1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
|
/* Concatenated dnsq code */
/*
* This concatenation, translation to C and modifications,
* Copyright 1998 Graeme Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#include "numsup.h"
#include "dnsq.h" /* Public interface definitions */
#undef DEBUG
typedef long int bool;
#ifndef TRUE
# define FALSE (0)
# define TRUE (!FALSE)
#endif
#ifndef min
#define min(a,b) ((a) <= (b) ? (a) : (b))
#endif
#ifndef max
#define max(a,b) ((a) >= (b) ? (a) : (b))
#endif
#ifndef fabs
#define fabs(x) ((x) >= 0.0 ? (x) : -(x))
#endif
/* Forward difference jacobian approximation */
static int dfdjc1(
void *fdata,
int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag),
int n, double *x, double * fvec, double *fjac,
int ldfjac, int ml, int mu,
double epsfcn, double *wa1, double *wa2);
/* QR factorization */
static int dqrfac(int m, int n, double *a, int lda,
bool pivot, int *ipvt, double *sigma,
double *acnorm, double *wa);
/* Use QR decomposition to form the orthogonal matrix */
static int dqform(int m, int n, double *q, int ldq, double *wa);
/* QR decomposition update */
static int d1updt(int m, int n, double *s,
double *u, double *v, double *w);
/* Jacobian rotation, called by QR update */
static int d1mpyq(int m, int n, double *a, int lda,
double *v, double *w);
/* Compute norm of a vector */
static double denorm(int n, double *x);
/* Line search */
static int ddoglg(int n, double *r, double *diag, double *qtb,
double delta, double *x, double *wa1, double *wa2);
/***************************************************************/
/*
* A simplified interface to dnsq().
*/
int dnsqe(
void *fdata, /* Opaque pointer to pass to fcn() and jac() */
int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag),
/* Pointer to function we are solving */
int (*jac)(void *fdata, int n, double *x, double *fvec, double **fjac),
/* Optional function to compute jacobian, NULL if not used */
int n, /* Number of functions and variables */
double x[], /* Initial solution estimate, RETURNs final solution */
double ss, /* Initial search area */
double fvec[], /* Array that will be RETURNed with thefunction values at the solution */
double dtol, /* Desired delta tollerance of the solution */
double atol, /* Desired absolute tollerance of the solution */
int maxfev, /* Maximum number of function calls. set to 0 for automatic */
int nprint /* Turn on debugging printouts from func() every nprint itterations */
) {
int info = 0; /* Return status */
int nfev, njev;
int i,j, index, ml, lr, mu;
double epsfcn = ss * ss; /* Jacobian estimate step */
double factor = ss; /* Initial step size */
double maxstep = 0.0; /* Subsequent step size (not working ??) */
if (maxfev <= 0) {
maxfev = (n + 1) * 100;
if (jac == NULL)
maxfev <<= 1;
}
ml = n - 1; /* number of subdiagonals within the band of the Jacobian matrix. */
mu = n - 1; /* number of superdiagonals within the band of the Jacobian matrix. */
lr = n * (n + 1) / 2;
index = n * 6 + lr;
/* Call dnsq. */
info = dnsq(fdata, fcn, jac, NULL, 0,
n, &x[0], &fvec[0], dtol, atol,
maxfev, ml, mu, epsfcn, NULL, factor, maxstep, nprint,
&nfev, &njev);
if (info == 5)
info = 4;
if (info == 0)
warning("dnsqe: invalid input parameter.");
return info;
} /* dnsqe */
/***************************************************************/
/*
* Library: SLATEC
* Category: F2A
* Type: Double precision (SNSQE-S, DNSQE-D)
* Keywords easy-to-use, nonlinear square system,
* powell hybrid method, zeros
* Author: Hiebert, K. L. (SNLA)
* Translated to C by f2c and Graeme W. Gill
*
* 1. Purpose.
*
* The purpose of DNSQ is to find a zero of a system of N nonlinear
* functions in N variables by a modification of the Powell
* hybrid method. The user must provide a subroutine which
* calculates the functions. The user has the option of either to
* provide a subroutine which calculates the Jacobian or to let the
* code calculate it by a forward-difference approximation.
* This code is the combination of the MINPACK codes (Argonne)
* HYBRD and HYBRDJ.
*
* 2. Subroutine and Type Statements.
*
* SUBROUTINE DNSQ(FCN,JAC,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,
* ML,MU,EPSFCN,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,
* NJEV,R,LR,QTF,WA1,WA2,WA3,WA4)
* INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,NJEV,LR
* DOUBLE PRECISION XTOL,EPSFCN,FACTOR
* DOUBLE PRECISION
* X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),
* WA1(N),WA2(N),WA3(N),WA4(N)
* EXTERNAL FCN,JAC
*
* 3. Parameters.
*
* Parameters designated as input parameters must be specified on
* entry to DNSQ and are not changed on exit, while parameters
* designated as output parameters need not be specified on entry
* and are set to appropriate values on exit from DNSQ.
*
* fcn() is the name of the user-supplied subroutine which calculates
* the functions. fcn() must be declared in an external statement
* in the user calling program, and should be written as follows.
*
* int fcn(
* void *fdata,
* int n,
* double *x,
* double *fvec,
* int iflag);
* {
* calculate the functions at x and
* return this vector in fvec.
* print out vector if iflag == 0
* return 0 (or < 0 to abort)
* }
* The value 0 should be returned fcn() unless the
* user wants to terminate execution of DNSQ. In this case
* return a negative integer.
*
* jac() is the name of the user-supplied subroutine which calculates
* the Jacobian. If jac!=NULL, then jac() must be declared in an
* external statement in the user calling program, and should be
* written as follows.
*
* int jac(
* void *fdata,
* int n,
* double *x,
* double *fvec,
* double **fjac,
* {
* Calculate the Jacobian at x and return this
* matrix in fjac. fvec contains the function
* values at x and should not be altered.
* return 0 (or < 0 to abort)
* }
* The value 0 should be returned jac() unless the
* user wants to terminate execution of DNSQ. In this case
* return a negative integer.
*
* If jac == NULL, then the code will approximate the
* Jacobian by forward-differencing.
*
* double **sjac;
* sjac is an optional n by n matrix that can hold an initial
* jacobian matrix that will be used in preference to calling the jac()
* function, or to using forward differencing. If the array is provided,
* it will also contain the last jacobian matrix used before exiting.
* If this array is not used, it should be set to NULL.
*
* int startsjac;
* styatsjac is a flag, that when set to non-zero, will cause the
* sjac[] array to be used as the initial jacobian matrix, in preference
* to calling the jac() function, or to using forward differencing.
*
* n is a positive integer input variable set to the number of
* functions and variables.
*
* x is an array of length n. On input x must contain an initial
* estimate of the solution vector. On output x contains the
* final estimate of the solution vector.
*
* fvec is an output array of length n which contains the functions
* evaluated at the output x.
*
* fjac is an output N by N array which contains the orthogonal
* matrix Q produced by the QR factorization of the final
* approximate Jacobian.
*
* ldfjac is a positive integer input variable not less than n
* which specifies the leading dimension of the array fjac.
*
* dtol is a nonnegative input variable. Termination occurs when
* the relative error between two consecutive iterates is at most
* dtol. Therefore, dtol measures the relative error desired in
* the approximate solution. Section 4 contains more details
* about dtol.
*
* tol is a nonnegative input variable. Termination occurs when
* the value of all the function values falls below this threshold.
* Termination occurs when either the dtol or tol condition is met.
*
* maxfev is a positive integer input variable. Termination occurs
* when the number of calls to fcn is at least maxfev by the end
* of an iteration.
*
* ml is a nonnegative integer input variable which specifies the
* number of subdiagonals within the band of the Jacobian matrix.
* If the Jacobian is not banded or jac!=null, set ml to at
* least n - 1.
*
* mu is a nonnegative integer input variable which specifies the
* number of superdiagonals within the band of the Jacobian
* matrix. If the Jacobian is not banded or jac!=null, set mu to at
* least n - 1.
*
* epsfcn is an input variable used in determining a suitable step
* for the forward-difference approximation. This approximation
* assumes that the relative errors in the functions are of the
* order of epsfcn. If epsfcn is less than the machine
* precision, it is assumed that the relative errors in the
* functions are of the order of the machine precision. If
* jac!=null, then epsfcn can be ignored (treat it as a dummy
* argument).
*
* diag is an array of length n. If MODE = 1 (see below), diag is
* internally set. If mode = 2, diag must contain positive
* entries that serve as implicit (multiplicative) scale factors
* for the variables.
*
* mode is an integer input variable. If mode = 1, the variables
* will be scaled internally. If mode = 2, the scaling is
* specified by the input diag. Other values of mode are
* equivalent to mode = 1.
*
* factor is a positive input variable used in determining the
* initial step bound. This bound is set to the product of
* factor and the Euclidean norm of diag*x if nonzero, or else to
* factor itself. In most cases factor should lie in the
* interval (.1,100.). 100. is a generally recommended value.
*
* nprint is an integer input variable that enables controlled
* printing of iterates if it is positive. In this case, fcn is
* called with iflag = 0 at the beginning of the first iteration
* and every nprint iterations thereafter and immediately prior
* to return, with x and fvec available for printing. Appropriate
* print statements must be added to fcn(see example). If nprint
* is not positive, no special calls of fcn with iflag = 0 are
* made.
*
* info is an integer output variable. If the user has terminated
* execution, info is set to the (negative) value of iflag. See
* description of fcn and jac. Otherwise, INFO is set as follows.
*
* INFO = 0 Improper input parameters.
*
* INFO = 1 Relative error between two consecutive iterates is
* at most XTOL. Normal sucessful return value.
*
* INFO = 2 Number of calls to FCN has reached or exceeded
* MAXFEV.
*
* INFO = 3 XTOL is too small. No further improvement in the
* approximate solution X is possible.
*
* INFO = 4 Iteration is not making good progress, as measured
* by the improvement from the last five Jacobian
* evaluations.
*
* INFO = 5 Iteration is not making good progress, as measured
* by the improvement from the last ten iterations.
* Return value if no zero can be found from this starting
* point.
*
* Sections 4 and 5 contain more details about INFO.
*
* nfev is an integer output variable set to the number of calls to
* fcn.
*
* njev is an integer output variable set to the number of calls to
* jac. (If jac==null, then njev is set to zero.)
*
* 4. Successful completion.
*
* The accuracy of DNSQ is controlled by the convergence parameter
* XTOL. This parameter is used in a test which makes a comparison
* between the approximation X and a solution XSOL. DNSQ
* terminates when the test is satisfied. If the convergence
* parameter is less than the machine precision (as defined by the
* function D1MACH(4)), then DNSQ only attempts to satisfy the test
* defined by the machine precision. Further progress is not
* usually possible.
*
* The test assumes that the functions are reasonably well behaved,
* and, if the Jacobian is supplied by the user, that the functions
* and the Jacobian are coded consistently. If these conditions
* are not satisfied, then DNSQ may incorrectly indicate
* convergence. The coding of the Jacobian can be checked by the
* subroutine DCKDER. If the Jacobian is coded correctly or JAC==NULL,
* then the validity of the answer can be checked, for example, by
* rerunning DNSQ with a tighter tolerance.
*
* Convergence Test. If DENORM(Z) denotes the Euclidean norm of a
* vector Z and D is the diagonal matrix whose entries are
* defined by the array DIAG, then this test attempts to
* guarantee that
*
* DENORM(D*(X-XSOL)) .LE. XTOL*DENORM(D*XSOL).
*
* If this condition is satisfied with XTOL = 10**(-K), then the
* larger components of D*X have K significant decimal digits and
* INFO is set to 1. There is a danger that the smaller
* components of D*X may have large relative errors, but the fast
* rate of convergence of DNSQ usually avoids this possibility.
*
* Unless high precision solutions are required, the recommended
* value for XTOL is the square root of the machine precision.
*
*
* 5. Unsuccessful Completion.
*
* Unsuccessful termination of DNSQ can be due to improper input
* parameters, arithmetic interrupts, an excessive number of
* function evaluations, or lack of good progress.
*
* Improper Input Parameters. INFO is set to 0 if
* N .LE. 0, or LDFJAC .LT. N, or
* XTOL .LT. 0.E0, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
* or FACTOR .LE. 0.E0, or LR .LT. (N*(N+1))/2.
*
* Arithmetic Interrupts. If these interrupts occur in the FCN
* subroutine during an early stage of the computation, they may
* be caused by an unacceptable choice of X by DNSQ. In this
* case, it may be possible to remedy the situation by rerunning
* DNSQ with a smaller value of FACTOR.
*
* Excessive Number of Function Evaluations. A reasonable value
* for MAXFEV is 100*(N+1) for JAC!=NULL and 200*(N+1) for JAC==NULL.
*
* If the number of calls to FCN reaches MAXFEV, then this
* indicates that the routine is converging very slowly as
* measured by the progress of FVEC, and INFO is set to 2. This
*
* situation should be unusual because, as indicated below, lack
* of good progress is usually diagnosed earlier by DNSQ,
* causing termination with info = 4 or INFO = 5.
*
* Lack of Good Progress. DNSQ searches for a zero of the system
*
* by minimizing the sum of the squares of the functions. In so
* doing, it can become trapped in a region where the minimum
* does not correspond to a zero of the system and, in this
* situation, the iteration eventually fails to make good
* progress. In particular, this will happen if the system does
* not have a zero. If the system has a zero, rerunning DNSQ
* from a different starting point may be helpful.
*
*
* 6. Characteristics of The Algorithm.
*
* DNSQ is a modification of the Powell Hybrid method. Two of its
* main characteristics involve the choice of the correction as a
* convex combination of the Newton and scaled gradient directions,
* and the updating of the Jacobian by the rank-1 method of
* Broyden. The choice of the correction guarantees (under
* reasonable conditions) global convergence for starting points
* far from the solution and a fast rate of convergence. The
* Jacobian is calculated at the starting point by either the
* user-supplied subroutine or a forward-difference approximation,
* but it is not recalculated until the rank-1 method fails to
* produce satisfactory progress.
*
* Timing. The time required by DNSQ to solve a given problem
* depends on N, the behavior of the functions, the accuracy
* requested, and the starting point. The number of arithmetic
* operations needed by DNSQ is about 11.5*(N**2) to process
* each evaluation of the functions (call to FCN) and 1.3*(N**3)
* to process each evaluation of the Jacobian (call to JAC,
* if JAC!=NULL). Unless FCN and JAC can be evaluated quickly,
* the timing of DNSQ will be strongly influenced by the time
* spent in FCN and JAC.
*
* Storage. DNSQ requires (3*N**2 + 17*N)/2 single precision
* storage locations, in addition to the storage required by the
* program. There are no internally declared storage arrays.
*
* References: M. J. D. Powell, A hybrid method for nonlinear equa-
* tions. In Numerical Methods for Nonlinear Algebraic
* Equations, P. Rabinowitz, Editor. Gordon and Breach,
* 1988.
*
* Routines called: D1MPYQ, D1UPDT, DDOGLG, DENORM, DFDJC1, DQFORM, DQRFAC
*
* Revision history: (YYMMDD)
* 800301 DATE WRITTEN
* 890531 Changed all specific intrinsics to generic. (WRB)
* 890831 Modified array declarations. (WRB)
* 890831 REVISION DATE from Version 3.2
* 891214 Prologue converted to Version 4.0 format. (BAB)
* 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
* 920501 Reformatted the REFERENCES section. (WRB)
* 960510 Translated to C and features added. (GWG)
*/
/* Returns status. 0 = OK. */
int dnsq(
void *fdata, /* Opaque data pointer, passed to called functions */
int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag),
/* Pointer to function we are solving */
int (*jac)(void *fdata, int n, double *x, double *fvec, double **fjac),
/* Optional function to compute jacobian, NULL if not used */
double **sjac, /* Optional initial jacobian matrix/last jacobian matrix. NULL if not used.*/
int startsjac, /* Set to non-zero to use sjac as the initial jacobian */
int n, /* Number of functions and variables */
double x[], /* Initial solution estimate, RETURNs final solution */
double fvec[], /* Array that will be RETURNed with thefunction values at the solution */
double dtol, /* Desired delta tollerance of the solution */
double atol, /* Desired tollerance of the root (stops on dtol or tol) */
int maxfev, /* Set excessive Number of Function Evaluations */
int ml, /* number of subdiagonals within the band of the Jacobian matrix. */
int mu, /* number of superdiagonals within the band of the Jacobian matrix. */
double epsfcn, /* determines suitable step for forward-difference approximation */
double diag[], /* Optional scaling factors, use NULL for internal scaling */
double factor, /* Determines the initial step bound */
double maxstep, /* Determines the maximum subsequent step bound (0.0 for none) */
/* maxstep is NOT WORKING !!! ??? */
int nprint, /* Turn on debugging printouts from func() every nprint itterations */
int *nfev, /* RETURNs the number of calls to fcn() */
int *njev /* RETURNs the number of calls to jac() */
) {
int info = 0; /* Return status - invalid argument */
int smode = 0; /* Scaling mode, 1 = internal */
/* Internal working arrays */
double *fjac = NULL; /* n by n array which contains the orthogonal matrix Q */
/* produced by the QR factorization of the final approximate Jacobian. */
int ldfjac = n; /* stride of 2d array */
double **jjac = NULL; /* NR style pointers to fjac */
double *r = NULL; /* Array of length (n*(n+1))/2 which contains the upper */
/* triangular matrix produced by the QR factorization of the */
/* final approximate Jacobian, stored rowwise. */
double *qtf = NULL; /* Array of length n which contains the vector (q transpose)*fvec. */
double *wa1 = NULL; /* Four working arrays length n */
double *wa2 = NULL;
double *wa3 = NULL;
double *wa4 = NULL;
int iwa[1]; /* Pivot swap array (only one element used) */
/* Local variables */
bool jeval;
int iter;
int i, j, k, l, iflag;
int qrflag; /* Set when a valid Q is in fjac[], and R is in r[] */
int ncsuc;
int nslow1, nslow2, ncfail;
double temp;
double delta = 0.0;
double ratio, fnorm, pnorm;
double xnorm = 0.0;
double fnorm1;
double actred, prered;
double sum;
/* Allocate out working arrays */
if (diag == NULL) { /* Internal scaling */
smode = 1;
diag = dvector(0,n-1);
}
fjac = dvector(0,(n * n)-1);
jjac = convert_dmatrix(fjac,0,n-1,0,ldfjac-1);
r = dvector(0,((n * (n+1))/2)-1);
qtf = dvector(0,n-1);
wa1 = dvector(0,n-1);
wa2 = dvector(0,n-1);
wa3 = dvector(0,n-1);
wa4 = dvector(0,n-1);
qrflag = 0;
iflag = 0;
*nfev = 0;
*njev = 0;
/* Check the input parameters for errors. */
if (n <= 0 || dtol < 0.0 || maxfev <= 0
|| ml < 0 || mu < 0 || factor <= 0.0 || maxstep < 0.0
|| (sjac == NULL && startsjac != 0)) {
goto func_exit;
}
if (!smode) { /* Check the scaling array we were given */
for (j = 0; j < n; ++j) {
if (diag[j] <= 0.0) {
goto func_exit;
}
}
}
/* Evaluate the function at the starting point */
/* and calculate its norm. */
*nfev = 1;
if ((iflag = (*fcn)(fdata, n, &x[0], &fvec[0], 1)) < 0)
goto func_exit;
fnorm = denorm(n, &fvec[0]);
/* Initialize iteration counter and monitors. */
iter = 1;
ncsuc = 0;
ncfail = 0;
nslow1 = 0;
nslow2 = 0;
/* Beginning of the outer loop. */
for (;;) {
jeval = TRUE;
/* initialize the jacobian matrix. */
if (startsjac) { /* User provided array */
for (j = 0; j < n; j++) {
for (i = 0; i < n; i++)
fjac[j * ldfjac + i] = sjac[j][i];
}
} else if (jac == NULL) { /* Code approximates the jacobian */
int ti;
iflag = dfdjc1(fdata, fcn, n, &x[0], &fvec[0], &fjac[0], ldfjac,
ml, mu, epsfcn, &wa1[0], &wa2[0]);
ti = ml + mu + 1;
*nfev += min(ti,n);
} else { /* User supplies jacobian function */
iflag = (*jac)(fdata, n, &x[0], &fvec[0], jjac);
++(*njev);
}
#ifdef DEBUG
printf("DNSQ: Jacobian initialized\n");
#endif
if (iflag < 0)
goto func_exit;
/* Compute the qr factorization of the jacobian. */
dqrfac(n, n, &fjac[0], ldfjac, FALSE, iwa, &wa1[0], &wa2[0], &wa3[0]);
/* On the first iteration and if internal scaling mode set, scale */
/* according to the norms of the columns of the initial jacobian. */
/* (wa2[] will contain norms) */
/* Do this on subsequent itterations too, if a maxstep is set. */
if (iter == 1 || maxstep > 0.0) {
if (smode) {
for (j = 0; j < n; ++j) {
diag[j] = wa2[j];
if (wa2[j] == 0.0) {
diag[j] = 1.0;
}
}
}
/* On the first iteration, calculate the norm of the scaled */
/* x[], and initialize the step bound delta. */
for (j = 0; j < n; ++j)
wa3[j] = diag[j] * x[j];
xnorm = denorm(n, &wa3[0]);
if (iter == 1) {
delta = factor * xnorm;
if (delta == 0.0)
delta = factor;
#ifdef DEBUG
printf("Initial Delta = %f\n",delta);
#endif /* DEBUG */
} else {
delta = maxstep * xnorm;
if (delta == 0.0)
delta = maxstep;
#ifdef DEBUG
printf("Subsequent Delta = %f\n",delta);
#endif /* DEBUG */
}
}
/* Form (q transpose)*fvec and store in qtf. */
for (i = 0; i < n; ++i)
qtf[i] = fvec[i];
for (j = 0; j < n; ++j) {
if (fjac[j + j * ldfjac] != 0.0) {
sum = 0.0;
for (i = j; i < n; ++i)
sum += fjac[i + j * ldfjac] * qtf[i];
temp = -sum / fjac[j + j * ldfjac];
for (i = j; i < n; ++i)
qtf[i] += fjac[i + j * ldfjac] * temp;
}
}
/* Copy the triangular factor of the qr factorization into r. */
for (j = 0; j < n; ++j) {
l = j;
if (j >= 1) {
for (i = 0; i < j; ++i) {
r[l] = fjac[i + j * ldfjac];
l += (n-1) - i;
}
}
r[l] = wa1[j];
}
/* Accumulate the orthogonal factor Q in fjac. */
dqform(n, n, &fjac[0], ldfjac, &wa1[0]);
qrflag = 1;
/* Rescale if necessary. */
if (smode) {
for (j = 0; j < n; ++j) {
diag[j] = max(diag[j],wa2[j]);
}
}
/* Beginning of the inner loop. */
for (;;) {
/* If requested, call fcn to enable printing of iterates. */
if (nprint > 0) {
if ((iter - 1) % nprint == 0)
if ((iflag = (*fcn)(fdata, n, &x[0], &fvec[0], 0)) < 0)
goto func_exit;
}
#ifdef DEBUG
/* If the user supplied an array, and there is a valid Q in */
/* fjac[], and R is in r[], recover the most recent Jacobian */
/* matrix by multiplying Q by R */
if (qrflag && sjac) {
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
double temp = 0.0;
l = j;
for (k = 0; k <= j; ++k) {
temp += fjac[k * ldfjac + i] * r[l];
l += (n-1-k);
}
sjac[j][i] = temp;
}
}
printf("Current Jacobian = \n");
for (j = 0; j < n; ++j) {
for (i = 0; i < n; ++i) {
printf("%f ",sjac[j][i]);
}
printf("\n");
}
}
#endif /* DEBUG */
/* Determine the direction p. */
ddoglg(n, &r[0], &diag[0], &qtf[0], delta, &wa1[0], &wa2[0], &wa3[0]);
/* Store the direction p and x + p. calculate the norm of p. */
/* (wa1[] is X[] output array from ddoglg()) */
for (j = 0; j < n; ++j) {
wa1[j] = -wa1[j];
wa2[j] = x[j] + wa1[j];
wa3[j] = diag[j] * wa1[j];
}
pnorm = denorm(n, &wa3[0]);
/* On the first iteration, adjust the initial step bound. */
/* Do this on subsequent itterations too, if maxstep is set. */
if (iter == 1 || maxstep > 0.0) {
delta = min(delta,pnorm);
#ifdef DEBUG
if (iter == 1)
printf("First itter Delta = %f\n",delta);
else
printf("Subsequent itter Delta = %f\n",delta);
#endif /* DEBUG */
}
/* Evaluate the function at x + p and calculate its norm. */
++(*nfev);
if ((iflag = (*fcn)(fdata, n, &wa2[0], &wa4[0], 1)) < 0)
goto func_exit;
fnorm1 = denorm(n, &wa4[0]);
/* Compute the scaled actual reduction. */
actred = -1.0; /* Assume norm is made worse */
if (fnorm1 < fnorm) { /* There was a reduction in the norm */
double td;
td = fnorm1 / fnorm;
actred = 1.0 - td * td;
}
/* Compute the scaled predicted reduction. */
l = 0;
for (i = 0; i < n; ++i) {
sum = 0.0;
for (j = i; j < n; ++j) {
sum += r[l] * wa1[j];
++l;
}
wa3[i] = qtf[i] + sum;
}
temp = denorm(n, &wa3[0]);
prered = 0.0;
if (temp < fnorm) {
double td;
td = temp / fnorm;
prered = 1.0 - td * td;
}
/* Compute the ratio of the actual to the predicted reduction. */
ratio = 0.0; /* Assume no improvement */
if (prered > 0.0)
ratio = actred / prered;
#ifdef DEBUG
printf("DNSQ: actual/predicted ratio = %f\n",ratio);
#endif /* DEBUG */
/* Update the step bound. */
if (ratio < 0.1) {
ncsuc = 0;
++ncfail; /* Forces jacobian recalc when ncfail == 2 */
delta = 0.5 * delta;
#ifdef DEBUG
printf("ratio < 0.1 bad, Delta = %f, ncfail = %d\n",delta,ncfail);
#endif /* DEBUG */
} else {
ncfail = 0; /* Pospone jacobian recalc */
++ncsuc;
if (ratio >= 0.5 || ncsuc > 1) {
delta = max(delta, pnorm / 0.5);
#ifdef DEBUG
printf("ratio > 0.1 good, Delta = %f, ncsuc = %d\n",delta,ncsuc);
#endif /* DEBUG */
}
if (fabs(ratio - 1.0) <= 0.1) {
delta = 2.0 * pnorm;
#ifdef DEBUG
printf("abs(ratio -1.0) <= 0.1 Delta = %f\n",delta);
#endif /* DEBUG */
}
}
/* Test for progressing iteration. */
if (ratio > 0.0001) {
#ifdef DEBUG
printf("Successful itter\n");
#endif /* DEBUG */
/* Successful iteration. update x, fvec, and their norms. */
for (j = 0; j < n; ++j) {
x[j] = wa2[j];
wa2[j] = diag[j] * x[j];
fvec[j] = wa4[j];
}
xnorm = denorm(n, &wa2[0]);
fnorm = fnorm1;
++iter;
}
#ifdef DEBUG
printf("DNSQ: actual = %f\n",actred);
#endif /* DEBUG */
/* Determine the progress of the iteration. */
++nslow1;
if (fabs(actred) >= 0.001)
nslow1 = 0;
if (jeval)
++nslow2;
if (fabs(actred) >= 0.1)
nslow2 = 0;
/* Test for convergence. */
if (delta <= dtol * xnorm || fnorm == 0.0) {
#ifdef DEBUG
printf("DNSQ: delta %f <= dtol * xnorm %f || fnorm == %f\n",delta,dtol * xnorm,fnorm);
#endif /* DEBUG */
info = 1;
goto func_exit;
}
/* Test for root meeting tolerance (GWG) */
for (j = 0; j < n; ++j) {
if (fabs(fvec[j]) > atol)
break;
}
if (j >= n) { /* All were below tollerance */
#ifdef DEBUG
printf("DNSQ: fvecs are all <= atol %f\n",atol);
#endif /* DEBUG */
info = 1;
goto func_exit;
}
/* Tests for termination and stringent tolerances. */
if (*nfev >= maxfev)
info = 2;
if (0.1 * max(0.1 * delta, pnorm) <= M_DIVER * xnorm)
info = 3;
if (nslow2 == 5)
info = 4;
if (nslow1 == 10)
info = 5;
if (info != 0)
goto func_exit;
/* Criterion for recalculating jacobian */
if (ncfail == 2) {
break; /* Break out of inner loop */
}
/* Calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
for (j = 0; j < n; ++j) {
sum = 0.0;
for (i = 0; i < n; ++i) {
sum += fjac[i + j * ldfjac] * wa4[i];
}
wa2[j] = (sum - wa3[j]) / pnorm;
wa1[j] = diag[j] * (diag[j] * wa1[j] / pnorm);
if (ratio >= 1e-4) {
qtf[j] = sum;
}
}
/* Compute the qr factorization of the updated jacobian. */
d1updt(n, n, &r[0], &wa1[0], &wa2[0], &wa3[0]);
d1mpyq(n, n, &fjac[0], ldfjac, &wa2[0], &wa3[0]);
d1mpyq(1, n, &qtf[0], 1, &wa2[0], &wa3[0]);
jeval = FALSE;
} /* End of the inner loop. */
} /* End of the outer loop. */
/* Termination, either normal or user imposed. */
func_exit:
/* If the user supplied an array, and there is a valid Q in */
/* fjac[], and R is in r[], recover the most recent Jacobian */
/* matrix by multiplying Q by R */
if (qrflag && sjac) {
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
double temp = 0.0;
l = j;
for (k = 0; k <= j; ++k) {
temp += fjac[k * ldfjac + i] * r[l];
l += (n-1-k);
}
sjac[j][i] = temp;
}
}
}
/* Free our working arrays */
if (smode)
free_dvector(diag,0,n-1);
free_dvector(fjac,0,(n * n)-1);
free_convert_dmatrix(jjac,0,n-1,0,ldfjac-1);
free_dvector(r,0,((n * (n+1))/2)-1);
free_dvector(qtf,0,n-1);
free_dvector(wa1,0,n-1);
free_dvector(wa2,0,n-1);
free_dvector(wa3,0,n-1);
free_dvector(wa4,0,n-1);
if (iflag < 0)
info = iflag;
if (nprint > 0)
(*fcn)(fdata, n, &x[0], &fvec[0], 0);
#ifdef DEBUG
if (info < 0)
printf("dnsq: Execution terminated because user set iflag negative\n");
if (info == 0)
printf("dnsq: Invalid input parameter\n");
if (info == 2)
printf("dnsq: Too many function evaluations\n");
if (info == 3)
printf("dnsq: dtol too small. no further improvement possible\n");
if (info > 4)
printf("dnsq: Iteration not making good progress\n");
#endif /* DEBUG */
return info;
} /* dnsq */
/***************************************************************/
/***************************************************************/
/*
* Given an M by N matrix A, this subroutine computes A*Q where
* Q is the product of 2*(N - 1) transformations
*
* GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1)
*
* and GV(I), GW(I) are Givens rotations in the (I,N) plane which
* eliminate elements in the I-th and N-th planes, respectively.
* Q itself is not given, rather the information to recover the
* GV, GW rotations is supplied.
*
*/
static int d1mpyq(
int m, /* Number of rows of A */
int n, /* Number of columns of A */
double *a, /* M by N array */
int lda, /* stride for a[][] */
double *v, /* Input array */
double *w) /* Input array */
{
/* Local variables */
int i, j;
int nm1 = n - 1;
double temp;
double cos_ = 0.0, sin_ = 0.0;
/* Apply the first set of givens rotations to a. */
if (nm1 >= 1) {
for (j = n-2; j >= 0; --j) {
if (fabs(v[j]) > 1.0)
cos_ = 1.0 / v[j];
if (fabs(v[j]) > 1.0) { /* Computing 2nd power */
sin_ = sqrt(1.0 - cos_ * cos_);
}
if (fabs(v[j]) <= 1.0) {
sin_ = v[j];
}
if (fabs(v[j]) <= 1.0) { /* Computing 2nd power */
cos_ = sqrt(1.0 - sin_ * sin_);
}
for (i = 0; i < m; ++i) {
temp = cos_ * a[i + j * lda] - sin_ * a[i + nm1 * lda];
a[i + nm1 * lda] = sin_ * a[i + j * lda] + cos_ * a[i + nm1 * lda];
a[i + j * lda] = temp;
}
}
/* Apply the second set of givens rotations to a. */
for (j = 0; j < nm1; ++j) {
if (fabs(w[j]) > 1.0)
cos_ = 1.0 / w[j];
if (fabs(w[j]) > 1.0) { /* Computing 2nd power */
sin_ = sqrt(1.0 - cos_ * cos_);
}
if (fabs(w[j]) <= 1.0)
sin_ = w[j];
if (fabs(w[j]) <= 1.0) { /* Computing 2nd power */
cos_ = sqrt(1.0 - sin_ * sin_);
}
for (i = 0; i < m; ++i) {
temp = cos_ * a[i + j * lda] + sin_ * a[i + nm1 * lda];
a[i + nm1 * lda] = -sin_ * a[i + j * lda] + cos_ * a[i + nm1 * lda];
a[i + j * lda] = temp;
}
}
}
return 0;
}
/***************************************************************/
/***************************************************************/
/*
* Given an M by N lower trapezoidal matrix S, an M-vector U,
* and an N-vector V, the problem is to determine an
* orthogonal matrix Q such that
*
* t
* (S + U*V )*Q
*
* is again lower trapezoidal.
*
* This subroutine determines Q as the product of 2*(N - 1)
* transformations
*
* GV(N-1)*...*GV(1)*GW(1)*...*GW(N-1)
*
* where GV(I), GW(I) are Givens rotations in the (I,N) plane
* which eliminate elements in the I-th and N-th planes,
* respectively. Q itself is not accumulated, rather the
* information to recover the GV, GW rotations is returned.
*
*/
static int d1updt(
int m, /* Number of rows of S */
int n, /* Number of columns of S */
double *s, /* Array of length (n*(2*m-n+1))/2 containing the lower trapezoid matrix */
double *u, /* U vector lenghth m */
double *v, /* V vector length n */
double *w) /* Output array W length m */
{
int i, j, l;
int jj;
int nm1 = n - 1;
int nmj;
double temp;
double giant, cotan;
double tan_;
double cos_, sin_, tau;
/* Giant is the largest magnitude. */
giant = M_LARGE;
/* Initialize the diagonal element pointer. */
jj = n * ((m << 1) - n + 1) / 2 - (m - n) - 1;
/* Move the nontrivial part of the last column of s into w. */
l = jj;
for (i = nm1; i < m; ++i) {
w[i] = s[l];
++l;
}
/* Rotate the vector v into a multiple of the n-th unit vector */
/* in such a way that a spike is introduced into w. */
if (nm1 >= 1) {
for (nmj = 1; nmj <= nm1; ++nmj) {
j = n - nmj - 1;
jj -= m - j;
w[j] = 0.0;
if (v[j] == 0.0)
continue;
/* Determine a givens rotation which eliminates the */
/* j-th element of v. */
if (fabs(v[nm1]) < fabs(v[j])) {
cotan = v[nm1] / v[j];
sin_ = 0.5 / sqrt(0.25 + 0.25 * (cotan * cotan));
cos_ = sin_ * cotan;
tau = 1.0;
if (fabs(cos_) * giant > 1.0) {
tau = 1.0 / cos_;
}
} else {
tan_ = v[j] / v[nm1];
cos_ = 0.5 / sqrt(0.25 + 0.25 * (tan_ * tan_));
sin_ = cos_ * tan_;
tau = sin_;
}
/* Apply the transformation to v and store the information */
/* necessary to recover the givens rotation. */
v[nm1] = sin_ * v[j] + cos_ * v[nm1];
v[j] = tau;
/* Apply the transformation to s and extend the spike in w. */
l = jj;
for (i = j; i < m; ++i) {
temp = cos_ * s[l] - sin_ * w[i];
w[i] = sin_ * s[l] + cos_ * w[i];
s[l] = temp;
++l;
}
}
}
/* Add the spike from the rank 1 update to w. */
for (i = 0; i < m; ++i)
w[i] += v[nm1] * u[i];
/* Eliminate the spike. */
if (nm1 >= 1) {
for (j = 0; j < nm1; ++j) {
if (w[j] != 0.0) {
/* Determine a givens rotation which eliminates the */
/* j-th element of the spike. */
if (fabs(s[jj]) < fabs(w[j])) {
cotan = s[jj] / w[j];
sin_ = 0.5 / sqrt(0.25 + 0.25 * (cotan * cotan));
cos_ = sin_ * cotan;
tau = 1.0;
if (fabs(cos_) * giant > 1.0) {
tau = 1.0 / cos_;
}
} else {
tan_ = w[j] / s[jj];
cos_ = 0.5 / sqrt(0.25 + 0.25 * (tan_ * tan_));
sin_ = cos_ * tan_;
tau = sin_;
}
/* Apply the transformation to s and reduce the spike in w. */
l = jj;
for (i = j; i < m; ++i) {
temp = cos_ * s[l] + sin_ * w[i];
w[i] = -sin_ * s[l] + cos_ * w[i];
s[l] = temp;
++l;
}
/* Store the information necessary to recover the givens rotation. */
w[j] = tau;
}
jj += m - j;
}
}
/* Move w back into the last column of the output s. */
l = jj;
for (i = nm1; i < m; ++i) {
s[l] = w[i];
++l;
}
return 0;
}
/***************************************************************/
/***************************************************************/
/*
* Given an M by N matrix A, an N by N nonsingular diagonal
* matrix D, an M-vector B, and a positive number DELTA, the
* problem is to determine the convex combination X of the
* Gauss-Newton and scaled gradient directions that minimizes
* (A*X - B) in the least squares sense, subject to the
* restriction that the Euclidean norm of D*X be at most DELTA.
*
* This subroutine completes the solution of the problem
* if it is provided with the necessary information from the
* QR factorization of A. That is, if A = Q*R, where Q has
* orthogonal columns and R is an upper triangular matrix,
* then DDOGLG expects the full upper triangle of R and
* the first N components of (Q transpose)*B.
*
*/
static int ddoglg(
int n, /* Order of r[] */
double r[], /* Array of length (n*(n+!))/2 containing upper triangular matrix */
double diag[], /* Array of length n containing the diagonal elements of the matrix d[] */
double qtb[], /* Array of length n containing first n elements of vector (Q transpose)*B */
double delta, /* Upper bound on the Euclidean norm of D*X */
double x[], /* output array of length N containing the desired direction */
double wa1[], /* Working arrays length n */
double wa2[])
{
int i, j, k, l;
int jj;
int jp1;
int nm1 = n-1;
double temp;
double alpha, gnorm, qnorm;
double epsmch;
double sgnorm;
double sum;
/* Epsmch is the machine precision. */
epsmch = M_DIVER;
/* First, calculate the gauss-newton direction. */
jj = n * (n + 1) / 2;
for (k = 0; k < n; ++k) {
j = nm1 - k;
jp1 = j + 1;
jj -= (k+1);
l = jj + 1;
sum = 0.0;
if (n >= (jp1+1)) {
for (i = jp1; i < n; ++i) {
sum += r[l] * x[i];
++l;
}
}
temp = r[jj];
if (temp == 0.0) {
l = j;
for (i = 0; i <= j; ++i) { /* Computing MAX */
double dt;
dt = fabs(r[l]);
temp = max(temp,dt);
l += nm1 - i;
}
temp = epsmch * temp;
if (temp == 0.0) {
temp = epsmch;
}
}
x[j] = (qtb[j] - sum) / temp;
}
/* Test whether the gauss-newton direction is acceptable. */
for (j = 0; j < n; ++j) {
wa1[j] = 0.0;
wa2[j] = diag[j] * x[j];
}
qnorm = denorm(n, &wa2[0]);
if (qnorm <= delta) {
return 0; /* Done - use this direction */
}
/* The gauss-newton direction is not acceptable. */
/* Next, calculate the scaled gradient direction. */
l = 0;
for (j = 0; j < n; ++j) {
temp = qtb[j];
for (i = j; i < n; ++i) {
wa1[i] += r[l] * temp;
++l;
}
wa1[j] /= diag[j];
}
/* Calculate the norm of the scaled gradient and test for */
/* The special case in which the scaled gradient is zero. */
gnorm = denorm(n, &wa1[0]);
sgnorm = 0.0;
alpha = delta / qnorm;
if (gnorm != 0.0) {
/* Calculate the point along the scaled gradient */
/* at which the quadratic is minimized. */
for (j = 0; j < n; ++j)
wa1[j] = wa1[j] / gnorm / diag[j];
l = 0;
for (j = 0; j < n; ++j) {
sum = 0.0;
for (i = j; i < n; ++i) {
sum += r[l] * wa1[i];
++l;
}
wa2[j] = sum;
}
temp = denorm(n, &wa2[0]);
sgnorm = gnorm / temp / temp;
/* Test whether the scaled gradient direction is acceptable. */
alpha = 0.0;
if (sgnorm < delta) {
double d0,d1,d2,d3,d4,
/* The scaled gradient direction is not acceptable. */
/* Finally, calculate the point along the dogleg */
/* at which the quadratic is minimized. */
bnorm = denorm(n, &qtb[0]);
d0 = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
d1 = sgnorm / delta;
d2 = d0 - delta / qnorm;
d3 = delta / qnorm;
d4 = sgnorm / delta;
d0 = d0 - delta / qnorm * (d1 * d1)
+ sqrt(d2 * d2 + (1.0 - d3 * d3) * (1.0 - d4 * d4));
d1 = sgnorm / delta;
alpha = delta / qnorm * (1.0 - d1 * d1) / d0;
}
}
/* Form appropriate convex combination of the gauss-newton */
/* direction and the scaled gradient direction. */
temp = (1.0 - alpha) * min(sgnorm,delta);
for (j = 0; j < n; ++j)
x[j] = temp * wa1[j] + alpha * x[j];
return 0;
} /* ddoglg */
/***************************************************************/
/***************************************************************/
/*
* Given an N-vector X, this function calculates the
* Euclidean norm of X.
*
* The Euclidean norm is computed by accumulating the sum of
* squares in three different sums. The sums of squares for the
* small and large components are scaled so that no overflows
* occur. Non-destructive underflows are permitted. Underflows
* and overflows do not occur in the computation of the unscaled
* sum of squares for the intermediate components.
* The definitions of small, intermediate and large components
* depend on two constants, RDWARF and RGIANT. The main
* restrictions on these constants are that RDWARF**2 not
* underflow and RGIANT**2 not overflow. The constants
* given here are suitable for every known computer.
*
*/
static double denorm(
int n, /* Size of x[] */
double x[]) /* Input vector */
{
if (n < 8) { /* Make it simple and fast */
double ss = 0.0;
switch (n) {
case 8:
ss += x[7] * x[7];
case 7:
ss += x[6] * x[6];
case 6:
ss += x[5] * x[5];
case 5:
ss += x[4] * x[4];
case 4:
ss += x[3] * x[3];
case 3:
ss += x[2] * x[2];
case 2:
ss += x[1] * x[1];
case 1:
ss += x[0] * x[0];
}
return sqrt(ss);
} else {
/* Initialized data */
static double rdwarf = 3.834e-20;
static double rgiant = 1.304e19;
/* Local variables */
static double xabs, x1max, x3max;
static int i;
static double s1, s2, s3, agiant, floatn;
double ret_val, td;
s1 = 0.0; /* Large component */
s2 = 0.0; /* Intermedate component */
s3 = 0.0; /* Small component */
x1max = 0.0;
x3max = 0.0;
floatn = (double) (n + 1);
agiant = rgiant / floatn;
for (i = 0; i < n; i++) {
xabs = (td = x[i], fabs(td));
/* Sum for intermediate components. */
if (xabs > rdwarf && xabs < agiant) {
td = xabs; /* Computing 2nd power */
s2 += td * td;
/* Sum for small components. */
} else if (xabs <= rdwarf) {
if (xabs <= x3max) {
if (xabs != 0.0) { /* Computing 2nd power */
td = xabs / x3max;
s3 += td * td;
}
} else { /* Computing 2nd power */
td = x3max / xabs;
s3 = 1.0 + s3 * (td * td);
x3max = xabs;
}
/* Sum for large components. */
} else {
if (xabs <= x1max) { /* Computing 2nd power */
td = xabs / x1max;
s1 += td * td;
} else { /* Computing 2nd power */
td = x1max / xabs;
s1 = 1.0 + s1 * (td * td);
x1max = xabs;
}
}
}
/* Calculation of norm. */
if (s1 != 0.0) { /* Large is present */
ret_val = x1max * sqrt(s1 + s2 / x1max / x1max);
} else { /* Medium and small are present */
if (s2 == 0.0) {
ret_val = x3max * sqrt(s3); /* Small only */
} else {
if (s2 >= x3max) { /* Medium larger than small */
ret_val = sqrt(s2 * (1.0 + x3max / s2 * (x3max * s3)));
} else { /* Small large than medium */
ret_val = sqrt(x3max * (s2 / x3max + x3max * s3));
}
}
}
return ret_val;
}
}
/***************************************************************/
/***************************************************************/
/*
* This subroutine computes a forward-difference approximation
* to the N by N Jacobian matrix associated with a specified
* problem of N functions in N variables. If the Jacobian has
* a banded form, then function evaluations are saved by only
* approximating the nonzero terms.
*
*/
static int dfdjc1( /* Return < 0 if fcn() aborts */
void *fdata, /* Opaque data pointer to pass to fcn() */
int (*fcn)(void *fdata, int n, double *x, double *fvec, int iflag),
/* Pointer to function we are solving */
int n, /* Number of functions and variables */
double x[], /* Input array size n */
double fvec[], /* array of length n which must contain the functions evaluated at x[] */
double fjac[], /* output n by n array containing approximation to the Jacobian matrix at x[] */
int ldfjac, /* stride of fjac[] */
int ml, /* Number of subdiagonals within the band of the Jacobian matrix */
int mu, /* Number of superdiagonals within the band of the Jacobian matrix */
double epsfcn, /* Step length for the forward-difference approximation */
double *wa1, /* Working arrays of length n */
double *wa2)
{
/* Local variables */
int iflag = 0;
double temp;
int msum;
double h;
int i, j, k;
double eps;
int nm1 = n-1;
/* M_DIVER is the machine precision. */
eps = sqrt((max(epsfcn,M_DIVER)));
msum = ml + mu + 1;
if (msum >= n) {
/* Computation of dense approximate jacobian. */
for (j = 0; j < n; ++j) {
temp = x[j];
h = eps * fabs(temp);
if (h == 0.0)
h = eps;
x[j] = temp + h;
if ((iflag = (*fcn)(fdata,n, &x[0], &wa1[0], 1)) < 0)
break;
x[j] = temp;
for (i = 0; i < n; ++i)
fjac[i + j * ldfjac] = (wa1[i] - fvec[i]) / h;
}
} else {
/* Computation of banded approximate jacobian. */
for (k = 0; k < msum; ++k) {
for (j = k; msum < 0 ? j >= nm1 : j <= nm1; j += msum) {
wa2[j] = x[j];
h = eps * fabs(wa2[j]);
if (h == 0.0)
h = eps;
x[j] = wa2[j] + h;
}
if ((iflag = (*fcn)(fdata, n, &x[0], &wa1[0], 1)) < 0)
break;
for (j = k; msum < 0 ? j >= nm1 : j <= nm1; j += msum) {
x[j] = wa2[j];
h = eps * fabs(wa2[j]);
if (h == 0.0)
h = eps;
for (i = 0; i < n; ++i) {
fjac[i + j * ldfjac] = 0.0;
if (i >= j - mu && i <= j + ml)
fjac[i + j * ldfjac] = (wa1[i] - fvec[i]) / h;
}
}
}
}
return iflag;
} /* dfdjc1_ */
/***************************************************************/
/***************************************************************/
/*
* This subroutine proceeds from the computed QR factorization of
* an M by N matrix A to accumulate the M by M orthogonal matrix
* Q from its factored form.
*
*/
static int dqform(
int m, /* No of rows of A and the order of Q. */
int n, /* No of columns of A. */
double *q, /* m by m array */
int ldq, /* stride of q[][] */
double *wa) /* Working aray length m */
{
int i, j, k, l, minmn;
double sum;
/* Zero out upper triangle of q in the first min(m,n) columns. */
minmn = min(m,n);
if (minmn >= 2) {
for (j = 1; j < minmn; ++j) {
for (i = 0; i < j; ++i)
q[i + j * ldq] = 0.0;
}
}
/* Initialize remaining columns to those of the identity matrix. */
if (m > n) {
for (j = n; j < m; ++j) {
for (i = 0; i < m; ++i) {
q[i + j * ldq] = 0.0;
}
q[j + j * ldq] = 1.0;
}
}
/* Accumulate q from its factored form. */
for (l = 0; l < minmn; ++l) {
k = minmn - l - 1;
for (i = k; i < m; ++i) {
wa[i] = q[i + k * ldq];
q[i + k * ldq] = 0.0;
}
q[k + k * ldq] = 1.0;
if (wa[k] != 0.0) {
for (j = k; j < m; ++j) {
double temp;
sum = 0.0;
for (i = k; i < m; ++i)
sum += q[i + j * ldq] * wa[i];
temp = sum / wa[k];
for (i = k; i < m; ++i)
q[i + j * ldq] -= temp * wa[i];
}
}
}
return 0;
} /* dqform_ */
/***************************************************************/
/***************************************************************/
/*
* This subroutine uses Householder transformations with column
* pivoting (optional) to compute a QR factorization of the
* M by N matrix A. That is, DQRFAC determines an orthogonal
* matrix Q, a permutation matrix P, and an upper trapezoidal
* matrix R with diagonal elements of nonincreasing magnitude,
* such that A*P = Q*R. The Householder transformation for
* column K, K = 1,2,...,MIN(M,N), is of the form
*
* T
* I - (1/U(K))*U*U
*
* where U has zeros in the first K-1 positions. The form of
* this transformation and the method of pivoting first
* appeared in the corresponding LINPACK subroutine.
*
*/
static int dqrfac(
int m, /* Number of rows of a[] */
int n, /* Number of columns of a[] */
double *a, /* m by n array */
int lda, /* stride of a[][] */
bool pivot, /* TRUE to enforce column pivoting */
int *ipvt, /* Pivot output array, size n */
double *sigma, /* Output diagonal elements of R, length n */
double *acnorm, /* Output norms of A, length n */
double *wa) /* Working array size n */
{
/* Local variables */
int kmax;
int i, j, k, minmn;
double ajnorm;
int jp1;
double sum;
/* Compute the initial column norms and initialize several arrays. */
for (j = 0; j < n; ++j) {
acnorm[j] = denorm(m, &a[j * lda]);
sigma[j] = acnorm[j];
wa[j] = sigma[j];
if (pivot)
ipvt[j] = j;
}
/* Reduce a to r with householder transformations. */
minmn = min(m,n);
for (j = 0; j < minmn; ++j) {
if (pivot) {
/* Bring the column of largest norm into the pivot position. */
kmax = j;
for (k = j; k < n; ++k) {
if (sigma[k] > sigma[kmax]) {
kmax = k;
}
}
if (kmax != j) {
for (i = 0; i < m; ++i) {
double temp;
temp = a[i + j * lda];
a[i + j * lda] = a[i + kmax * lda];
a[i + kmax * lda] = temp;
}
sigma[kmax] = sigma[j];
wa[kmax] = wa[j];
k = ipvt[j];
ipvt[j] = ipvt[kmax];
ipvt[kmax] = k;
}
}
/* Compute the householder transformation to reduce the */
/* j-th column of a to a multiple of the j-th unit vector. */
ajnorm = denorm(m - j, &a[j + j * lda]);
if (ajnorm != 0.0) {
if (a[j + j * lda] < 0.0)
ajnorm = -ajnorm;
for (i = j; i < m; ++i)
a[i + j * lda] /= ajnorm;
a[j + j * lda] += 1.0;
/* Apply the transformation to the remaining columns */
/* and update the norms. */
jp1 = j + 1;
if (n > jp1) {
for (k = jp1; k < n; ++k) {
double temp;
sum = 0.0;
for (i = j; i < m; ++i)
sum += a[i + j * lda] * a[i + k * lda];
temp = sum / a[j + j * lda];
for (i = j; i < m; ++i)
a[i + k * lda] -= temp * a[i + j * lda];
if (pivot && sigma[k] != 0.0) {
temp = a[j + k * lda] / sigma[k];
temp = 1.0 - temp * temp;
sigma[k] *= sqrt((max(0.0,temp)));
temp = sigma[k] / wa[k];
if (0.05 * (temp * temp) <= M_DIVER) {
sigma[k] = denorm(m - jp1, &a[jp1 + k * lda]);
wa[k] = sigma[k];
}
}
}
}
}
sigma[j] = -ajnorm;
}
return 0;
} /* dqrfac_ */
/***************************************************************/
/***************************************************************/
|