blob: 98bee8f7baa7a0e3e20aea2e2a5c93b8030fd7f8 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
/*
* Copyright 1996 - 2010 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
* see the License2.txt file for licencing details.
*/
/*
* Heapsort macro - sort smallest to largest.
* Heapsort is guaranteed nlogn, doesn't need any
* extra storage, but often isn't as fast as quicksort.
*/
/* Need to #define HEAP_COMPARE(A,B) so it returns true if A < B */
/* Note that A will be ARRAY[a], and B will be ARRAY[b] where a and b are indexes. */
/* TYPE should be the type of each entry of the ARRAY */
#define HEAPSORT(TYPE,ARRAY,NUMBER) \
{ \
TYPE *hs_ncb = ARRAY; \
int hs_l,hs_j,hs_ir,hs_i; \
TYPE hs_rra; \
\
if (NUMBER >= 2) \
{ \
hs_l = NUMBER >> 1; \
hs_ir = NUMBER-1; \
for (;;) \
{ \
if (hs_l > 0) \
hs_rra = hs_ncb[--hs_l]; \
else \
{ \
hs_rra = hs_ncb[hs_ir]; \
hs_ncb[hs_ir] = hs_ncb[0]; \
if (--hs_ir == 0) \
{ \
hs_ncb[0] = hs_rra; \
break; \
} \
} \
hs_i = hs_l; \
hs_j = hs_l+hs_l+1; \
while (hs_j <= hs_ir) \
{ \
if (hs_j < hs_ir && HEAP_COMPARE(hs_ncb[hs_j],hs_ncb[hs_j+1])) \
hs_j++; \
if (HEAP_COMPARE(hs_rra,hs_ncb[hs_j])) \
{ \
hs_ncb[hs_i] = hs_ncb[hs_j]; \
hs_i = hs_j; \
hs_j = hs_j+hs_j+1; \
} \
else \
hs_j = hs_ir + 1; \
} \
hs_ncb[hs_i] = hs_rra; \
} \
} \
}
|