1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
#ifndef IMDI_UTL_H
#define IMDI_UTL_H
/* Integer Multi-Dimensional Interpolation */
/*
* Copyright 2000 - 2007 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#include <limits.h>
/* Common utility definitions used at both generation and runtime. */
#define IXDI 10 /* maximum input channels/dimensions allowed */
#define IXDO 10 /* maximum output channels/dimensions allowed */
#if IXDI > IXDO /* Maximum of either DI or DO */
# define IXDIDO IXDI
#else
# define IXDIDO IXDO
#endif
#define ALLOW64 /* Allow declarations but not use of 64 bit types */
#ifndef FORCE64
# undef FORCE64 /* Use 64 bit, even on architectures where it's */
/* not a native size. ALLOW64 must be defined */
#endif
/* ------------------------------------------------------ */
#if defined(ALLOW64) && (ULONG_MAX == 0xffffffffffffffffUL || defined(FORCE64))
#ifndef USE64
#pragma message("Using 64 bit integer color kernel")
#endif /* USE64 */
#define USE64 /* Use 64 bits if it's natural or forced */
#endif
/* ------------------------------------------------------- */
/* Macros combination counter */
/* Declare the counter name nn, combinations out of total */
/* Maximum combinations is DI+2 */
#define COMBO(nn, comb, total) \
int nn[IXDI+2]; /* counter value */ \
int nn##_cmb = (comb); /* number of combinations*/ \
int nn##_tot = (total); /* out of total possible */ \
int nn##_e /* dimension index */
/* Set total to new setting */
#define CB_SETT(nn, total) \
nn##_tot = (total) /* total possible */
/* Set combinations to new setting */
#define CB_SETC(nn, comb) \
nn##_cmb = (comb) /* number of combinations*/
/* Set the counter to its initial value */
#define CB_INIT(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) \
nn[nn##_e] = nn##_cmb-nn##_e-1; \
nn##_e = 0; \
}
/* Increment the counter value */
#define CB_INC(nn) \
{ \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < (nn##_tot-nn##_e)) { \
int nn##_ee; /* No carry */ \
for (nn##_ee = nn##_e-1; nn##_ee >= 0; nn##_ee--) \
nn[nn##_ee] = nn[nn##_ee+1] + 1; \
break; \
} \
} \
}
/* After increment, expression is TRUE if counter is done */
#define CB_DONE(nn) \
(nn##_e >= nn##_cmb)
/* ------------------------------------------------------- */
/* Macros simplex combination counter. */
/* Based on COMBO, but skips invalid simplex combinations */
#define XCOMBO(nn, comb, total) \
COMBO(nn, comb, total)
/* Set total to new setting */
#define XCB_SETT(nn, total) \
CB_SETT(nn, total)
/* Set combinations to new setting */
#define XCB_SETC(nn, comb) \
CB_SETC(nn, comb)
/* Set the counter to its initial value */
#define XCB_INIT(nn) \
{ \
int nn##_ii; \
\
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) \
nn[nn##_e] = nn##_cmb-nn##_e-1; \
for (nn##_ii = 1; nn##_ii < nn##_cmb; nn##_ii++) { \
if ((nn[nn##_ii-1] ^ nn[nn##_ii]) & nn[nn##_ii])\
break; /* Went from 0 to 1 */ \
} \
if (nn##_ii < nn##_cmb) { /* Fix invalid combination */ \
XCB_INC(nn); \
} \
nn##_e = 0; \
}
/* Increment the counter value */
#define XCB_INC(nn) \
{ \
int nn##_ii = 0; \
\
while (nn##_ii < nn##_cmb) { \
for (nn##_e = 0; nn##_e < nn##_cmb; nn##_e++) { \
nn[nn##_e]++; \
if (nn[nn##_e] < (nn##_tot-nn##_e)) { \
int nn##_ee; /* No carry */ \
for (nn##_ee = nn##_e-1; nn##_ee >= 0; nn##_ee--) \
nn[nn##_ee] = nn[nn##_ee+1] + 1; \
break; \
} \
} \
if (nn##_e >= nn##_cmb) \
break; /* Done */ \
\
/* Reject invalid combinations */ \
for (nn##_ii = 1; nn##_ii < nn##_cmb; nn##_ii++) { \
if ((nn[nn##_ii-1] ^ nn[nn##_ii]) & nn[nn##_ii]) \
break; /* Went from 0 to 1 */ \
} \
} \
}
/* After increment, expression is TRUE if counter is done */
#define XCB_DONE(nn) \
CB_DONE(nn)
/* ------------------------------------------------------- */
/* Macro pseudo-hilbert counter */
/* This multi-dimensional count sequence is a distributed */
/* Gray code sequence, with direction reversal on every */
/* alternate power of 2 scale. */
/* It is intended to aid cache coherence in multi-dimensional */
/* regular sampling. It approximates the Hilbert curve sequence. */
#define PHILBERT(nn) \
int nn[IXDIDO];/* counter value */ \
int nn##di; /* Dimensionality */ \
unsigned nn##res; /* Resolution per coordinate */ \
unsigned nn##bits; /* Bits per coordinate */ \
unsigned nn##ix; /* Current binary index */ \
unsigned nn##tmask; /* Total 2^n count mask */ \
unsigned nn##count; /* Usable count */
/* Init counter for dimenion di, resolution res */
#define PH_INIT(nn, pdi, pres) \
{ \
int nn##e; \
\
nn##di = pdi; \
nn##res = (unsigned)pres; \
\
/* Compute bits */ \
for (nn##bits = 0; (1u << nn##bits) < nn##res; nn##bits++) \
; \
\
/* Compute the total count mask */ \
nn##tmask = ((1u << (nn##bits * nn##di))-1); \
\
/* Compute usable count */ \
nn##count = 1; \
for (nn##e = 0; nn##e < nn##di; nn##e++) \
nn##count *= nn##res; \
\
nn##ix = 0; \
for (nn##e = 0; nn##e < nn##di; nn##e++) \
nn[nn##e] = 0; \
}
/* Increment the counter value */
#define PH_INC(nn) \
{ \
int nn##e; \
do { \
unsigned int nn##b; \
int nn##gix; /* Gray code index */ \
\
nn##ix = (nn##ix + 1) & nn##tmask; \
\
/* Convert to gray code index */ \
nn##gix = nn##ix ^ (nn##ix >> 1); \
\
for (nn##e = 0; nn##e < nn##di; nn##e++) \
nn[nn##e] = 0; \
\
/* Distribute bits */ \
for (nn##b = 0; nn##b < nn##bits; nn##b++) { \
if (nn##b & 1) { /* In reverse order */ \
for (nn##e = nn##di-1; nn##e >= 0; nn##e--) { \
nn[nn##e] |= (nn##gix & 1) << nn##b; \
nn##gix >>= 1; \
} \
} else { /* In normal order */ \
for (nn##e = 0; nn##e < nn##di; nn##e++) { \
nn[nn##e] |= (nn##gix & 1) << nn##b; \
nn##gix >>= 1; \
} \
} \
} \
\
/* Convert from Gray to binary coordinates */ \
for (nn##e = 0; nn##e < nn##di; nn##e++) { \
unsigned nn##sh, nn##tv; \
\
for(nn##sh = 1, nn##tv = nn[nn##e];; nn##sh <<= 1) { \
unsigned nn##ptv = nn##tv; \
nn##tv ^= (nn##tv >> nn##sh); \
if (nn##ptv <= 1 || nn##sh == 16) \
break; \
} \
/* Filter - increment again if outside cube range */ \
if (nn##tv >= nn##res) \
break; \
nn[nn##e] = nn##tv; \
} \
\
} while (nn##e < nn##di); \
\
}
/* After increment, expression is TRUE if counter has looped back to start. */
#define PH_LOOPED(nn) \
(nn##ix == 0) \
/* ------------------------------------------------------- */
#endif /* IMDI_UTL_H */
|