 0.0 },			/* Green source */
		{ 1.0, 0.0, 0.0 }			/* Red destination */
	},
	{ 1,
		{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 },		/* plane point and normal */
		100, 0.9,									/* 20 vertexes at source radius */
		{ 0.0, 1.0, 0.0 },			/* Green source */
		{ 1.0, 0.0, 0.0 }			/* Red destination */
	},
	{ 1,
		{ 60.0, 0.0, 0.0 }, { 1.0, 0.8, 0.0 },		/* plane point and normal */
		100, 0.8,									/* 20 vertexes at source radius */
		{ 0.0, 1.0, 0.0 },			/* Green source */
		{ 1.0, 0.0, 0.0 }			/* Red destination */
	},
	{ 0 }								/* End marker */
};

/* Degree to which the hue & saturation of the black point axes should be aligned: */
#define GREYBPHSMF 0.0

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#include "counters.h"
#include "icc.h"
#include "numlib.h"
#include "xicc.h"
#include "gamut.h"
#include "rspl.h"
#include "gammap.h"
#include "nearsmth.h"
#include "vrml.h"
#ifdef PLOT_LMAP
#include "plot.h"
#endif

/* Callback context for enhancing the saturation of the clut values */
typedef struct {
	gamut *dst;			/* Destination colorspace gamut */
	double wp[3], bp[3];/* Destination colorspace white and black points */
	double satenh;		/* Saturation engancement value */
} adjustsat;

/* Callback context for making clut relative to white and black points */
typedef struct {
	double mat[3][4];
} adjustwb;

static void inv_grey_func(void *pp, double *out, double *in);
static void adjust_wb_func(void *pp, double *out, double *in);
static void adjust_sat_func(void *pp, double *out, double *in);

#define XVRA 3.0	/* [3.0] Extra mapping vertex ratio over no. tri verts from gamut */

/* The smoothed near weighting control values. */
/* These weightings setup the detailed behaviour of the */
/* gamut mapping for the fully perceptual and saturation intents. */
/* They are ordered here by increasing priority. A -ve value is ignored */

/* Perceptual mapping weights, where smoothness and proportionality are important.. */
gammapweights pweights[] = {
	{
		gmm_default,	/* Non hue specific defaults */
		{				/* Cusp alignment control */
			{
				0.1,	/* Cusp luminance alignment weighting 0 = none, 1 = full */
				0.0,	/* Cusp chroma alignment weighting    0 = none, 1 = full */
				0.3		/* Cusp hue alignment weighting       0 = none, 1 = full */
			},
			2.0,		/* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
			1.00		/* Chroma expansion 1 = none */
		},
		{			/* Radial weighting (currently broken - need to fix) */
			0.0,	/* Radial error overall weight, 0 + */
			0.5,	/* Radial hue dominance vs l+c, 0 - 1 */
			0.5		/* Radial l dominance vs, c, 0 - 1 */
		},
		{			/* Weighting of absolute error of destination from source */
			1.0,	/* Absolute error overall weight */
			0.8,	/* Hue dominance vs l+c, 0 - 1 */

			0.8,	/* White l dominance vs, c, 0 - 1 */
			0.5,	/* Grey l dominance vs, c, 0 - 1 */
			0.97,	/* Black l dominance vs, c, 0 - 1 */

			0.4,	/* White l blend start radius, 0 - 1, at white = 0 */
			0.7,	/* Black l blend power, linear = 1.0, enhance < 1.0 */

			1.5,	/* L error extra power with size, none = 1.0 */
			10.0	/* L error extra xover threshold in DE */
		},
		{			/* Relative vector  smoothing */
			25.0, 35.0	/* Relative Smoothing radius L* H* */
		},
		{		/* Weighting of excessive compression error, which is */
				/* the src->dst vector length over the available dst depth. */
				/* The depth is half the distance to the intersection of the */
				/* vector to the other side of the gamut. (doesn't get triggered much ?) */
			10.0,		/* Compression depth weight */
			10.0		/* Expansion depth weight */
		},
		{
			0.0			/* Fine tuning expansion weight, 0 - 1 */
		}
	},
	{
		gmm_light_yellow,		/* Treat yellow differently, to get purer result. */
		{
			{
				0.9,	/* Cusp luminance alignment weighting 0 = none, 1 = full */
				0.8,	/* Cusp chroma alignment weighting    0 = none, 1 = full */
				0.7		/* Cusp hue alignment weighting       0 = none, 1 = full */
			},
			4.0,		/* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
			1.20		/* Chroma expansion 1 = none */
		},
		{			/* Radial weighting */
			-1.0,	/* Radial error overall weight, 0 + */
			-1.0,	/* Radial hue dominance vs l+c, 0 - 1 */
			-1.0	/* Radial l dominance vs, c, 0 - 1 */
		},
		{			/* Weighting of absolute error of destination from source */
			-1.0,	/* Absolute error overall weight */
			-1.0,	/* Hue dominance vs l+c, 0 - 1 */

			-1.0,	/* White l dominance vs, c, 0 - 1 */
			-1.0,	/* Grey l dominance vs, c, 0 - 1 */
			-1.0,	/* Black l dominance vs, c, 0 - 1 */

			-1.0,	/* White l threshold ratio to grey distance, 0 - 1 */
			-1.0,	/* Black l threshold ratio to grey distance, 0 - 1 */

			-1.0,	/* L error extra power, none = 1.0 */
			-1.0	/* L error xover threshold in DE */
		},
		{			/* Relative error preservation using smoothing */
			20.0, 10.0	/* Relative Smoothing radius L* H* */
		},
		{		/* Weighting of excessive compression error, which is */
				/* the src->dst vector length over the available dst depth. */
				/* The depth is half the distance to the intersection of the */
				/* vector to the other side of the gamut. (doesn't get triggered much ?) */
			-1.0,		/* Compression depth weight */
			-1.0		/* Expansion depth weight */
		},
		{
			0.5			/* Fine tuning expansion weight, 0 - 1 */
		}
	},
#ifdef NEVER
	{
		gmm_l_d_blue,		/* Increase maintaining hue importance for blue */
		{
			{
				-1.0,	/* Cusp luminance alignment weighting 0 = none, 1 = full */
				-1.0,	/* Cusp chroma alignment weighting    0 = none, 1 = full */
				 0.0	/* Cusp hue alignment weighting       0 = none, 1 = full */
			},
			-1.0,		/* 2.0 Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
			-1.0		/* Chroma expansion 1 = none */
		},
		{			/* Radial weighting */
			-1.0,	/* Radial error overall weight, 0 + */
			-1.0,	/* Radial hue dominance vs l+c, 0 - 1 */
			-1.0	/* Radial l dominance vs, c, 0 - 1 */
		},
		{			/* Weighting of absolute error of destination from source */
			-1.0,	/* Absolute error overall weight */
			 0.8,	/* Hue dominance vs l+c, 0 - 1 */

			-1.0,	/* White l dominance vs, c, 0 - 1 */
			-1.0,	/* Grey l dominance vs, c, 0 - 1 */
			-1.0,	/* Black l dominance vs, c, 0 - 1 */

			-1.0,	/* White l threshold ratio to grey distance, 0 - 1 */
			-1.0,	/* Black l threshold ratio to grey distance, 0 - 1 */

			-1.0,	/* L error extra power, none = 1.0 */
			-1.0	/* L error xover threshold in DE */
		},
		{			/* Relative error preservation using smoothing */
			-1.0, 15.0	/* Relative Smoothing radius L* H* */
		},
		{		/* Weighting of excessive compression error, which is */
				/* the src->dst vector length over the available dst depth. */
				/* The depth is half the distance to the intersection of the */
				/* vector to the other side of the gamut. (doesn't get triggered much ?) */
			-1.0,		/* Compression depth weight */
			-1.0		/* Expansion depth weight */
		},
		{
			-1.0		/* Fine tuning expansion weight, 0 - 1 */
		}
	},
#endif /* NEVER */
	{
		gmm_end,
	}
};
double psmooth = 4.0;		/* [5.0] Level of RSPL smoothing for perceptual, 1 = nominal */

/* Saturation mapping weights, where saturation has priority over smoothness */
gammapweights sweights[] = {
	{
		gmm_default,	/* Non hue specific defaults */
		{				/* Cusp alignment control */
			{
				0.6,	/* Cusp luminance alignment weighting 0 = none, 1 = full */
				0.5,	/* Cusp chroma alignment weighting    0 = none, 1 = full */
				0.6		/* Cusp hue alignment weighting       0 = none, 1 = full */
			},
			1.0,		/* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
			1.05		/* Chroma expansion 1 = none */
		},
		{			/* Radial weighting */
			0.0,	/* Radial error overall weight, 0 + */
			0.5,	/* Radial hue dominance vs l+c, 0 - 1 */
			0.5		/* Radial l dominance vs, c, 0 - 1 */
		},
		{			/* Weighting of absolute error of destination from source */
			1.0,	/* Absolute error overall weight */
			0.4,	/* Hue dominance vs l+c, 0 - 1 */

			0.6,	/* White l dominance vs, c, 0 - 1 */
			0.4,	/* Grey l dominance vs, c, 0 - 1 */
			0.6,	/* Black l dominance vs, c, 0 - 1 */

			0.5,	/* wl blend start radius, 0 - 1 */
			1.0,	/* bl blend power, linear = 1.0, enhance < 1.0 */

			1.0,	/* L error extra power with size, none = 1.0 */
			10.0	/* L error extra xover threshold in DE */
		},
		{			/* Relative vector  smoothing */
			20.0, 25.0	/* Relative Smoothing radius L* H* */
		},
		{		/* Weighting of excessive compression error, which is */
				/* the src->dst vector length over the available dst depth. */
				/* The depth is half the distance to the intersection of the */
				/* vector to the other side of the gamut. (doesn't get triggered much ?) */
			10.0,		/* Compression depth weight */
			10.0		/* Expansion depth weight */
		},
		{
			0.5			/* Fine tuning expansion weight, 0 - 1 */
		}
	},
	{
		gmm_light_yellow,		/* Treat yellow differently, to get purer result. */
		{
			{
				1.0,	/* Cusp luminance alignment weighting 0 = none, 1 = full */
				1.0,	/* Cusp chroma alignment weighting    0 = none, 1 = full */
				1.0		/* Cusp hue alignment weighting       0 = none, 1 = full */
			},
			1.0,		/* Alignment twist power, 0 = linear, 1 = curve, 2+ late curve */
			1.20		/* Chroma expansion 1 = none */
		},
		{			/* Radial weighting */
			-1.0,	/* Radial error overall weight, 0 + */
			-1.0,	/* Radial hue dominance vs l+c, 0 - 1 */
			-1.0	/* Radial l dominance vs, c, 0 - 1 */
		},
		{			/* Weighting of absolute error of destination from source */
			1.0,	/* Absolute error overall weight */
			0.3,	/* Hue dominance vs l+c, 0 - 1 */

			-1.0,	/* White l dominance vs, c, 0 - 1 */
			-1.0,	/* Grey l dominance vs, c, 0 - 1 */
			-1.0,	/* Black l dominance vs, c, 0 - 1 */

			-1.0,	/* White l threshold ratio to grey distance, 0 - 1 */
			-1.0,	/* Black l threshold ratio to grey distance, 0 - 1 */

			-1.0,	/* L error extra power, none = 1.0 */
			-1.0	/* L error xover threshold in DE */
		},
		{			/* Relative error preservation using smoothing */
			10.0, 15.0	/* Relative smoothing radius */
		},
		{		/* Weighting of excessive compression error, which is */
				/* the src->dst vector length over the available dst depth. */
				/* The depth is half the distance to the intersection of the */
				/* vector to the other side of the gamut. (doesn't get triggered much ?) */
			-1.0,		/* Compression depth weight */
			-1.0		/* Expansion depth weight */
		},
		{
			-1.0		/* Fine tuning expansion weight, 0 - 1 */
		}
	},
	{
		gmm_end
	}
};
double ssmooth = 2.0;		/* Level of RSPL smoothing for saturation */

/*
 * Notes:
 *       The "knee" shape produced by the rspl (regular spline) code
 *       is not what one would expect for expansion. It is not
 *       symetrical with compression, and is less "sharp". This
 *       is due to the rspl "smoothness" criteria being based on
 *       grid value difference rather than smoothness being measured,
 *       as curvature. This means that the spline gets "stiffer" as
 *       it increases in slope.
 *       Possibly rspl could be improved in this respect ???
 *       (Doesn't matter for L compression now, because rspl is
 *       being inverted for expansion).
 */

static void del_gammap(gammap *s);
static void domap(gammap *s, double *out, double *in);
static void dopartialmap1(gammap *s, double *out, double *in);
static void dopartialmap2(gammap *s, double *out, double *in);
static gamut *parttransgamut(gammap *s, gamut *src);
static void invdomap1(gammap *s, double *out, double *in);
#ifdef PLOT_GAMUTS
static void map_trans(void *cntx, double out[3], double in[3]);
#endif

/* Return a gammap to map from the input space to the output space */
/* Return NULL on error. */
gammap *new_gammap(
	int verb,			/* Verbose flag */
	gamut *sc_gam,		/* Source colorspace gamut */
	gamut *si_gam,		/* Source image gamut (NULL if none) */
	gamut *d_gam,		/* Destination colorspace gamut */
	icxGMappingIntent *gmi,	/* Gamut mapping specification */
	int src_kbp,		/* Use K only black point as src gamut black point */
	int dst_kbp,		/* Use K only black point as dst gamut black point */
	int dst_cmymap,		/* masks C = 1, M = 2, Y = 4 to force 100% cusp map */
	int rel_oride,		/* 0 = normal, 1 = clip like, 2 = max relative */
	int    mapres,		/* Gamut map resolution, typically 9 - 33 */
	double *mn,			/* If not NULL, set minimum mapping input range */
	double *mx,			/* for rspl grid. */
	char *diagname		/* If non-NULL, write a gamut mapping diagnostic WRL */
) {
	gammap *s;			/* This */
	gamut *scl_gam;		/* Source colorspace gamut with rotation and L mapping applied */
	gamut *sil_gam;		/* Source image gamut with rotation and L mapping applied */

	double s_cs_wp[3];	/* Source colorspace white point */
	double s_cs_bp[3];	/* Source colorspace black point */
	double s_ga_wp[3];	/* Source (image) gamut white point */
	double s_ga_bp[3];	/* Source (image) gamut black point */
	double d_cs_wp[3];	/* Destination colorspace white point */
	double d_cs_bp[3];	/* Destination colorspace black point */

	double sr_cs_wp[3];	/* Source rotated colorspace white point */
	double sr_cs_bp[3];	/* Source rotated colorspace black point */
	double sr_ga_wp[3];	/* Source rotated (image) gamut white point */
	double sr_ga_bp[3];	/* Source rotated (image) gamut black point */
	double dr_cs_wp[3];	/* Target (gmi->greymf aligned) white point */
	double dr_cs_bp[3];	/* Target (gmi->greymf aligned) black point */
	double dr_be_bp[3];	/* Bend at start in source neutral axis direction */
						/* Target black point (Same as dr_cs_bp[] otherwise) */

	double sl_cs_wp[3];	/* Source rotated and L mapped colorspace white point */
	double sl_cs_bp[3];	/* Source rotated and L mapped colorspace black point */

	double s_mt_wp[3];	/* Overall source mapping target white point (used for finetune) */
	double s_mt_bp[3];	/* Overall source mapping target black point (used for finetune) */
	double d_mt_wp[3];	/* Overall destination mapping white point (used for finetune) */
	double d_mt_bp[3];	/* Overall destination mapping black point (used for finetune) */

	int defrgrid = 6;	/* mapping range surface default anchor point resolution */
	int nres = 512;		/* Neutral axis resolution */
	cow lpnts[10];		/* Mapping points to create grey axis map */
	int revrspl = 0;	/* Reverse grey axis rspl construction */
	int ngreyp = 0;		/* Number of grey axis mapping points */
	int ngamp = 0;		/* Number of gamut mapping points */
	double xvra = XVRA;	/* Extra ss vertex ratio to src gamut vertex count */
	int j;

#if defined(PLOT_LMAP) || defined(PLOT_GAMUTS) || defined(PLOT_3DKNEES)
# pragma message("################ A gammap.c PLOT is #defined #########################")
#endif

	if (verb) {
		xicc_dump_gmi(gmi);
		printf("Gamut map resolution: %d\n",mapres);
		if (si_gam != NULL)
			printf("Image gamut supplied\n");
	}

	/* Allocate the object */
	if ((s = (gammap *)calloc(1, sizeof(gammap))) == NULL)
		error("gammap: calloc failed on gammap object");

	/* Setup methods */
	s->del = del_gammap;
	s->domap = domap;
	s->invdomap1 = invdomap1;

	/* Now create everything */

	/* Grab the white and black points */
	if (src_kbp) {
		// ~~99 Hmm. Shouldn't this be colorspace rather than gamut ????
		if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s_cs_wp, NULL, s_cs_bp)) {
//		if (sc_gam->getwb(sc_gam, s_cs_wp, NULL, s_cs_bp, NULL, NULL, NULL))
			fprintf(stderr,"gamut map: Unable to read source colorspace white and black points\n");
			free(s);
			return NULL;
		}
	} else {
		if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s_cs_wp, s_cs_bp, NULL)) {
//		if (sc_gam->getwb(sc_gam, s_cs_wp, s_cs_bp, NULL, NULL, NULL, NULL))
			fprintf(stderr,"gamut map: Unable to read source colorspace white and black points\n");
			free(s);
			return NULL;
		}
	}

	/* If source space is source gamut */
	if (si_gam == NULL) {
		si_gam = sc_gam;
		for (j = 0; j < 3; j++) {
			s_ga_wp[j] = s_cs_wp[j];
			s_ga_bp[j] = s_cs_bp[j];
		}

	/* Else have explicit sourcegamut */
	} else {

		if (src_kbp) {
			if (si_gam->getwb(si_gam, NULL, NULL, NULL, s_ga_wp, NULL, s_ga_bp)) {
				fprintf(stderr,"gamut map: Unable to read source gamut white and black points\n");
				free(s);
				return NULL;
			}
		} else {
			if (si_gam->getwb(si_gam, NULL, NULL, NULL, s_ga_wp, s_ga_bp, NULL)) {
				fprintf(stderr,"gamut map: Unable to read source gamut white and black points\n");
				free(s);
				return NULL;
			}
		}

		/* Guard against silliness. Image must be within colorspace */
		if (s_ga_wp[0] > s_cs_wp[0]) {
			int j;
			double t;
#ifdef VERBOSE
			if (verb)
				printf("Fixing wayward image white point\n");
#endif
			t = (s_cs_wp[0] - s_ga_bp[0])/(s_ga_wp[0] - s_ga_bp[0]);
			for (j = 0; j < 3; j++)
				s_ga_wp[j] = s_ga_bp[j] + t * (s_ga_wp[j] - s_ga_bp[j]);

		}
		if (s_ga_bp[0] < s_cs_bp[0]) {
			int j;
			double t;
#ifdef VERBOSE
			if (verb)
				printf("Fixing wayward image black point\n");
#endif
			t = (s_cs_bp[0] - s_ga_wp[0])/(s_ga_bp[0] - s_ga_wp[0]);
			for (j = 0; j < 3; j++)
				s_ga_bp[j] = s_ga_wp[j] + t * (s_ga_bp[j] - s_ga_wp[j]);
		}
	}

	if (dst_kbp) {
		if (d_gam->getwb(d_gam, NULL, NULL, NULL, d_cs_wp, NULL, d_cs_bp)) {
			fprintf(stderr,"gamut map: Unable to read destination white and black points\n");
			free(s);
			return NULL;
		}
	} else {
		if (d_gam->getwb(d_gam, NULL, NULL, NULL, d_cs_wp, d_cs_bp, NULL)) {
			fprintf(stderr,"gamut map: Unable to read destination white and black points\n");
			free(s);
			return NULL;
		}
	}

#ifdef VERBOSE
	if (verb) {
		if (src_kbp)
			printf("Using Src K only black point\n");

		if (dst_kbp)
			printf("Using Dst K only black point\n");

		printf("Src colorspace white/black are %f %f %f, %f %f %f\n",
		s_cs_wp[0], s_cs_wp[1], s_cs_wp[2], s_cs_bp[0], s_cs_bp[1], s_cs_bp[2]);
	
		printf("Src gamut white/black are      %f %f %f, %f %f %f\n",
		s_ga_wp[0], s_ga_wp[1], s_ga_wp[2], s_ga_bp[0], s_ga_bp[1], s_ga_bp[2]);
	
		printf("Dst colorspace white/black are %f %f %f, %f %f %f\n",
		d_cs_wp[0], d_cs_wp[1], d_cs_wp[2], d_cs_bp[0], d_cs_bp[1], d_cs_bp[2]);
	}
#endif /* VERBOSE */

	/* ------------------------------------ */
	/* Figure out the destination grey axis alignment */
	/* This is all done using colorspace white & black points */
	{
		double t, svl, dvl;
		double wrot[3][3];			/* Rotation about 0,0,0 to match white points */
		double sswp[3], ssbp[3];	/* Temporary source white & black points */
		double fawp[3], fabp[3];	/* Fully adapted destination white & black */
		double hawp[3], habp[3];	/* Half (full white, not black) adapted destination w & b */

		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - */
		/* The first task is to decide what our target destination */
		/* white and black points are going to be. */

		/* Figure out what our initial target destination white point is going to be: */

		/* Compute source white and black points with same L value as the destination */
		t = (d_cs_wp[0] - s_cs_bp[0])/(s_cs_wp[0] - s_cs_bp[0]);
		for (j = 0; j < 3; j++)
			sswp[j] = s_cs_bp[j] + t * (s_cs_wp[j] - s_cs_bp[j]);

		t = (d_cs_bp[0] - s_cs_wp[0])/(s_cs_bp[0] - s_cs_wp[0]);
		for (j = 0; j < 3; j++)
			ssbp[j] = s_cs_wp[j] + t * (s_cs_bp[j] - s_cs_wp[j]);

		/* The raw grey axis alignment target is a blend between the */
		/* source colorspace (NOT gamut) and the destination */
		/* colorspace. */

		for (j = 0; j < 3; j++) {
			dr_cs_wp[j] = gmi->greymf * d_cs_wp[j] + (1.0 - gmi->greymf) * sswp[j];
			dr_cs_bp[j] = gmi->greymf * d_cs_bp[j] + (1.0 - gmi->greymf) * ssbp[j];
		}

#ifdef VERBOSE
		if (verb) {
			printf("Target (blended) dst wp/bp   = %f %f %f, %f %f %f\n",
				dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
		}
#endif /* VERBOSE */

		/* Compute full adaptation target destinations */
		for (j = 0; j < 3; j++) {
			fawp[j] = dr_cs_wp[j];			/* White fully adapted */
			fabp[j] = dr_cs_bp[j];			/* Black fully adapted */
		}

		/* Clip the target grey axis to the destination gamut */
		if (d_gam->vector_isect(d_gam, fabp, fawp, fabp, fawp, NULL, NULL, NULL, NULL) == 0)
			error("gamut: vector_isect failed!");

		/* To work around the problem that vector_isect() is not entirely accurate, */
		/* special case the situation where gmi->greymf == 1.0 */
		if (gmi->greymf > 0.99) {
			for (j = 0; j < 3; j++) {
				fawp[j] = d_cs_wp[j];
				fabp[j] = d_cs_bp[j];
			}
		}

		/* If dst_kbp is set, then clipping to the dest gamut doesn't do what we want, */
		/* since it extends the black to a full composite black point. */
		/* A "K only" gamut is hard to define, so do a hack: */
		/* scale fabp[] towards fawp[] so that it has the same L as */
		/* the destination K only black point. */
		if (dst_kbp && fabp[0] < d_cs_bp[0]) {
			t = (d_cs_bp[0] - fawp[0])/(fabp[0] - fawp[0]);

			for (j = 0; j < 3; j++)
				fabp[j] = fawp[j] + t * (fabp[j] - fawp[j]);
		}

		/* Compute half adapted (full white, not black) target destinations */
		for (j = 0; j < 3; j++)
			hawp[j] = dr_cs_wp[j];			/* White fully adapted */

		/* Compute the rotation matrix that maps the source white point */
		/* onto the target white point. */
		icmRotMat(wrot, sswp, dr_cs_wp);

		/* Compute the target black point as the rotated source black point */ 
		icmMulBy3x3(habp, wrot, s_cs_bp);
		
		/* Now intersect the target white and black points with the destination */
		/* colorspace gamut to arrive at the best possible in gamut values for */
		/* the target white and black points. */
		if (d_gam->vector_isect(d_gam, habp, hawp, habp, hawp, NULL, NULL, NULL, NULL) == 0)
			error("gamut: vector_isect failed!");

		/* To work around the problem that vector_isect() is not entirely accurate, */
		/* special case the situation where gmi->greymf == 1.0 */
		if (gmi->greymf > 0.99) {
			for (j = 0; j < 3; j++) {
				hawp[j] = d_cs_wp[j];
			}
		}

		/* If dst_kbp is set, then clipping to the dest gamut doesn't do what we want, */
		/* since it extends the black to a full composite black point. */
		/* A "K only" gamut is hard to define, so do a hack: */
		/* scale habp[] towards hawp[] so that it has the same L as */
		/* the destination K only black point. */
		if (dst_kbp && habp[0] < d_cs_bp[0]) {
			t = (d_cs_bp[0] - hawp[0])/(habp[0] - hawp[0]);

			for (j = 0; j < 3; j++)
				habp[j] = hawp[j] + t * (habp[j] - hawp[j]);
		}

		/* Now decide the detail of the white and black alignment */
		if (gmi->bph == gmm_BPadpt || gmi->bph == gmm_bendBP) {
														/* Adapt to destination white and black */

			/* Use the fully adapted white and black points */
			for (j = 0; j < 3; j++) {
				dr_cs_wp[j] = fawp[j];
				dr_cs_bp[j] = fabp[j];
			}

			if (gmi->bph == gmm_bendBP) {

				/* Extend the half adapted (white = dst, black = src) black point */
				/* to the same L as the target (dst), to use as the initial (bent) black point */
				t = (dr_cs_bp[0] - dr_cs_wp[0])/(habp[0] - dr_cs_wp[0]);
				for (j = 0; j < 3; j++)
					dr_be_bp[j] = dr_cs_wp[j] + t * (habp[j] - dr_cs_wp[j]);

			} else {

				/* Set bent black point target to be the same as our actual */
				/* black point target, so that the "bend" code does nothing. */ 
				for (j = 0; j < 3; j++)
					dr_be_bp[j] = dr_cs_bp[j];
			}

		} else {					/* Adapt to destination white but not black */

			/* Use the half adapted (white = dst, black = src) white and black points */
			for (j = 0; j < 3; j++) {
				dr_cs_wp[j] = hawp[j];
				dr_cs_bp[j] = habp[j];
			}

#ifdef VERBOSE
			if (verb) {
				printf("Adapted target wp/bp         = %f %f %f, %f %f %f\n",
					dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
			}
#endif
			if (gmi->bph == gmm_clipBP) {

				/* Extend the target black point to accomodate the */
				/* bent or clipped destination space L* range */
				if (fabp[0] < dr_cs_bp[0]) {
					t = (fabp[0] - dr_cs_wp[0])/(dr_cs_bp[0] - dr_cs_wp[0]);
					for (j = 0; j < 3; j++)
						dr_cs_bp[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - d_cs_wp[j]);
				}
			}
		
			/* Set the bent black point target to be the same as our actual */
			/* black point target, so that the "bend" code does nothing. */ 
			for (j = 0; j < 3; j++)
				dr_be_bp[j] = dr_cs_bp[j];
		}

#ifdef VERBOSE
		if (verb) {
			printf("Adapted & extended tgt wp/bp = %f %f %f, %f %f %f\n",
				dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
		}
#endif /* VERBOSE */

		/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
		/* Now we need to figure out what origin alignment is needed, as well as */
		/* making sure the vectors are the same length to avoid rescaling. */
		/* (Scaling is meant to be done with the L curve though.) */

		/* Create temporary source white point that has the same L as the */
		/* target destination white point. */
		t = (dr_cs_wp[0] - s_cs_bp[0])/(s_cs_wp[0] - s_cs_bp[0]);
		for (j = 0; j < 3; j++)
			sswp[j] = s_cs_bp[j] + t * (s_cs_wp[j] - s_cs_bp[j]);

		/* Create temporary source black point that will form a vector to the src white */
		/* point with same length as the target destination black->white vector. */
		for (svl = dvl = 0.0, j = 0; j < 3; j++) {
			double tt;
			tt = sswp[j] - s_cs_bp[j]; 
			svl += tt * tt;
			tt = dr_cs_wp[j] - dr_cs_bp[j];
			dvl += tt * tt;
		}
		svl = sqrt(svl);
		dvl = sqrt(dvl);
		for (j = 0; j < 3; j++)
			ssbp[j] = sswp[j] + dvl/svl * (s_cs_bp[j] - sswp[j]); 

#ifdef VERBOSE
		if (verb) {
			printf("Rotate matrix src wp/bp      = %f %f %f, %f %f %f\n",
				sswp[0], sswp[1], sswp[2], ssbp[0], ssbp[1], ssbp[2]);
			printf("Rotate matrix dst wp/bp      = %f %f %f, %f %f %f\n",
				dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
		}
#endif /* VERBOSE */

		/* Now create the general rotation and translation to map the source grey */
		/* axis to our destination grey axis. */
		icmVecRotMat(s->grot, sswp, ssbp, dr_cs_wp, dr_cs_bp);

		/* And create the inverse as well: */
		icmVecRotMat(s->igrot, dr_cs_wp, dr_cs_bp, sswp, ssbp);

		/* Create rotated versions of source colorspace & image white and */
		/* black points for use from now on, given that rotation will */
		/* be applied first to all source points. */
		icmMul3By3x4(sr_cs_wp, s->grot, s_cs_wp);
		icmMul3By3x4(sr_cs_bp, s->grot, s_cs_bp);
		icmMul3By3x4(sr_ga_wp, s->grot, s_ga_wp);
		icmMul3By3x4(sr_ga_bp, s->grot, s_ga_bp);

#ifdef VERBOSE
		if (verb) {
			printf("Bend target                                              bp = %f %f %f\n",
		        dr_be_bp[0], dr_be_bp[1], dr_be_bp[2]);
			printf("Rotated source grey axis wp/bp %f %f %f, %f %f %f\n",
				sr_cs_wp[0], sr_cs_wp[1], sr_cs_wp[2], sr_cs_bp[0], sr_cs_bp[1], sr_cs_bp[2]);
			printf("Rotated gamut grey axis wp/bp  %f %f %f, %f %f %f\n",
				sr_ga_wp[0], sr_ga_wp[1], sr_ga_wp[2], sr_ga_bp[0], sr_ga_bp[1], sr_ga_bp[2]);
			printf("Destination axis target wp/bp  %f %f %f, %f %f %f\n",
				dr_cs_wp[0], dr_cs_wp[1], dr_cs_wp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);
		}
#endif
	}

#ifdef NEVER
sr_cs_wp[0] = 100.0;
sr_cs_bp[0] = 30.0;
dr_cs_wp[0] = 80.0;
dr_cs_bp[0] = 10.0;
glumknf	= 1.0;
#endif /* NEVER */

	/* Create the mapping points needed to build the 1D L mapping rspl. */
	/* If we have a gamut (ie. image) range that is smaller than the */
	/* L range of the colorspace, then use its white and black L values */
	/* as the source to be compressed to the destination L range. */
	/* We expand only a colorspace range, not a gamut/image range. */
	{
		double swL, dwL;			/* Source and destination white point L */
		double sbL, dbL;			/* Source and destination black point L */
		int j;
		double t;

		/* Setup white point mapping */
		if (sr_cs_wp[0] <= dr_cs_wp[0]) {	/* Needs possible expansion */
			swL = sr_cs_wp[0];
			dwL = gmi->glumwexf * dr_cs_wp[0] + (1.0 - gmi->glumwexf) * sr_cs_wp[0];

		} else {
			if (sr_ga_wp[0] > dr_cs_wp[0]) {	/* Gamut or colorspace needs compression */
				
				swL = (1.0 - gmi->glumwcpf) * dr_cs_wp[0] + gmi->glumwcpf * sr_ga_wp[0];
				dwL = dr_cs_wp[0];

			} else {	/* Neither needed */
				swL = sr_ga_wp[0];
				dwL = sr_ga_wp[0];
			}
		}

		/* Setup black point mapping */
		if (sr_cs_bp[0] >= dr_cs_bp[0]) {	/* Needs possible expansion */
			sbL = sr_cs_bp[0];
			dbL = gmi->glumbexf * dr_cs_bp[0] + (1.0 - gmi->glumbexf) * sr_cs_bp[0];

		} else {
			if (sr_ga_bp[0] < dr_cs_bp[0]) {	/* Gamut or colorspace needs compression */
				
				sbL = (1.0 - gmi->glumbcpf) * dr_cs_bp[0] + gmi->glumbcpf * sr_ga_bp[0];
				dbL = dr_cs_bp[0];

			} else {	/* Neither needed */
				sbL = sr_ga_bp[0];
				dbL = sr_ga_bp[0];
			}
		}

#ifdef PLOT_LMAP
		printf("sbL = %f, swL = %f\n",sbL,swL);
		printf("dbL = %f, dwL = %f\n",dbL,dwL);
#endif

		/* Remember our source and destination mapping targets */
		/* so that we can use them for fine tuning later. */

		/* We scale the source and target white and black */
		/* points to match the L values of the source and destination */
		/* L curve mapping, as this is how we have chosen the */
		/* white and black point mapping for the link. */
		/* Put them back in pre-rotated space, so that we can */
		/* check the overall transform of the white and black points. */
		t = (swL - sr_cs_bp[0])/(sr_cs_wp[0] - sr_cs_bp[0]);
		for (j = 0; j < 3; j++)
			s_mt_wp[j] = sr_cs_bp[j] + t * (sr_cs_wp[j] - sr_cs_bp[j]);
		icmMul3By3x4(s_mt_wp, s->igrot, s_mt_wp);

		t = (sbL - sr_cs_wp[0])/(sr_cs_bp[0] - sr_cs_wp[0]);
		for (j = 0; j < 3; j++)
			s_mt_bp[j] = sr_cs_wp[j] + t * (sr_cs_bp[j] - sr_cs_wp[j]);
//printf("~1 check black point rotated = %f %f %f\n",s_mt_bp[0],s_mt_bp[1],s_mt_bp[2]);
		icmMul3By3x4(s_mt_bp, s->igrot, s_mt_bp);
//printf("~1 check black point prerotated = %f %f %f\n",s_mt_bp[0],s_mt_bp[1],s_mt_bp[2]);

		t = (dwL - dr_cs_bp[0])/(dr_cs_wp[0] - dr_cs_bp[0]);
		for (j = 0; j < 3; j++)
			d_mt_wp[j] = dr_cs_bp[j] + t * (dr_cs_wp[j] - dr_cs_bp[j]);

		for (j = 0; j < 3; j++)
			d_mt_bp[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - dr_cs_wp[j]);

		/* To ensure symetry between compression and expansion, always create RSPL for */
		/* overall compression and its inverse, and then swap grey and igrey rspl to compensate. */
		/* We swap the source and desitination white and black points to achieve this. */
		/* Note that we could still have expansion at one end or the other, depending */
		/* on the center point location, so we need to allow for this in the rspl setup. */
		if ((dwL - dbL) > (swL - sbL)) {
			double tt;
			tt = swL; swL = dwL; dwL = tt;
			tt = sbL; sbL = dbL; dbL = tt;
			revrspl = 1;
		}

		/* White point end */
		lpnts[ngreyp].p[0] = swL;
		lpnts[ngreyp].v[0] = dwL;
		lpnts[ngreyp++].w  = 10.0;		/* Must go through here */

		/* Black point end */
		lpnts[ngreyp].p[0] = sbL;
		lpnts[ngreyp].v[0] = dbL;
		lpnts[ngreyp++].w  = 10.0;		/* Must go through here */

#ifdef USE_GLUMKNF
		if (gmi->glumknf < 0.05)
#endif /* USE_GLUMKNF */
		{			/* make sure curve is firmly anchored */
			lpnts[ngreyp].p[0] = 0.3 * lpnts[ngreyp-1].p[0] + 0.7 * lpnts[ngreyp-2].p[0];
			lpnts[ngreyp].v[0] = 0.3 * lpnts[ngreyp-1].v[0] + 0.7 * lpnts[ngreyp-2].v[0];
			lpnts[ngreyp++].w  = 1.0;	

			lpnts[ngreyp].p[0] = 0.7 * lpnts[ngreyp-2].p[0] + 0.3 * lpnts[ngreyp-3].p[0];
			lpnts[ngreyp].v[0] = 0.7 * lpnts[ngreyp-2].v[0] + 0.3 * lpnts[ngreyp-3].v[0];
			lpnts[ngreyp++].w  = 1.0;	
		}
#ifdef USE_GLUMKNF
		else {		/* There is at least some weight in knee points */
			double cppos = 0.50;		/* Center point ratio between black and white */
			double cpll, cplv;			/* Center point location and value */
			double kpwpos = 0.30;		/* White knee point location prop. towards center */
			double kpbpos = 0.20;		/* Black knee point location prop. towards center */
			double kwl, kbl, kwv, kbv;	/* Knee point values and locations */
			double kwx, kbx;			/* Knee point extra  */
			
#ifdef PLOT_LMAP
			printf("%ssbL = %f, swL = %f\n", revrspl ? "(swapped) ": "", sbL,swL);
			printf("%sdbL = %f, dwL = %f\n", revrspl ? "(swapped) ": "", dbL,dwL);
#endif

			/* Center point location */
			cpll = cppos * (swL - sbL) + sbL;
			// ~~?? would this be better if the output
			// was scaled by dwL/swL ?
			cplv = cppos * (swL - sbL) + sbL;
#ifdef PLOT_LMAP
			printf("cpll = %f, cplv = %f\n",cpll, cplv);
#endif

#ifdef NEVER	/* Don't use a center point */
			lpnts[ngreyp].p[0] = cpll;
			lpnts[ngreyp].v[0] = cplv;
			lpnts[ngreyp++].w  = 5.0;	
#endif
	
//printf("~1 black half diff = %f\n",dbL - sbL); 
//printf("~1 white half diff = %f\n",dwL - swL); 

			/* Knee point locations */
			kwl = kpwpos * (cplv - swL) + swL;
			kbl = kpbpos * (cplv - sbL) + sbL;
			
			/* Extra compression for white and black knees */
			// ~~ ie move knee point level beyond 45 degree line
			// ~~ weigting of black point and white point differences
			kwx = 0.6 * (dbL - sbL) + 1.0 * (swL - dwL);
			kbx = 1.0 * (dbL - sbL) + 0.6 * (swL - dwL);

//kwx = 0.0;
//kbx = 0.0;
//glumknf = 0.0;

			/* Knee point values */
			kwv = (dwL + kwx - cplv) * (kwl - cplv)/(swL - cplv) + cplv;
			if (kwv > dwL)		/* Sanity check */
				kwv = dwL;

			kbv = (dbL - kbx - cplv) * (kbl - cplv)/(sbL - cplv) + cplv;
			if (kbv < dbL)		/* Sanity check */
				kbv = dbL;


#ifdef PLOT_LMAP
			printf("using kbl = %f, kbv = %f\n",kbl, kbv);
			printf("using kwl = %f, kwv = %f\n",kwl, kwv);
#endif

			/* Emphasise points to cause white "knee" curve */
			lpnts[ngreyp].p[0] = kwl;
			lpnts[ngreyp].v[0] = kwv;
			lpnts[ngreyp++].w  = gmi->glumknf * gmi->glumknf;	
		
			/* Emphasise points to cause black "knee" curve */
			lpnts[ngreyp].p[0] = kbl;
			lpnts[ngreyp].v[0] = kbv;
			lpnts[ngreyp++].w  = 1.5 * gmi->glumknf * 1.5 * gmi->glumknf;	
		}
#endif /* USE_GLUMKNF */
	}

	/* We now create the 1D rspl L map, that compresses or expands the luminence */
	/* range, independent of grey axis alignment, or gamut compression. */
	/* Because the rspl isn't symetrical when we swap X & Y, and we would */
	/* like a conversion from profile A to B to be the inverse of profile B to A */
	/* (as much as possible), we contrive here to always create a compression */
	/* RSPL, and create an inverse for it, and swap the two of them so that */
	/* the transform is correct and has an accurate inverse available. */
	{
		datai il, ih;
		datao ol, oh;
		double avgdev[MXDO];
		int gres = 256;

		/* Create a 1D rspl, that is used to */
		/* form the overall L compression mapping. */
		if ((s->grey = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL)	/* Allocate 1D -> 1D */
			error("gamut: grey new_rspl failed");
	
		il[0] = -1.0;		/* Set possible input range */
		ih[0] = 101.0;
		ol[0] = 0.0;		/* Set normalisation output range */
		oh[0] = 100.0;

#ifdef NEVER		/* Dump out the L mapping points */
		{
			int i;
			printf("1D rspl L mapping points:\n");
			for (i = 0; i < ngreyp; i++)
				printf("%d %f -> %f (w %f)\n",i,lpnts[i].p[0],lpnts[i].v[0],lpnts[i].w);
		}
#endif
		/* Create spline from the data points, with appropriate smoothness. */
		avgdev[0] = GAMMAP_RSPLAVGDEV;
		if (s->grey->fit_rspl_w(s->grey, GAMMAP_RSPLFLAGS, lpnts, ngreyp, il, ih, &gres, ol, oh, 5.0, avgdev, NULL)) {
			fprintf(stderr,"Warning: Grey axis mapping is non-monotonic - may not be very smooth ?\n");
		}

		/* Create an inverse mapping too, for reverse gamut and/or expansion. */
		il[0] = -1.0;		/* Set possible input range */
		ih[0] = 101.0;
		ol[0] = 0.0;		/* Set normalisation output range */
		oh[0] = 100.0;

		if ((s->igrey = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL)	/* Allocate 1D -> 1D */
			error("gamut: igrey new_rspl failed");
			
		/* Create it from inverse lookups of s->grey */
		s->igrey->set_rspl(s->igrey, 0, (void *)s->grey, inv_grey_func, il, ih, &gres, ol, oh);

		if (revrspl) {		/* Swap to compensate for swapping of white and black points */
			rspl *tt = s->grey;
			s->grey = s->igrey;
			s->igrey = tt;
		}
	}

#ifdef PLOT_LMAP
	{	/* Plot the 1D mapping */
		double xx[XRES];
		double y1[XRES];
		int i;

		for (i = 0; i < XRES; i++) {
			double x;
			co cp;		/* Conversion point */
			x = sr_cs_bp[0] + (i/(double)(XRES-1)) * (sr_cs_wp[0] - sr_cs_bp[0]);
			xx[i] = x;
			cp.p[0] = x;
			s->grey->interp(s->grey, &cp);
			y1[i] = cp.v[0];
		}
		do_plot(xx,y1,NULL,NULL,XRES);
	}
#endif /* PLOT_LMAP */

	{
		/* We want to rotate and then map L independently of everything else, */
		/* so transform source cs & image gamuts through the rotation and L mapping */
		/* before we create the surface 3D mapping from them */

		/* Create L mapped versions of rotated src colorspace white/black points */
		dopartialmap1(s, sl_cs_wp, s_cs_wp);
		dopartialmap1(s, sl_cs_bp, s_cs_bp);

#ifdef VERBOSE
		if (verb) {
			printf("Mapped source grey axis wp/bp  %f %f %f, %f %f %f\n",
				sl_cs_wp[0], sl_cs_wp[1], sl_cs_wp[2], sl_cs_bp[0], sl_cs_bp[1], sl_cs_bp[2]);
		}
#endif

		if ((scl_gam = parttransgamut(s, sc_gam)) == NULL) {
			fprintf(stderr,"gamut map: parttransgamut failed\n");
			free(s);
			return NULL;
		}

		if (sc_gam == si_gam)
			sil_gam = scl_gam;

		else {
			if ((sil_gam = parttransgamut(s, si_gam)) == NULL) {
				fprintf(stderr,"gamut map: parttransgamut failed\n");
				free(s);
				return NULL;
			}
		}
	}

	/* Create all the 3D->3D gamut mapping points and 3D rspl, */
	/* if there is any compression or expansion to do. */
	if (gmi->gamcpf > 1e-6 || gmi->gamexf > 1e-6) {
		cow *gpnts = NULL;	/* Mapping points to create gamut mapping */
		int max_gpnts;
		int nspts;		/* Number of source gamut surface points */
		int rgridpts;	/* Number of range surface grid points */
		int i, j;
		datai il, ih;
		datao ol, oh;
		int gres[MXDI];
		double avgdev[MXDO];
		nearsmth *nsm = NULL;	/* Returned list of near smooth points */
		int nnsm;				/* Number of near smoothed points */
		double brad = 0.0;		/* Black bend radius */
		gammapweights xpweights[14], xsweights[14];	/* Explicit perceptial and sat. weights */
		gammapweights xwh[14]; 	/* Structure holding blended weights */
		double smooth = 1.0;	/* Level of 3D RSPL smoothing, blend of psmooth and ssmooth */
		vrml *wrl = NULL;		/* Gamut mapping illustration (hulls + guide vectors) */
		cgats *locus = NULL;	/* Diagnostic locus to plot in wrl, NULL if none */

#ifdef PLOT_3DKNEES
typedef struct {
	double v0[3], v1[3];
} p3dk_lpoint;
		p3dk_lpoint *p3dk_locus;
		int p3dk_ix = 0;
#endif /* PLOT_3DKNEES */

		/* Get the maximum number of points that will be created */
		nspts = near_smooth_np(scl_gam, sil_gam, d_gam, xvra);
		
		rgridpts = 0;
#ifdef USE_BOUND
		if (defrgrid >= 2) {
			rgridpts = defrgrid * defrgrid * defrgrid
			         - (defrgrid -2) * (defrgrid -2) * (defrgrid -2);
		}
#endif

		max_gpnts = nres + 3 * nspts + rgridpts;
		if ((gpnts = (cow *)malloc(max_gpnts * sizeof(cow))) == NULL) { 
			fprintf(stderr,"gamut map: Malloc of mapping setup points failed\n");
			s->grey->del(s->grey);
			s->igrey->del(s->igrey);
			if (sil_gam != scl_gam)
				sil_gam->del(sil_gam);
			scl_gam->del(scl_gam);
			free(s);
			return NULL;
		}

#ifdef PLOT_3DKNEES
		if ((p3dk_locus = (p3dk_lpoint *)malloc((2 * nspts) * sizeof(p3dk_lpoint))) == NULL)
			error("gamut: Diagnostic array p3dk_locus malloc failed");
#endif /* PLOT_3DKNEES */

		/* ------------------------------------------- */
		/* Finish off the grey axis mapping by creating the */
		/* grey axis 3D->3D mapping points */
		/* We use 4 times the grid density, and create */
		/* points that span the source colorspace (this may exceed) */
		/* the source image gamut, and map to points outside the */
		/* destination gamut) */

		/* See how much to bend the black - compute the color difference */
		/* We start out in the direction of dr_be_bp at white, and at */
		/* the end we bend towards the overall bp dr_cs_bp */
		/* (brad will be 0 for non gmm_bendBP because dr_be_bp dr_cs_bp */
		for (brad = 0.0, i = 1; i < 3; i++) {
			double tt = dr_be_bp[i] - dr_cs_bp[i];
			brad += tt * tt;
		}
		brad = sqrt(brad);

//printf("~1 brad = %f, Bend target = %f %f %f, straight = %f %f %f\n",
//brad, dr_be_bp[0], dr_be_bp[1], dr_be_bp[2], dr_cs_bp[0], dr_cs_bp[1], dr_cs_bp[2]);

#ifdef USE_GREYMAP
		for (i = 0; i < nres; i++) {	/* From black to white */
			double t;
			double bv[3];		/* Bent (initial) destination value */
			double dv[3];		/* Straight (final) destination value */
			double wt = 1.0;	/* Default grey axis point weighting */

			/* Create source grey axis point */
			t = i/(nres - 1.0);

			/* Cover L = 0.0 to 100.0 */
			t = ((100.0 * t) - sl_cs_bp[0])/(sl_cs_wp[0] - sl_cs_bp[0]);
			for (j = 0; j < 3; j++)
				gpnts[ngamp].p[j] = sl_cs_bp[j] + t * (sl_cs_wp[j] - sl_cs_bp[j]);

			/* L values are the same, as they have been mapped prior to 3D */
			gpnts[ngamp].v[0] = gpnts[ngamp].p[0];

			/* Figure destination point on initial bent grey axis */
			t = (gpnts[ngamp].v[0] - dr_cs_wp[0])/(dr_be_bp[0] - dr_cs_wp[0]);
			for (j = 0; j < 3; j++)
				bv[j] = dr_cs_wp[j] + t * (dr_be_bp[j] - dr_cs_wp[j]);
//printf("~1 t = %f, bent dest     %f %f %f\n",t, bv[0], bv[1],bv[2]);
			
			/* Figure destination point on final straight grey axis */
			t = (gpnts[ngamp].v[0] - dr_cs_wp[0])/(dr_cs_bp[0] - dr_cs_wp[0]);
			for (j = 0; j < 3; j++)
				dv[j] = dr_cs_wp[j] + t * (dr_cs_bp[j] - dr_cs_wp[j]);
//printf("~1 t = %f, straight dest %f %f %f\n",t, dv[0], dv[1],dv[2]);
			
			/* Figure out a blend value between the bent value */
			/* and the straight value, so that it curves smoothly from */
			/* one to the other. */
			if (brad > 0.001) {
				double ty;
				t = ((dr_cs_bp[0] + brad)  - gpnts[ngamp].v[0])/brad;
				if (t < 0.0)
					t = 0.0;
				else if (t > 1.0)
					t = 1.0;
				/* Make it a spline ? */
				t = t * t * (3.0 - 2.0 * t);
				ty = t * t * (3.0 - 2.0 * t);	/* spline blend value */
				t = (1.0 - t) * ty + t * t;		/* spline at t == 0, linear at t == 1 */

				wt *= (1.0 + t * brad);	/* Increase weigting with the bend */

			} else {
				t = 0.0;	/* stick to straight, it will be close anyway. */
			}

			for (j = 0; j < 3; j++)		/* full straight when t == 1 */
				gpnts[ngamp].v[j] = t * dv[j] + (1.0 - t) * bv[j];
			gpnts[ngamp].w = wt;
//printf("~1 t = %f,      blended  %f %f %f\n",t, gpnts[ngamp].v[0], gpnts[ngamp].v[1],gpnts[ngamp].v[2]);

#ifdef NEVER
			printf("Grey axis %d maps %f %f %f -> %f %f %f wit %f\n",ngamp,
			gpnts[ngamp].p[0], gpnts[ngamp].p[1], gpnts[ngamp].p[2],
			gpnts[ngamp].v[0], gpnts[ngamp].v[1], gpnts[ngamp].v[2],
			gpnts[ngamp].w);
#endif
			ngamp++;
			if (ngamp >= max_gpnts)
				error("gammap: internal, not enough space for mapping points A (%d > %d)\n",ngamp, max_gpnts); 
		}
#endif /* USE_GREYMAP */

		/* ---------------------------------------------------- */
		/* Do preliminary computation of the rspl input and output bounding values */
		for (j = 0; j < 3; j++) {
			il[j] = ol[j] =  1e60;
			ih[j] = oh[j] = -1e60;
		}

		/* From grey axis points */
		for (i = 0; i < ngamp; i++) {
			for (j = 0; j < 3; j++) {
				if (gpnts[i].p[j] < il[j])
					il[j] = gpnts[i].p[j];
				if (gpnts[i].p[j] > ih[j])
					ih[j] = gpnts[i].p[j];
			}
		}

		/* From the source gamut */
		{
			double tmx[3], tmn[3];
			scl_gam->getrange(scl_gam, tmn, tmx);
			for (j = 0; j < 3; j++) {
				if (tmn[j] < il[j])
					il[j] = tmn[j];
				if (tmx[j] > ih[j])
					ih[j] = tmx[j];
			}
		}

		/* from input arguments override */ 
		if (mn != NULL && mx != NULL) {

			for (j = 0; j < 3; j++) {
				if (mn[j] < il[j])
					il[j] = mn[j];
				if (mx[j] > ih[j])
					ih[j] = mx[j];
			}
		}

		/* From the destination gamut */
		{
			double tmx[3], tmn[3];
			d_gam->getrange(d_gam, tmn, tmx);
			for (j = 0; j < 3; j++) {
				if (tmn[j] < ol[j])
					ol[j] = tmn[j];
				if (tmx[j] > oh[j])
					oh[j] = tmx[j];
			}
		}

		/* ---------------------------------------------------- */
		/* Deal with gamut hull guide vector creation. */

		/* For compression, create a mapping for each vertex of */
		/* the source gamut (image) surface towards the destination gamut */
		/* For expansion, do the opposite. */

		/* Convert from compact to explicit hextant weightings */
		if (expand_weights(xpweights, pweights)
		 || expand_weights(xsweights, sweights)) {
			fprintf(stderr,"gamut map: expand_weights() failed\n");
			s->grey->del(s->grey);
			s->igrey->del(s->igrey);
			if (sil_gam != scl_gam)
				sil_gam->del(sil_gam);
			scl_gam->del(scl_gam);
			free(s);
			return NULL;
		}
		/* Create weights as blend between perceptual and saturation */
		near_xwblend(xwh, xpweights, gmi->gampwf, xsweights, gmi->gamswf);
		if ((gmi->gampwf + gmi->gamswf) > 0.1)
			smooth = (gmi->gampwf * psmooth) + (gmi->gamswf * ssmooth);

		/* Tweak gamut mappings according to extra cmy cusp flags or rel override */ 
		if (dst_cmymap != 0 || rel_oride != 0) {
			tweak_weights(xwh, dst_cmymap, rel_oride); 
		}

		/* Create the near point mapping, which is our fundamental gamut */
		/* hull to gamut hull mapping. */
		nsm = near_smooth(verb, &nnsm, scl_gam, sil_gam, d_gam, src_kbp, dst_kbp,
		                  dr_cs_bp, xwh, gmi->gamcknf, gmi->gamxknf,
		                  gmi->gamcpf > 1e-6, gmi->gamexf > 1e-6,
		                  xvra, mapres, smooth, il, ih, ol, oh);
		if (nsm == NULL) {
			fprintf(stderr,"Creating smoothed near points failed\n");
			s->grey->del(s->grey);
			s->igrey->del(s->igrey);
			if (sil_gam != scl_gam)
				sil_gam->del(sil_gam);
			scl_gam->del(scl_gam);
			free(s);
			return NULL;
		}
		/* --------------------------- */

		/* Make sure the input range to encompasss the guide vectors. */
		for (i = 0; i < nnsm; i++) {
			for (j = 0; j < 3; j++) {
				if (nsm[i].sv[j] < il[j])
					il[j] = nsm[i].sv[j];;
				if (nsm[i].sv[j] > ih[j])
					ih[j] = nsm[i].sv[j];
			}
		}

#ifdef NEVER
		if (verb) {
			fprintf(stderr,"Input bounding box:\n");
			fprintfstderr,("%f -> %f, %f -> %f, %f -> %f\n",
			il[0], ih[0], il[1], ih[1], il[2], ih[2]);
		}
#endif

		/* Now expand the bounding box by aprox 5% margin, but scale grid res */
		/* to match, so that the natural or given boundary still lies on the grid. */
		{
			int xmapres;
			double scale;

			xmapres = (int) ((mapres-1) * 0.05 + 0.5);
			if (xmapres < 1)
				xmapres = 1;

			scale = (double)(mapres-1 + xmapres)/(double)(mapres-1);

			for (j = 0; j < 3; j++) {
				double low, high;
				high = ih[j];
				low = il[j];
				ih[j] = (scale * (high - low)) + low;
				il[j] = (scale * (low - high)) + high;
			}

			mapres += 2 * xmapres;
#ifdef NEVER
			if (verb) {
				fprintf(stderr,"After incresing mapres to %d, input bounding box for 3D gamut mapping is:\n",mapres);
				fprintf(stderr,"%f -> %f, %f -> %f, %f -> %f\n",
				il[0], ih[0], il[1], ih[1], il[2], ih[2]);
			}
#endif
		}

		/* ---------------------------------------------------- */
		/* Setup for diagnostic plot, that will have elements added */
		/* as we create the final 3D gamut mapping rspl */
		/* (The plot is of the already rotated and L mapped source space) */
		{
			int doaxes = 0;

#ifdef PLOT_AXES
			doaxes = 1;
#endif
			if (diagname != NULL)
				wrl = new_vrml(diagname, doaxes, vrml_lab);
#ifdef PLOT_DIAG_WRL
			else
				wrl = new_vrml("gammap", doaxes, vrml_lab);
#endif
		}

		if (wrl != NULL) {
			/* See if there is a diagnostic locus to plot too */
			if ((locus = new_cgats()) == NULL)
				error("Failed to create cgats object");

			locus->add_other(locus, "TS");

			if (locus->read_name(locus, "locus.ts")) {
				locus->del(locus);
				locus = NULL;
			} else {
				if (verb)
					printf("!! Found diagnostic locus.ts file !!\n");
				/* locus will be added later */
			}

			/* Add diagnostic markers from markers structure */
			for (i = 0; ; i++) {
				double pp[3];
				co cp;
				if (markers[i].type == 0)
					break;
	
				if (markers[i].type == 1) {		/* Src point - do luminance mapping */
					dopartialmap1(s, pp, markers[i].pos);
				} else {
					pp[0] = markers[i].pos[0];
					pp[1] = markers[i].pos[1];
					pp[2] = markers[i].pos[2];
				}
				wrl->add_marker(wrl, pp, markers[i].col, 1.0);
			}
		}

		/* --------------------------- */
		/* Now computue our 3D mapping points from the near point mapping. */
		for (i = 0; i < nnsm; i++) {
			double cpexf;			/* The effective compression or expansion factor */

			if (nsm[i].vflag == 0) {			/* Unclear whether compression or expansion */
				/* Use larger to the the two factors */
				cpexf = gmi->gamcpf > gmi->gamexf ? gmi->gamcpf : gmi->gamexf;
				
			} else if (nsm[i].vflag == 1) {		/* Compression */
				cpexf = gmi->gamcpf;

			} else if (nsm[i].vflag == 2) {		/* Expansion */
				cpexf = gmi->gamexf;

			} else {
				error("gammap: internal, unknown guide point flag");
			}

			/* Compute destination value which is a blend */
			/* between the source value and the fully mapped destination value. */
			icmBlend3(nsm[i].div, nsm[i].sv, nsm[i].dv, cpexf);

#ifdef NEVER
			printf("%s mapping:\n",nsm[i].vflag == 0 ? "Unclear" : nsm[i].vflag == 1 ? "Compression" : "Expansion");
			printf("Src point = %f %f %f radius %f\n",nsm[i].sv[0], nsm[i].sv[1], nsm[i].sv[2], nsm[i].sr);
			printf("Dst point = %f %f %f radius %f\n",nsm[i].dv[0], nsm[i].dv[1], nsm[i].dv[2], nsm[i].dr);
			printf("Blended dst point = %f %f %f\n",nsm[i].div[0], nsm[i].div[1], nsm[i].div[2]);
#endif	/* NEVER */
			/* Set the main gamut hull mapping point */
			for (j = 0; j < 3; j++) {
				gpnts[ngamp].p[j] = nsm[i].sv[j];
				gpnts[ngamp].v[j] = nsm[i].div[j];
			}
			gpnts[ngamp++].w = 1.01;		/* Main gamut surface mapping point */
											/* (Use 1.01 as a marker value) */
			if (ngamp >= max_gpnts)
				error("gammap: internal, not enough space for mapping points B (%d > %d)\n",ngamp, max_gpnts); 

#ifdef USE_GAMKNF
			/* Add sub surface mapping point if available */
			if (nsm[i].vflag != 0) {	/* Sub surface point is available */

				/* Compute destination value which is a blend */
				/* between the source value and the knee adjusted destination */
				icmBlend3(nsm[i].div2, nsm[i].sv2, nsm[i].dv2, cpexf);

#ifdef NEVER
				printf("Src2 point = %f %f %f radius %f\n",nsm[i].sv2[0], nsm[i].sv2[1], nsm[i].sv2[2], nsm[i].sr);
				printf("Dst2 point = %f %f %f radius %f\n",nsm[i].dv2[0], nsm[i].dv2[1], nsm[i].dv2[2], nsm[i].dr);
				printf("Blended dst2 point = %f %f %f\n",nsm[i].div2[0], nsm[i].div2[1], nsm[i].div2[2]);
				printf("Src/Dst3 point = %f %f %f w %f\n",nsm[i].sd2[0], nsm[i].sd2[1], nsm[i].sd2[2]);
				printf("\n");
#endif	/* NEVER */

				/* Set the sub-surface gamut hull mapping point */
				for (j = 0; j < 3; j++) {
					gpnts[ngamp].p[j] = nsm[i].sv2[j];
					gpnts[ngamp].v[j] = nsm[i].div2[j];
				}
				gpnts[ngamp++].w = nsm[i].w2;		/* Sub-suface mapping points */

				if (ngamp >= max_gpnts)
					error("gammap: internal, not enough space for mapping points C (%d > %d)\n",ngamp, max_gpnts); 

				/* Set the sub-surface gamut hull mapping point */
				for (j = 0; j < 3; j++) {
					gpnts[ngamp].p[j] = nsm[i].sd3[j];
					gpnts[ngamp].v[j] = nsm[i].sd3[j];
				}
				gpnts[ngamp++].w = nsm[i].w3;		/* Sub-suface mapping points */

				if (ngamp >= max_gpnts)
					error("gammap: internal, not enough space for mapping points D (%d > %d)\n",ngamp, max_gpnts); 
			}
#endif /* USE_GAMKNF */
		}

		if (ngamp >= max_gpnts)
			error("gammap: internal, not enough space for mapping points (%d > %d)\n",ngamp, max_gpnts); 

		/* Create preliminary gamut mapping rspl, without grid boundary values. */
		/* We use this to lookup the mapping for points on the source space gamut */
		/* that result from clipping our grid boundary points */
#ifdef USE_BOUND
		for (j = 0; j < 3; j++) {		/* Set resolution for all axes */
			gres[j] = (mapres+1)/2;
			avgdev[j] = GAMMAP_RSPLAVGDEV;
		}
		s->map = new_rspl(RSPL_NOFLAGS, 3, 3);	/* Allocate 3D -> 3D */
		s->map->fit_rspl_w(s->map, GAMMAP_RSPLFLAGS, gpnts, ngamp, il, ih, gres, ol, oh, smooth, avgdev, NULL);

		/* Add input range grid surface anchor points to improve clipping behaviour. */
		if (defrgrid >= 2) {
			DCOUNT(gc, 3, 3, 0, 0, defrgrid);
			double cent[3];

			sc_gam->getcent(d_gam, cent);

			DC_INIT(gc);
			for (;;) {
				/* If point is on the grid surface */
				if (   gc[0] == 0 || gc[0] == (defrgrid-1)
					|| gc[1] == 0 || gc[1] == (defrgrid-1)
					|| gc[2] == 0 || gc[2] == (defrgrid-1)) {
					double grid2gamut, gamut2cent, ww;
					co cp;

					/* Clip the point to the closest location on the source */
					/* colorspace gamut. */
					for (j = 0; j < 3; j++)
						gpnts[ngamp].p[j] = il[j] + gc[j]/(defrgrid-1.0) * (ih[j] - il[j]);
					sc_gam->nearest(sc_gam, cp.p, gpnts[ngamp].p);

					/* Then lookup the equivalent gamut mapped value */
					s->map->interp(s->map, &cp);

					for (j = 0; j < 3; j++)
						gpnts[ngamp].v[j] = cp.v[j];

					/* Compute the distance of the grid surface point to the to the */
					/* source colorspace gamut, as well as the distance from there */
					/* to the gamut center point. */
					for (grid2gamut = gamut2cent = 0.0, j = 0; j < 3; j++) {
						double tt;
						tt = gpnts[ngamp].p[j] - cp.p[j];
						grid2gamut += tt * tt;
						tt = cp.p[j] - cent[j];
						gamut2cent += tt * tt;
					}
					grid2gamut = sqrt(grid2gamut);
					gamut2cent = sqrt(gamut2cent);
					
					/* Make the weighting inversely related to distance, */
					/* to reduce influence on in gamut mapping shape, */
					/* while retaining some influence at the edge of the */
					/* grid. */
					ww = grid2gamut / gamut2cent;
					if (ww > 1.0)
						ww = 1.0;
					
					/* A low weight seems to be enough ? */
					/* the lower the better in terms of geting best hull mapping fidelity */
					gpnts[ngamp++].w = 0.05 * ww;

					if (ngamp >= max_gpnts)
						error("gammap: internal, not enough space for mapping points E (%d > %d)\n",ngamp, max_gpnts); 
				}
				DC_INC(gc);
				if (DC_DONE(gc))
					break;
			}
		}
#else /* !USE_BOUND */
		printf("!!!! Warning - gammap boundary points disabled !!!!\n");
#endif /* !USE_BOUND */

		/* --------------------------- */
		/* Compute the output bounding values, and check input range hasn't changed */
		for (i = 0; i < ngamp; i++) {
			for (j = 0; j < 3; j++) {
				if (gpnts[i].p[j] < (il[j]-1e-5) || gpnts[i].p[j] > (ih[j]+1e-5))
					warning("gammap internal: input bounds has changed! %f <> %f <> %f",il[j],gpnts[i].p[j],ih[j]);
				if (gpnts[i].v[j] < ol[j])
					ol[j] = gpnts[i].v[j];
				if (gpnts[i].v[j] > oh[j])
					oh[j] = gpnts[i].v[j];
			}
		}

		/* --------------------------- */

#ifdef NEVER		/* Dump out all the mapping points */
		{
			for (i = 0; i < ngamp; i++) {
				printf("%d: %f %f %f -> %f %f %f\n",i,
					gpnts[i].p[0], gpnts[i].p[1], gpnts[i].p[2],
					gpnts[i].v[0], gpnts[i].v[1], gpnts[i].v[2]);
			}
		}
#endif

		/* Create the final gamut mapping rspl. */
		/* [ The smoothing is not as useful as it should be, because */
		/*   if it is increased it tends to push colors out of gamut */
		/*   where they get clipped. Some cleverer scheme which makes */
		/*   sure that smoothness errs on the side of more compression */
		/*   is needed. - Addressed in nearsmth now ? ] */
		/* How about converting to a delta filer ? ie. */
		/* create curren filter, then create point list of delta from */
		/* smoothed value, filtering that and then un-deltering it ?? */
		if (s->map != NULL)
			s->map->del(s->map);
		if (verb)
			printf("Creating rspl..\n");
		for (j = 0; j < 3; j++) {		/* Set resolution for all axes */
			gres[j] = mapres;
			avgdev[j] = GAMMAP_RSPLAVGDEV;
		}
		s->map = new_rspl(RSPL_NOFLAGS, 3, 3);	/* Allocate 3D -> 3D */
		if (s->map->fit_rspl_w(s->map, GAMMAP_RSPLFLAGS, gpnts, ngamp, il, ih, gres, ol, oh, smooth, avgdev, NULL)) {
			if (verb)
				fprintf(stderr,"Warning: Gamut mapping is non-monotonic - may not be very smooth !\n");
		}
		/* return the min and max of the input values valid in the grid */
		s->map->get_in_range(s->map, s->imin, s->imax); 

#ifdef CHECK_NEARMAP
		/* Check how accurate gamut shell mapping is against nsm */
		/* (This isn't a good indication now that vectors have been adjusted */
		/*  to counteract the rspl smoothing at the edges.) */
		if (verb) {
			double de, avgde = 0.0, maxde = 0.0;		/* DE stats */
			
			for (i = 0; i < nnsm; i++) {
				double av[3];
	
				/* Compute the mapping error */
				dopartialmap2(s, av, nsm[i].sv);		/* Just the rspl */
	
				de = icmLabDE(nsm[i].div, av);
				avgde += de;
				if (de > maxde)
					maxde = de;
			}
			printf("Gamut hull fit to guides: = avg %f, max %f\n",avgde/nnsm,maxde);
		}
#endif /* CHECK_NEARMAP */

		/* If requested, enhance the saturation of the output values. */
		if (gmi->satenh > 0.0) {
			adjustsat cx;		/* Adjustment context */

			/* Compute what our source white and black points actually maps to */
			s->domap(s, cx.wp, s_mt_wp);
			s->domap(s, cx.bp, s_mt_bp);

			cx.dst = d_gam; 
			cx.satenh = gmi->satenh; 

			/* Saturation enhance the output values */
			s->map->re_set_rspl(
				s->map,				/* this */
				0,					/* Combination of flags */
				(void *)&cx,		/* Opaque function context */
				adjust_sat_func /* Function to set from */
			);
		}

		/* Test the gamut white and black point mapping, and "fine tune" */
		/* the mapping, to ensure an accurate transform of the white */
		/* and black points to the destination colorspace. */
		/* This compensates for any inacuracy introduced in the */
		/* various rspl mappings. */
 		{
			adjustwb cx;		/* Adjustment context */
			double a_wp[3];		/* actual white point */
			double a_bp[3];		/* actual black point */

			if (verb)
				printf("Fine tuning white and black point mapping\n");

			/* Check what the source white and black points actually maps to */
			s->domap(s, a_wp, s_mt_wp);
			s->domap(s, a_bp, s_mt_bp);

#ifdef VERBOSE
			if (verb) {
				printf("White is %f %f %f, should be %f %f %f\n",
				a_wp[0], a_wp[1], a_wp[2], d_mt_wp[0], d_mt_wp[1], d_mt_wp[2]);
				printf("Black is %f %f %f, should be %f %f %f\n",
				a_bp[0], a_bp[1], a_bp[2], d_mt_bp[0], d_mt_bp[1], d_mt_bp[2]);
			}
#endif /* VERBOSE */

			/* Setup the fine tune transform */

			/* We've decided not to fine tune the black point if we're */
			/* bending to the destination black, as the bend is not */
			/* followed perfectly (too sharp, or in conflict with */
			/* the surface mapping ?) and we don't want to shift */
			/* mid neutrals due to this. */
			/* We do fine tune it if dst_kbp is set though, since */
			/* we would like perfect K only out. */

			/* Compute rotation/scale relative white point matrix */
			icmVecRotMat(cx.mat, a_wp, a_bp, d_mt_wp, d_mt_bp);		/* wp & bp */

			/* Fine tune the 3D->3D mapping */
			s->map->re_set_rspl(
				s->map,				/* this */
				0,					/* Combination of flags */
				(void *)&cx,		/* Opaque function context */
				adjust_wb_func 		/* Function to set from */
			);

#ifdef VERBOSE
			if (verb) {
				/* Check what the source white and black points actually maps to */
				s->domap(s, a_wp, s_mt_wp);
				s->domap(s, a_bp, s_mt_bp);
	
				printf("After fine tuning:\n");
				printf("White is %f %f %f, should be %f %f %f\n",
				a_wp[0], a_wp[1], a_wp[2], d_mt_wp[0], d_mt_wp[1], d_mt_wp[2]);
				printf("Black is %f %f %f, should be %f %f %f\n",
				a_bp[0], a_bp[1], a_bp[2], d_mt_bp[0], d_mt_bp[1], d_mt_bp[2]);
			}
#endif /* VERBOSE */
		}

		if (wrl != NULL) {
			int arerings = 0;
			double cc[3] = { 0.7, 0.7, 0.7 }; 
			double nc[3] = { 1.0, 0.4, 0.7 }; 	/* Pink for neighbors */
			int nix = -1;						/* Index of point to show neighbour */

#ifdef SHOW_NEIGBORS
#ifdef NEVER
			/* Show all neighbours */
			wrl->start_line_set(wrl, 0);
			for (i = 0; i < nnsm; i++) {
				for (j = 0; j < XNNB; j++) {
					nearsmth *np = nsm[i].n[j];		/* Pointer to neighbor */
			
					if (np == NULL)
						break;

					wrl->add_col_vertex(wrl, 0, nsm[i].sv, nc);	/* Source value */
					wrl->add_col_vertex(wrl, 0, np->sv, nc);	/* Neighbpor value */
				}
			}
			wrl->make_lines(wrl, 0, 2);
#else
			/* Show neighbours of points near source markers */
			for (i = 0; ; i++) {	/* Add diagnostic markers */
				double pp[3];
				co cp;
				int ix, bix;
				double bdist = 1e6;

				if (markers[i].type == 0)
					break;
	
				if (markers[i].type != 1)
					continue;
				
				/* Rotate and map marker point the same as the src gamuts */
				icmMul3By3x4(pp, s->grot, markers[i].pos);
				cp.p[0] = pp[0];			/* L value */
				s->grey->interp(s->grey, &cp);
				pp[0] = cp.v[0];
//printf("~1 looking for closest point to marker %d at %f %f %f\n",i,pp[0],pp[1],pp[2]);

				/* Locate the nearest source point */
				for (ix = 0; ix < nnsm; ix++) {
					double dist = icmNorm33(pp, nsm[ix].sv);
					if (dist < bdist) {
						bdist = dist;
						bix = ix;
					}
				}
//printf("~1 closest src point ix %d at %f %f %f\n",bix,nsm[bix].sv[0],nsm[bix].sv[1],nsm[bix].sv[2]);
//printf("~1 there are %d neighbours\n",nsm[bix].nnb);

				wrl->start_line_set(wrl, 0);
				for (j = 0; j < nsm[bix].nnb; j++) {
					nearsmth *np = nsm[bix].n[j].n;	/* Pointer to neighbor */

					wrl->add_col_vertex(wrl, 0, nsm[bix].sv, nc);	/* Source value */
					wrl->add_col_vertex(wrl, 0, np->sv, nc);		/* Neighbpor value */
				}
				wrl->make_lines(wrl, 0, 2);
			}
#endif
#endif /* SHOW_NEIGBORS */

			/* Add the source and dest gamut surfaces */
#ifdef PLOT_SRC_GMT
			wrl->make_gamut_surface_2(wrl, sil_gam, 0.6, 0, cc);	/* Grey */
#endif /* PLOT_SRC_GMT */
#ifdef PLOT_DST_GMT
			cc[0] = -1.0;
			wrl->make_gamut_surface(wrl, d_gam, 0.3, cc);			/* Natural color */
#endif /* PLOT_DST_GMT */
#ifdef PLOT_DIGAM
			if (nsm[0].dgam == NULL)
				error("Need to #define PLOT_DIGAM in nearsmth.c!");
			cc[0] = -1.0;
			wrl->make_gamut_surface(wrl, nsm[0].dgam, 0.2, cc);
#endif /* PLOT_DIGAM */
#ifdef PLOT_SRC_CUSPS
			wrl->add_cusps(wrl, sil_gam, 0.6, NULL);
#endif /* PLOT_SRC_CUSPS */
#ifdef PLOT_DST_CUSPS
			wrl->add_cusps(wrl, d_gam, 0.3, NULL);
#endif /* PLOT_DST_CUSPS */

#ifdef PLOT_TRANSSRC_CUSPS
			/* Add transformed source cusp markers */
			{
				int i;
				double cusps[6][3];
				double ccolors[6][3] = {
					{ 1.0, 0.1, 0.1 },		/* Red */
					{ 1.0, 1.0, 0.1 },		/* Yellow */
					{ 0.1, 1.0, 0.1 },		/* Green */
					{ 0.1, 1.0, 1.0 },		/* Cyan */
					{ 0.1, 0.1, 1.0 },		/* Blue */
					{ 1.0, 0.1, 1.0 }		/* Magenta */
				};
			
				if (sc_gam->getcusps(sc_gam, cusps) == 0) {

					for (i = 0; i < 6; i++) {
						double val[3];

						s->domap(s, val, cusps[i]);
						wrl->add_marker(wrl, val, ccolors[i], 2.5);
					}
				}
			}
#endif

#if defined(SHOW_MAP_VECTORS) || defined(SHOW_SUB_SURF) || defined(SHOW_ACTUAL_VECTORS) || defined(SHOW_ACTUAL_VEC_DIFF)
			/* Start of guide vector plot */
			wrl->start_line_set(wrl, 0);

			for (i = 0; i < nnsm; i++) {
				double cpexf;			/* The effective compression or expansion factor */
				double yellow[3] = { 1.0, 1.0, 0.0 };
				double red[3]    = { 1.0, 0.0, 0.0 };
				double green[3]  = { 0.0, 1.0, 0.0 };
				double lgrey[3]  = { 0.8, 0.8, 0.8 };
				double purp[3]   = { 0.6, 0.0, 1.0 };
				double blue[3]   = { 0.2, 0.2, 1.0 };
				double *ccc;
				double mdst[3];

#if defined(SHOW_ACTUAL_VECTORS) || defined(SHOW_ACTUAL_VEC_DIFF)
# ifdef SHOW_ACTUAL_VECTORS
				wrl->add_col_vertex(wrl, 0, nsm[i].sv, yellow);
# else	/* SHOW_ACTUAL_VEC_DIFF */
				wrl->add_col_vertex(wrl, 0, nsm[i].div, yellow);
# endif
				dopartialmap2(s, mdst, nsm[i].sv);
				wrl->add_col_vertex(wrl, 0, mdst, red);

#else
# ifdef SHOW_MAP_VECTORS
				ccc = yellow;

				if (nsm[i].gflag == 0)
					ccc = green;			/* Mark "no clear direction" vectors in green->red */
#  ifdef SHOW_CUSPMAP
				wrl->add_col_vertex(wrl, 0, nsm[i].csv, ccc);	/* Cusp mapped source value */
#  else
				wrl->add_col_vertex(wrl, 0, nsm[i].sv, ccc);	/* Source value */
#  endif
				wrl->add_col_vertex(wrl, 0, nsm[i].div, red);	/* Blended destination value */
# endif /* SHOW_MAP_VECTORS */

# ifdef SHOW_SUB_SURF
				if (nsm[i].vflag != 0) {	/* Sub surface point is available */
					wrl->add_col_vertex(wrl, 0, nsm[i].sv2, lgrey); /* Subs-surf Source value */
					wrl->add_col_vertex(wrl, 0, nsm[i].div2, purp); /* Blended destination value */
				}
# endif /* SHOW_SUB_SURF */
#endif	/* !SHOW_ACTUAL_VECTORS */
			}
			wrl->make_lines(wrl, 0, 2);			/* Guide vectors */
#endif	/* Show vectors */

#if defined(SHOW_VECTOR_INDEXES) || defined(SHOW_SUB_PNTS)
			for (i = 0; i < nnsm; i++) {
#ifdef SHOW_VECTOR_INDEXES
				{
					double cream[3] = { 0.7, 0.7, 0.5 };
					char buf[100];
					sprintf(buf, "%d", i);
					wrl->add_text(wrl, buf, nsm[i].sv, cream, 0.5);
				}
#endif /* SHOW_VECTOR_INDEXES */
# ifdef SHOW_SUB_PNTS
				if (nsm[i].vflag != 0) {	/* Sub surface point is available */
					double red[3]    = { 1.0, 0.0, 0.0 };
					double green[3]  = { 0.0, 1.0, 0.0 };
					double yellow[3] = { 1.0, 1.0, 0.0 };

					wrl->add_marker(wrl, nsm[i].sv2, red, 1.0); /* Subs-surf Source value */
					wrl->add_marker(wrl, nsm[i].div2, green, 1.0); /* Blended destination value */
					wrl->add_marker(wrl, nsm[i].sd3, yellow, 1.0); /* Deep sub-surface point */
				}
# endif /* SHOW_SUB_PNTS */
			}
#endif

			/* add the locus from locus.ts file */ 
			if (locus != NULL) {
				int table, npoints;
				char *fnames[3] = { "LAB_L", "LAB_A", "LAB_B" };
				int ix[3];
				double v0[3], v1[3];
				double rgb[3];

				/* Each table holds a separate locus */
				for (table = 0; table < locus->ntables; table++) {

				    if ((npoints = locus->t[table].nsets) <= 0)
				        error("No sets of data in diagnostic locus");

					for (j = 0; j < 3; j++) {
						if ((ix[j] = locus->find_field(locus, 0, fnames[j])) < 0)
							error ("Locus file doesn't contain field %s",fnames[j]);
						if (locus->t[table].ftype[ix[j]] != r_t)
							error ("Field %s is wrong type",fnames[j]);
					}

					/* Source locus */
					rgb[0] = 1.0;
					rgb[1] = 0.5;
					rgb[2] = 0.5;
					for (i = 0; i < npoints; i++) {
						co cp;

						for (j = 0; j < 3; j++)
							v1[j] = *((double *)locus->t[table].fdata[i][ix[j]]);

						/* Rotate and locus verticies the same as the src gamuts */
						dopartialmap1(s, v1, v1);
						if (i > 0 )
							wrl->add_cone(wrl, v0, v1, rgb, 0.5);
						icmAry2Ary(v0,v1);
					}

					/* Gamut mapped locus */
					rgb[0] = 1.0;
					rgb[1] = 1.0;
					rgb[2] = 1.0;
					for (i = 0; i < npoints; i++) {
						co cp;

						for (j = 0; j < 3; j++)
							v1[j] = *((double *)locus->t[table].fdata[i][ix[j]]);

						s->domap(s, v1, v1);
						if (i > 0 )
							wrl->add_cone(wrl, v0, v1, rgb, 0.5);
						icmAry2Ary(v0,v1);
					}
				}
				
				locus->del(locus);
				locus = NULL;
			}

			/* Add any ring mapping diagnostics */
			for (i = 0; ; i++) {
				if (rings[i].type == 0)
					break;

				if (rings[i].type == 2)
					continue;
	
				if (rings[i].type == 1) {
					double pconst;
					double cpoint[3];
					double mat[3][4];		/* translate to our plane */
					double imat[3][4];		/* translate from our plane */
					double s1[3], s0[3], t1[3];
					int j;
					double maxa, mina;
					double maxb, minb;

					if (arerings == 0) {
						arerings = 1;
						wrl->start_line_set(wrl, 1);	/* Source ring */
						wrl->start_line_set(wrl, 2);	/* Destination ring */
					}

					if (icmNormalize3(rings[i].pnorm, rings[i].pnorm, 1.0))
						error("Ring %d diagnostic plane normal failed",i);

					pconst = -icmDot3(rings[i].ppoint, rings[i].pnorm);

					/* Locate intersection of source neautral axis and plane */
					if (icmVecPlaneIsect(cpoint, pconst, rings[i].pnorm, s_cs_wp, s_cs_bp))
						error("Ring %d diagnostic center point intersection failed",i);

					/* Compute the rotation and translation between */
					/* a plane in ab and the plane we are using */
					s0[0] = s0[1] = s0[2] = 0.0;
					s1[0] = 1.0, s1[1] = s1[2] = 0.0;
					t1[0] = cpoint[0] + rings[i].pnorm[0];
					t1[1] = cpoint[1] + rings[i].pnorm[1];
					t1[2] = cpoint[2] + rings[i].pnorm[2];
					icmVecRotMat(mat, s1, s0, t1, cpoint);
					icmVecRotMat(imat, t1, cpoint, s1, s0);

					/* Do a min/max of a circle of vectors so as to */
					/* establish an offset to the centroid for this slice */
					maxa = maxb = -1e60;
					mina = minb = 1e60;
					for (j = 0; j < 20; j++) {
						double ang = 2 * 3.1415926 * j/(20 - 1.0);
						double vec[3], isect[3];
						double pp[3];
						co cp;
						int k;

						vec[0] = 0.0;
						vec[1] = sin(ang);
						vec[2] = cos(ang);
						icmMul3By3x4(vec, mat, vec);

						/* Intersect it with the source gamut */
						if (si_gam->vector_isect(si_gam, vec, cpoint, isect,
						                 NULL, NULL, NULL, NULL, NULL) == 0) {
							continue;
						}

						/* Translate back to plane */
						icmMul3By3x4(pp, imat, isect);

						if (pp[1] > maxa)
							maxa = pp[1];
						if (pp[1] < mina)
							mina = pp[1];
						if (pp[2] > maxb)
							maxb = pp[2];
						if (pp[2] < minb)
							minb = pp[2];
					}
					/* Move center to centroid of min/max box */
					t1[0] = 0.0;
					t1[1] = (maxa + mina) * 0.5;
					t1[2] = (maxb + minb) * 0.5;
					if (t1[1] < -200.0 || t1[1] > 200.0
					 || t1[2] < -200.0 || t1[2] > 200.0)
						error("Failed to locate centroid of slice");
					icmMul3By3x4(cpoint, mat, t1);
					
//printf("~1 ring centroid point = %f %f %f\n", cpoint[0],cpoint[1],cpoint[2]);
		
					/* Recompute the rotation and translation between */
					/* a plane in ab and the plane we are using */
					s0[0] = s0[1] = s0[2] = 0.0;
					s1[0] = 1.0, s1[1] = s1[2] = 0.0;
					t1[0] = cpoint[0] + rings[i].pnorm[0];
					t1[1] = cpoint[1] + rings[i].pnorm[1];
					t1[2] = cpoint[2] + rings[i].pnorm[2];
					icmVecRotMat(mat, s1, s0, t1, cpoint);
					icmVecRotMat(imat, t1, cpoint, s1, s0);

//printf("~1 generating %d ring verts\n",rings[i].nverts);
					/* Create a circle of vectors in the plane from the center */
					/* point, to intersect with the source gamut surface. */
					/* (Duplicate start and end vertex) */
					for (j = 0; j <= rings[i].nverts; j++) {
						double ang = 2 * 3.1415926 * j/((double) rings[i].nverts);
						double vec[3], isect[3];
						double pp[3];
						co cp;
						int k;

						vec[0] = 0.0;
						vec[1] = sin(ang);
						vec[2] = cos(ang);
						icmMul3By3x4(vec, mat, vec);

						/* Intersect it with the source gamut */
						if (si_gam->vector_isect(si_gam, vec, cpoint, isect,
						                 NULL, NULL, NULL, NULL, NULL) == 0) {
							warning("Ring %d vect %d diagnostic vector intersect failed",i,j);
							continue;
						}

//printf("~1 vec %d = %f %f %f\n",j,isect[0],isect[1],isect[2]);

						/* Scale them to the ratio */
						for (k = 0; k < 3; k++)
							vec[k] = isect[k] * rings[i].rad + (1.0 - rings[i].rad) * cpoint[k];

//printf("~1 rad vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);

						/* Transform them into rotated and scaled destination space */
						dopartialmap1(s, vec, vec);
//printf("~1 trans vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);

						/* Add to plot */
						wrl->add_col_vertex(wrl, 1, vec, rings[i].scol);
//printf("~1 src vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);

						/* Gamut map and add to plot */
						s->domap(s, vec, vec);
//printf("~1 dst vec %d = %f %f %f\n",j,vec[0],vec[1],vec[2]);
						wrl->add_col_vertex(wrl, 2, vec, rings[i].dcol);
					}
					wrl->make_last_vertex(wrl, 1);		/* Source ring */
					wrl->make_last_vertex(wrl, 2);		/* Destination ring */
				}
				if (arerings) {
					wrl->make_lines(wrl, 1, 1000000);		/* Source ring */
					wrl->make_lines(wrl, 2, 1000000);		/* Destination ring */
				}
			}

			wrl->del(wrl);		/* Write and delete */
			wrl = NULL;
		}

#ifdef PLOT_3DKNEES
		/* Plot one graph per 3D gamut boundary mapping point */
		for (j = 0; j < p3dk_ix; j++) {
			double xx[XRES];
			double yy[XRES];

			printf("Vector %f %f %f -> %f %f %f\n", p3dk_locus[j].v0[0], p3dk_locus[j].v0[1], p3dk_locus[j].v0[2], p3dk_locus[j].v1[0], p3dk_locus[j].v1[1], p3dk_locus[j].v1[2]);

			for (i = 0; i < XRES; i++) {
				double v;
				co cp;		/* Conversion point */
				v = (i/(double)(XRES-1.0));
				cp.p[0] = p3dk_locus[j].v0[0] + v * (p3dk_locus[j].v1[0] - p3dk_locus[j].v0[0]);
				cp.p[1] = p3dk_locus[j].v0[1] + v * (p3dk_locus[j].v1[1] - p3dk_locus[j].v0[1]);
				cp.p[2] = p3dk_locus[j].v0[2] + v * (p3dk_locus[j].v1[2] - p3dk_locus[j].v0[2]);
				xx[i] = sqrt(cp.p[1] * cp.p[1] + cp.p[2] * cp.p[2]);
				s->map->interp(s->map, &cp);
				yy[i] = sqrt(cp.v[1] * cp.v[1] + cp.v[2] * cp.v[2]);
			}
			do_plot(xx,yy,NULL,NULL,XRES);
		}
		free(p3dk_locus);
#endif /* PLOT_3DKNEES */


		free(gpnts);
		free_nearsmth(nsm, nnsm);

	} else if (diagname != NULL && verb) {
		printf("Warning: Won't create '%s' because there is no 3D gamut mapping\n",diagname);
	}

#ifdef PLOT_GAMUTS
	scl_gam->write_vrml(scl_gam, "src", 1, 0);
	sil_gam->write_vrml(sil_gam, "img", 1, 0);
	d_gam->write_vrml(d_gam, "dst", 1, 0);
	sc_gam->write_trans_vrml(sc_gam, "gmsrc", 1, 0, map_trans, s);
#endif

	if (sil_gam != scl_gam)
		sil_gam->del(sil_gam);
	scl_gam->del(scl_gam);

	return s;
}

#ifdef PLOT_GAMUTS

/* Debug */
static void map_trans(void *cntx, double out[3], double in[3]) {
	gammap *map = (gammap *)cntx;

	map->domap(map, out, in);
}

#endif

/* Object methods */
static void del_gammap(
gammap *s
) {
	if (s->grey != NULL)
		s->grey->del(s->grey);
	if (s->igrey != NULL)
		s->igrey->del(s->igrey);
	if (s->map != NULL)
		s->map->del(s->map);

	free(s);
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* Apply the gamut mapping to the given color value */
static void domap(
gammap *s,
double *out,
double *in
) {
	double rin[3];
	co cp;

	if (s->dbg) printf("domap: got input %f %f %f\n",in[0],in[1],in[2]);
	icmMul3By3x4(rin, s->grot, in);		/* Rotate */

	if (s->dbg) printf("domap: after rotate %f %f %f\n",rin[0],rin[1],rin[2]);
	cp.p[0] = rin[0];
	s->grey->interp(s->grey, &cp);		/* L map */

	if (s->dbg) printf("domap: after L map %f %f %f\n",cp.v[0],rin[1],rin[2]);

	/* If there is a 3D->3D mapping */
	if (s->map != NULL) {
		int e;

		/* Clip out of range a, b proportionately */
		if (rin[1] < s->imin[1] || rin[1] > s->imax[1]
		 || rin[2] < s->imin[2] || rin[2] > s->imax[2]) {
			double as = 1.0, bs = 1.0;
			if (rin[1] < s->imin[1])
				as = s->imin[1]/rin[1];
			else if (rin[1] > s->imax[1])
				as = s->imax[1]/rin[1];
			if (rin[2] < s->imin[2])
				bs = s->imin[2]/rin[2];
			else if (rin[2] > s->imax[2])
				bs = s->imax[2]/rin[2];
			if (bs < as)
				as = bs;
			rin[1] *= as;
			rin[2] *= as;
		}
	
		cp.p[0] = cp.v[0];					/* 3D map */
		cp.p[1] = rin[1];
		cp.p[2] = rin[2];
		s->map->interp(s->map, &cp);
	
		for (e = 0; e < s->map->fdi; e++)
			out[e] = cp.v[e];
	
		if (s->dbg) printf("domap: after 3D map %s\n\n",icmPdv(s->map->fdi, out));
	} else {
		out[0] = cp.v[0];
		out[1] = rin[1];
		out[2] = rin[2];
	}
}

/* Apply the matrix and grey mapping to the given color value */
static void dopartialmap1(
gammap *s,
double *out,
double *in
) {
	double rin[3];
	co cp;

	icmMul3By3x4(rin, s->grot, in);		/* Rotate */
	cp.p[0] = rin[0];
	s->grey->interp(s->grey, &cp);		/* L map */
	out[0] = cp.v[0];
	out[1] = rin[1];
	out[2] = rin[2];
}

/* Apply just the rspl mapping to the given color value */
/* (ie. to a color already rotated and L mapped) */
static void dopartialmap2(
gammap *s,
double *out,
double *in
) {
	co cp;

	/* If there is a 3D->3D mapping */
	if (s->map != NULL) {
		int e;

		icmCpy3(cp.p, in);

		/* Clip out of range a, b proportionately */
		if (cp.p[1] < s->imin[1] || cp.p[1] > s->imax[1]
		 || cp.p[2] < s->imin[2] || cp.p[2] > s->imax[2]) {
			double as = 1.0, bs = 1.0;
			if (cp.p[1] < s->imin[1])
				as = s->imin[1]/cp.p[1];
			else if (cp.p[1] > s->imax[1])
				as = s->imax[1]/cp.p[1];
			if (cp.p[2] < s->imin[2])
				bs = s->imin[2]/cp.p[2];
			else if (cp.p[2] > s->imax[2])
				bs = s->imax[2]/cp.p[2];
			if (bs < as)
				as = bs;
			cp.p[1] *= as;
			cp.p[2] *= as;
		}
	
		s->map->interp(s->map, &cp);
	
		icmCpy3(out, cp.v);
	} else {
		icmCpy3(out, in);
	}
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* powell function - minimise error to target */
static double invgmfunc(
void *fdata,
double *tp
) {
	gammap *s = (gammap *)fdata;
	int i;
	double gmv[3];
	double tt, rv = 0.0;

	domap(s, gmv, tp);
	for (i = 0; i < 3; i++) {
		double tt = gmv[i] - s->tv[i];
		rv += tt * tt;
	}

	return rv;
}

/* Invert a gamut mapping using powell */
static void invdomap1(
gammap *s,
double *out,
double *in
) {
	double ss[3] = { 20.0, 20.0, 20.0 };		/* search area */
	double tp[3], rv;

	s->tv[0] = tp[0] = in[0];
	s->tv[1] = tp[1] = in[1];
	s->tv[2] = tp[2] = in[2];

	if (powell(&rv, 3, tp, ss, 1e-7, 5000, invgmfunc, (void *)s, NULL, NULL) != 0) {
		warning("gamut invdomap1 failed on %f %f %f\n", in[0], in[1], in[2]);
	}

	out[0] = tp[0];
	out[1] = tp[1];
	out[2] = tp[2];
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* Function to pass to rspl to invert grey curve */
static void inv_grey_func(
	void *cntx,
	double *out,
	double *in
) {
	rspl *fwd = (rspl *)cntx;
	int nsoln;		/* Number of solutions found */
	co pp[2];		/* Room for all the solutions found */

	pp[0].p[0] = 
	pp[0].v[0] = in[0];

	nsoln = fwd->rev_interp(
		fwd,
		RSPL_NEARCLIP,		/* Clip to nearest (faster than vector) */
		2,					/* Maximum number of solutions allowed for */
		NULL, 				/* No auxiliary input targets */
		NULL,				/* Clip vector direction and length */
		pp);				/* Input and output values */

	nsoln &= RSPL_NOSOLNS;		/* Get number of solutions */

	if (nsoln != 1)
		error("gammap: Unexpected failure to find reverse solution for grey axis lookup");

	out[0] = pp[0].p[0];
}

/* Function to pass to rspl to alter output values, */
/* to enhance the saturation. */
static void
adjust_sat_func(
	void *pp,			/* adjustsat structure */
	double *out,		/* output value to be adjusted */
	double *in			/* corresponding input value */
) {
	adjustsat *p = (adjustsat *)pp;
	double cp[3];		/* Center point */
	double rr, t1[3], p1;
	double t2[3], p2;

	/* Locate center point on the white/black axis corresponding to this color */
	cp[0] = out[0];
	rr = (out[0] - p->bp[0])/(p->wp[0] - p->bp[0]);	/* Relative location on the white/black axis */
	cp[1] = p->bp[1] + rr * (p->wp[1] - p->bp[1]);
	cp[2] = p->bp[2] + rr * (p->wp[2] - p->bp[2]);
	
	/* Locate the point on the destination gamut surface in the direction */
	/* from the center point to the point being processed. */
	if (p->dst->vector_isect(p->dst, cp, out, t2, t1, &p2, &p1, NULL, NULL) != 0) {

		if (p1 > 1.0) {		/* If this point is within gamut */
			double ep1, bf;

//printf("\n");
//printf("~1 cp %f %f %f input %f %f %f\n",cp[0],cp[1],cp[2], out[0], out[1], out[2]);
//printf("~1 min %f %f %f mint %f\n",t2[0],t2[1],t2[2],p2);
//printf("~1 max %f %f %f maxt %f\n",t1[0],t1[1],t1[2],p1);

			p1 = 1.0/p1;		/* Position of out from cp to t1 */

#ifdef NEVER
			/* Enhanced parameter value */
			ep1 = (p1 + p->satenh * p1)/(1.0 + p->satenh * p1);
			/* Make blend between linear p1 and enhanced p1, */
			/* to reduce effects on near neutrals. */
			p1 = (1.0 - p1) * p1 + p1 * ep1;
#else
			/* Compute Enhanced p1 */
			ep1 = (p1 + p->satenh * p1)/(1.0 + p->satenh * p1);

			/* Make blend factor between linear p1 and enhanced p1, */
			/* to reduce effects on near neutrals. */
			{
				double pp = 4.0;		/* Sets where the 50% transition is */
				double g = 2.0;			/* Sets rate of transition */
				double sec, vv = p1;
		
				vv = vv/(pp - pp * vv + 1.0);

				vv *= 2.0;
				sec = floor(vv);
				if (((int)sec) & 1)
					g = -g;				/* Alternate action in each section */
				vv -= sec;
				if (g >= 0.0) {
					vv = vv/(g - g * vv + 1.0);
				} else {
					vv = (vv - g * vv)/(1.0 - g * vv);
				}
				vv += sec;
				vv *= 0.5;

				bf = (vv + pp * vv)/(1.0 + pp * vv);
			}
			/* Do the blend */
			p1 = (1.0 - bf) * p1 + bf * ep1;
#endif
			/* Compute enhanced values position */
			out[0] = cp[0] + (t1[0] - cp[0]) * p1;
			out[1] = cp[1] + (t1[1] - cp[1]) * p1;
			out[2] = cp[2] + (t1[2] - cp[2]) * p1;
//printf("~1 output %f %f %f, param %f\n",out[0],out[1],out[2],p1);
		}
	}
}

/* Function to pass to rspl to re-set output values, */
/* to adjust the white and black points */
static void
adjust_wb_func(
	void *pp,			/* adjustwb structure */
	double *out,		/* output value to be adjusted */
	double *in			/* corresponding input value */
) {
	adjustwb *p = (adjustwb *)pp;

	/* Do a linear mapping from swp -> dwp and sbp -> dbp, */
	/* to compute the adjusted value. */
	icmMul3By3x4(out, p->mat, out);
}


/* Create a new gamut that the the given gamut transformed by the */
/* gamut mappings rotation and grey curve mapping. Return NULL on error. */
static gamut *parttransgamut(gammap *s, gamut *src) {
	gamut *dst;
	double cusps[6][3];
	double wp[3], bp[3], kp[3];
	double p[3];
	int i;

	if ((dst = new_gamut(src->getsres(src), src->getisjab(src), src->getisrast(src))) == NULL)
		return NULL;

	dst->setnofilt(dst);

	/* Translate all the surface nodes */
	for (i = 0;;) {
		if ((i = src->getrawvert(src, p, i)) < 0)
			break;

		dopartialmap1(s, p, p); 
		dst->expand(dst, p);
	}
	/* Translate cusps */
	if (src->getcusps(src, cusps) == 0) {
		dst->setcusps(dst, 0, NULL);
		for (i = 0; i < 6; i++) {
			dopartialmap1(s, p, cusps[i]); 
			dst->setcusps(dst, 1, p);
		}
		dst->setcusps(dst, 2, NULL);
	}
	/* Translate white and black points */
	if (src->getwb(src, wp, bp, kp, NULL, NULL, NULL) == 0) {
		dopartialmap1(s, wp, wp); 
		dopartialmap1(s, bp, bp); 
		dopartialmap1(s, kp, kp); 
		dst->setwb(dst, wp, bp, kp);
	}

	return dst;
}