1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
/*
* Copyright 2018 Graeme Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
#include "numsup.h"
#include "ludecomp.h"
#include "gnewt.h" /* Public interface definitions */
#undef DEBUG
#ifdef DEBUG
# define DBG(xx) printf xx;
#else
# define DBG(xx)
#endif
#define TOLX 1.0e-7 /* Convergence criterion on delx */
#define STPMX 100.0 /* Maximum step multiplier */
static void apxjac(int n, double *x, double *fvec, double **df, void *fdata,
void (*fcn)(void *fdata, int n, double *x, double *fvec));
static int linesearch(int n, double *xold, double fold, double *delf, double *delx,
double *x, double *fvec, double *fp, double maxstep, void *fdata,
void (*fcn)(void *fdata, int n, double *x, double *f), int *pfit, int maxjac, int it);
#define FMAX(A, B) ((A) > (B) ? (A) : (B))
int gnewt(
void *fdata, /* Opaque pointer to pass to fcn() and jac() */
void (*fcn)(void *fdata, int n, double *x, double *fvec),
/* Pointer to function we are solving */
void (*jac)(void *fdata, int n, double *x, double **fjac),
/* Function to compute jacobian */
int n, /* Number of functions and variables */
double x[], /* Initial solution estimate, returns final solution */
double rfvec[], /* Optionaly return soln. function values */
double xtol, /* Desired tollerance of root */
double ftol, /* Desired tollerance of the solution */
int maxfcn, /* Maximum number of function itterations */
int maxjac /* Maximum number of jacobian itterations */
) {
int i, j, it, fit, jit, *pivx, _pivx[10];
double f, fold; /* half magnitide squared of fvec[] */
double *delf, _delf[10]; /* del f where f = 0.5 F.F */
double *fvec, _fvec[10]; /* F(x) */
double **fjac, *_fjac[11], __fjac[10 * 10];
double *xold, _xold[10];
double bigfx, bigx, maxstep;
double *delx, _delx[10]; /* Full step delta x */
double sum;
int rv = 0;
#ifdef DEBUG
double *fvec_check;
double **fjac_check;
#endif
DBG(("gnewt:\n"))
fit = jit = 0;
/* Do local vector/array allocations */
if (n <= 10) {
pivx = _pivx;
if (rfvec == NULL) {
fvec = _fvec;
} else
fvec = rfvec;
_fjac[0] = __fjac;
fjac = _fjac+1; /* dmatrix_reset() will setup fjac */
xold = _xold;
delf = _delf;
delx = _delx;
} else {
pivx = ivector(0, n-1); /* LU decomp. pivod record */
if (rfvec == NULL) {
fvec = dvector(0, n-1); /* Function value */
} else
fvec = rfvec;
fjac = dmatrix(0, n-1, 0, n-1); /* Jacobian matrix */
xold = dvector(0, n-1); /* Previous value of x[] */
delf = dvector(0, n-1); /* del f */
delx = dvector(0, n-1); /* Full step delta x */
}
#ifdef DEBUG
fvec_check = dvector(0, n-1);
fjac_check = dmatrix(0, n-1, 0, n-1);
#endif
/* Initial function value */
fcn(fdata, n, x, fvec);
fit++;
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
/* Compute half magnitide squared of function value at x */
for (sum = 0.0, i = 0; i < n; i++)
sum += fvec[i] * fvec[i];
f = 0.5 * sum;
DBG((" f %f\n",f))
/* test for initial value being a root */
for (bigfx = 0.0, i = 0; i < n; i++) {
double tt = fabs(fvec[i]);
if (tt > bigfx)
bigfx = tt;
}
if (bigfx < (0.01 * ftol)) {
goto done;
}
/* Compute line search x maximum step size */
for (sum = 0.0, i = 0 ; i < n; i++)
sum += x[i] * x[i];
maxstep = STPMX * FMAX(sqrt(sum), (double)n);
DBG((" maxstep %f\n",maxstep))
/* Until we are done */
for (it = 0; fit < maxfcn && jit < maxjac; it++) {
double rip;
DBG((" fit %d jit %d\n",fit,jit))
/* Compute Jacobian matrix */
if (jac != NULL) {
/* lu_decomp may have swapped rows - so fix it */
dmatrix_reset(fjac, 0, n-1, 0, n-1);
jac(fdata, n, x, fjac); /* User function */
} else {
apxjac(n, x, fvec, fjac, fdata, fcn); /* Numerical aproximation */
}
jit++;
#ifdef DEBUG
copy_dmatrix(fjac_check, fjac, 0, n-1, 0, n-1);
DBG((" fjac = \n"))
for (i = 0; i < n; i++)
DBG((" %d: %s\n",i,debPdv(n, fjac[i])))
DBG(("\n"))
#endif
/* Compute del f for the line search. */
for (i = 0; i < n; i++) {
for (sum = 0.0, j = 0; j < n; j++)
sum += fjac[j][i] * fvec[j]; /* Hmm. df/dx . f */
delf[i] = sum;
}
/* Save current values of x and f to be able to monitor progres */
for (i = 0; i < n; i++)
xold[i] = x[i];
fold = f;
/* Desired delta f to make F(x) == 0 */
for (i = 0; i < n; i++)
delx[i] = -fvec[i];
DBG((" -fvec %s\n",debPdv(n,delx)))
/* Solve for delta x using Jacobian and desired delta f */
if (lu_decomp(fjac, n, pivx, &rip)) {
rv = 2;
goto done;
}
lu_backsub(fjac, n, pivx, delx);
DBG((" delx %s\n",debPdv(n,delx)))
#ifdef DEBUG
matrix_vect_mult(fvec_check, n, fjac_check, n, n, delx, n);
DBG((" check -fvec : %s\n\n",debPdv(n,fvec_check)))
#endif
if ((rv = linesearch(n, xold, fold, delf, delx, x, fvec, &f, maxstep, fdata, fcn,
&fit, maxfcn, it)) != 0) {
if (rv != 1) { /* Not run out of itterations error */
DBG((" linesearch failed with %d\n",rv))
goto done;
}
}
DBG((" after linesearch:\n"))
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
/* See if f() has converged */
for (bigfx = 0.0, i = 0; i < n; i++) {
if (fabs(fvec[i]) > bigfx)
bigfx = fabs(fvec[i]);
}
DBG((" bigfx %f ftol %f\n",bigfx,ftol))
if (bigfx < ftol) {
goto done;
}
/* Could check for zero gradient problem here... */
/* See if x[] has converged */
for (bigx = 0.0, i = 0; i < n; i++) {
double tt = (fabs(x[i] - xold[i]))/FMAX(fabs(x[i]), 1.0);
if (tt > bigx)
bigx = tt;
}
DBG((" bigx %f xtol %f\n",bigx,xtol))
if (bigx < xtol)
goto done;
}
rv = 1;
done:;
if (n > 10) {
if (fvec != rfvec)
free_dvector(fvec, 0, n-1);
free_dvector(xold, 0, n-1);
free_dvector(delx, 0, n-1);
free_dvector(delf, 0, n-1);
free_dmatrix(fjac, 0, n-1, 0, n-1);
free_ivector(pivx, 0, n-1);
}
#ifdef DEBUG
free_dvector(fvec_check,0, n-1);
free_dmatrix(fjac_check,0, n-1, 0, n-1);
#endif
return rv;
}
/* - - - - - - - - */
#define ALF 1.0e-4 /* Ensures sufficient decrease in function value. */
/* Search for a step size that makes progress */
/* Return nz on error */
static int linesearch(
int n,
double *xold,
double fold,
double *delf, /* del f */
double *delx, /* full step delta x[] */
double *x, /* in/out current x[] */
double *fvec, /* return fvec at x[] */
double *fp, /* in/out f value */
double maxstep, /* maximum x step */
void *fdata, /* Context for fcn */
void (*fcn)(void *fdata, int n, double *x, double *f),
int *pfit, /* Inc number of itts */
int maxfcn, /* Max function its */
int it /* Caller iteration count */
) {
int i;
double f = *fp, f2;
double lmda1, lmda2, min_lmda;
double sum, slope, bigx;
DBG(("linesearch:\n"))
/* Comute magnitude of step */
for (sum = 0.0, i = 0; i < n; i++)
sum += delx[i] * delx[i];
sum = sqrt(sum);
/* re-scale if step is too big */
if (sum > maxstep) {
for (i = 0; i < n; i++)
delx[i] *= maxstep/sum;
}
for (slope = 0.0, i = 0; i < n; i++)
slope += delf[i] * delx[i];
if (slope >= 0.0) {
DBG((" slope %f >= 0.0\n",slope))
return 3;
}
bigx = 0.0;
for (i = 0;i < n; i++) {
double tt = fabs(delx[i])/FMAX(fabs(xold[i]), 1.0);
if (tt > bigx)
bigx = tt;
}
min_lmda = TOLX/bigx;
/* Try full Newton step first */
lmda1 = 1.0;
DBG((" lmda1 %f min_lmda %f\n",lmda1, min_lmda))
/* Top of loop */
for (; *pfit < maxfcn; it++) {
double tmp_lmda;
DBG((" lmda1 %f\n",lmda1))
/* Take step */
for (i = 0;i < n;i++)
x[i] = xold[i] + lmda1 * delx[i];
/* Compute f = 0.5 F.F at x */
fcn(fdata, n, x, fvec);
(*pfit)++;
DBG((" x %s\n",debPdv(n,x)))
DBG((" fvec %s\n",debPdv(n,fvec)))
for (sum = 0.0, i = 0; i < n; i++)
sum += fvec[i] * fvec[i];
f = 0.5 * sum;
//if (it == 0) printf(" linesearch: At 1st full step f %f -> %f\n", *fp, f);
/* Convergence on delx. */
if (lmda1 < min_lmda) {
for (i = 0; i < n; i++)
x[i] = xold[i];
return 0;
} else if (f <= fold + ALF * lmda1 * slope) {
*fp = f;
return 0; /* Sufficient function decrease */
} else { /* Backtrack. */
if (lmda1 == 1.0) /* First time */
tmp_lmda = -slope/(2.0 * (f - fold-slope));
else { /* Subsequent backtracks */
double c, d, e;
double a, b, rhs1, rhs2;
rhs1 = f - fold - slope * lmda1;
rhs2 = f2 - fold - slope * lmda2;
c = rhs1/(lmda1 * lmda1);
d = rhs2/(lmda2 * lmda2);
e = lmda1 - lmda2;
a = (c - d)/e;
b = (-lmda2 * c + lmda1 * d)/e;
if (a == 0.0)
tmp_lmda = -slope/(2.0 * b);
else {
double disc = b * b - 3.0 * a * slope;
if (disc < 0.0)
tmp_lmda = 0.5 * lmda1;
else if (b <= 0.0)
tmp_lmda = (-b + sqrt(disc))/(3.0 * a);
else
tmp_lmda = -slope/(b + sqrt(disc));
}
if (tmp_lmda > 0.5 * lmda1)
tmp_lmda = 0.5 * lmda1;
}
}
lmda2 = lmda1;
lmda1 = FMAX(tmp_lmda, lmda1 * 0.1);
f2 = f;
}
*fp = f;
return 1;
}
/* - - - - - - - - */
/* Compute forward difference as aprox. Jacobian matrix */
#define JEPS 1.0e-8 /* Aprox. sqrt of machine precision */
static void apxjac(
int n, /* Dimensions */
double *x, /* Location x to compute Jacobian */
double *fvec, /* Function value at x */
double **df, /* Return Jacobian */
void *fdata, /* fcn() context */
void (*fcn)(void *fdata, int n, double *x, double *fvec)
) {
int i, j;
double h, temp, *f, _f[10];
if (n <= 10)
f = _f;
else
f = dvector(0, n);
for (j = 0; j < n; j++) {
temp = x[j];
h = JEPS * fabs(temp);
if (h == 0.0)
h = JEPS;
x[j] = temp + h; /* Add delta */
h = x[j] - temp; /* Actual delta with fp precision limits */
fcn(fdata, n, x, f);
x[j] = temp; /* Restore value */
for (i = 0; i < n; i++)
df[i][j] = (f[i] - fvec[i])/h;
}
if (f != _f)
free_dvector(f, 0, n-1);
}
|