summaryrefslogtreecommitdiff
path: root/numlib/varmet.c
blob: 3c4b61a33015177fbb4a98024f324bb72e4b9a41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

/* Multi-dimentional minizer using Variable Metric method */
/* This is good for smoother, well behaved functions. */

/* Code is an original expression of the algorithms decsribed in */
/* "Numerical Recipes in C", by W.H.Press, B.P.Flannery, */
/* S.A.Teukolsky & W.T.Vetterling. */

/*
 * Copyright 2000, 2006, 2007, 2017 Graeme W. Gill
 * All rights reserved.
 *
 * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
 * see the License.txt file for licencing details.
 */

/* TTBD:
   Fix error handling to return status (malloc, excessive itters)
   Create to "safe" library ?
   Make standalone - ie remove numsup ?
 */

/* Note that all arrays are indexed from 0 */

#include "numsup.h"
#include "powell.h"
#include "varmet.h"

#undef DEBUG					/* Debug */

#if defined(PDEBUG) || defined(CDEBUG)
# undef DBG
# define DBG(xxx) printf xxx ;
#else
# undef DBG
# define DBG(xxx) 
#endif

#define FMAX(A,B) ((A) > (B) ? (A) : (B))
#define EPS   1.0e-10	/*  Machine precision. */
#define TOLX (4 * EPS)	/*  X value stop value */
#define MAXLEN 100.0	/*  Maximum step length */

void linesearch(int di, double cpold[], double fpold, double g[], double p[], double cpnew[],
	double *pfp, double maxstep, double (*func)(void *fdata, double tp[]), void *fdata);

/* return 0 on sucess, 1 on failure due to excessive itterions */
/* Result will be in cp */
/* Note that we could use gradient in line minimiser, */
/* but haven't bothered yet. */
int varmet(
double *rv,				/* If not NULL, return the residual error */
int di,					/* Dimentionality */
double cp[],			/* Initial starting point */
double s[],				/* Size of initial search area */
double ftol,			/* Tollerance of error change to stop on */
int maxit,				/* Maximum iterations allowed */
double (*func)(void *fdata, double tp[]),		/* Error function to evaluate */
double (*dfunc)(void *fdata, double dp[], double tp[]),		/* Gradient function to evaluate */
void *fdata				/* Opaque data needed by function */
) {
	int iter;
	double fp, sumsq, maxstep;
	double *sdir, sumsdir;			/* Search direction */
	double *dp, *lastdp;
	double **hessian;				/* Hessian matrix */
	double *hlastdp;				/* Hessian times lastdp */
	double *cpnew;					/* new cp value from linemin */
	double test;

	double den, fac, fad, fae;
	double sumdg;
	int i, j;

	sdir   = dvector(0, di-1);
	dp     = dvector(0, di-1);
	lastdp = dvector(0, di-1);
	hessian = dmatrix(0, di-1, 0, di-1);
	hlastdp = dvector(0, di-1);
	cpnew   = dvector(0, di-1);

	fp = (*dfunc)(fdata, dp, cp);

	/* Initial line direction and pde squared */
	sumsq = 0.0;
	for (i = 0; i < di ;i++) {
		sdir[i] = -dp[i];				
		sumsq += cp[i] * cp[i];
	}

	DBG((" initial fp %f dp %s\n", fp, debPdv(di, dp)));

	/* Initialize inverse Hessian to unity */
	for (i = 0; i < di ;i++) {
	 	for (j = 0; j < di ; j++) {
			if (i == j)
				hessian[i][j] = 1.0;
			else
				hessian[i][j] = 0.0;
		}
	}

	/* Maximum line search step size */
	maxstep = MAXLEN * FMAX(sqrt(sumsq), (double)di);

	/* Until we give up */
	for (iter = 0; iter < maxit; iter++) {

		/* Search in direction sdir */
		linesearch(di, cp, fp, dp, sdir, cpnew, &fp, maxstep, func, fdata);

		for (i = 0; i < di; i++) {
			sdir[i] = cpnew[i] - cp[i];			/* Update the line direction, */
			cp[i] = cpnew[i];					/* and the current point. */
		}

		/* Test for convergence on x */
		test = 0.0;
		for (i = 0 ; i < di; i++) {
			double tt = fabs(sdir[i]) / FMAX(fabs(cp[i]), 1.0);
			if (tt > test)
				test = tt;
		}

		if (test < TOLX) {
			break;
		}

		for (i = 0; i < di; i++)		/* Save previous partial deriv. */
			lastdp[i] = dp[i];

		(*dfunc)(fdata, dp, cp);		/* and get the new gradient. */

		test = 0.0;					/* Test for convergence on zero gradient. */
		den = FMAX(fp, 1.0);

		for (i = 0; i < di; i++) {
			double tt = fabs(dp[i]) * FMAX(fabs(cp[i]),1.0) / den;
			if (tt > test)
				test = tt;
		}

		if (test < ftol) {
			break;
		}

	for (i = 0 ; i < di; i++)
		lastdp[i] = dp[i] - lastdp[i];	/* Compute diference of gradients, */

	for (i = 0; i < di; i++) {	/* and difernce times current matrix. */
		hlastdp[i] = 0.0;
		for (j = 0; j < di; j++)
			hlastdp[i] += hessian[i][j] * lastdp[j];
	}

	/* Calculate dot products for the denominator */
	fac = fae = sumdg = sumsdir = 0.0;
	for (i = 0; i < di; i++) { 
		fac += lastdp[i] * sdir[i];
		fae += lastdp[i] * hlastdp[i];
		sumdg += lastdp[i] * lastdp[i];
		sumsdir += sdir[i] * sdir[i];
	}
	if (fac > sqrt(EPS * sumdg * sumsdir)) { 	/* Skip update if fac not sufficiently posive */
		fac = 1.0/fac;
		fad = 1.0/fae;
		/* The vector that makes BFGS diferent from DFP: */
		for (i = 0; i < di;i++)
			lastdp[i] = fac * sdir[i] - fad * hlastdp[i];
		for (i = 0; i < di;i++) {	/* The BFGS updating formula: */
			for (j = i; j < di; j++) {
				hessian[i][j] += fac * sdir[i] * sdir[j]
				              - fad * hlastdp[i] * hlastdp[j] + fae * lastdp[i] * lastdp[j];
				hessian[j][i] = hessian[i][j];
			}
		}
	}
	for (i = 0; i < di; i++) {	/* Now calculate the next direction to go, */
		sdir[i] = 0.0;
		for (j = 0; j < di; j++)
			sdir[i] -= hessian[i][j] * dp[j];
		}
	}

	free_dvector(cpnew, 0, di-1);
	free_dvector(hlastdp, 0, di-1);
	free_dmatrix(hessian, 0, di-1, 0, di-1);
	free_dvector(lastdp, 0, di-1);
	free_dvector(dp, 0, di-1);
	free_dvector(sdir, 0, di-1);
	if (rv != NULL)
		*rv = fp;
	return 0;
}

#define ALPHA 1.0e-4 			/* Ensures sucesscient decrease in function value. */
#define LTOLX 1.0e-7		/* Convergence criterion on linesearch. */

void linesearch(
int di,
double cpold[],
double fpold,
double dp[],		/* Partial derivative */
double sdir[],		/* Current value */
double cpnew[],
double *pfp,		/* Return value */
double maxstep,
double (*func)(void *fdata, double tp[]),
void *fdata
) {
	double sum, slope;
	double slen, slen_min;
	double test, fval;
	int i;

	for (sum = 0.0, i = 0; i < di; i++)
		sum += sdir[i] * sdir[i];
	sum = sqrt(sum);

	if (sum > maxstep) {
		for (i = 0; i < di; i++)
			sdir[i] *= maxstep/sum; 		/* Scale if attempted step is too big. */
	}
	for (slope = 0.0, i = 0; i < di; i++)
		slope += dp[i] * sdir[i];

	if (slope >= 0.0)
		error("Roundoff problem in linesearch.");

	test = 0.0;
	for (i = 0;i < di; i++) {
		double tt = fabs(sdir[i])/FMAX(fabs(cpold[i]), 1.0);
		if (tt > test)
			test = tt;
	}

	slen_min = TOLX/test;
	slen = 1.0;				/* Try full step */

	/* Start of iteration loop. */
	for (;;) {
		double slen_2 = slen, slen_t;

		for (i = 0; i < di;i++)
			cpnew[i] = cpold[i] + slen * sdir[i];

		*pfp = (*func)(fdata, cpnew);

		if (slen < slen_min) {
			for (i = 0; i < di; i++)
				cpnew[i] = cpold[i];
			return;

		} else if (*pfp <= (fpold + ALPHA * slen * slope))
			return;	

		/* Backtracking */
		else {
			/* First time through */
			if (slen == 1.0)
				slen_t = -slope/(2.0 * (*pfp - fpold - slope));
			/* 2nd and subsequent times through */
			else {
				double aa, bb;
				double rhs_1, rhs_2;

				rhs_1 = *pfp - fpold - slen * slope;
				rhs_2 = fval - fpold - slen_2 * slope;
				aa = (rhs_1/(slen * slen) - rhs_2/(slen_2 * slen_2))/(slen - slen_2);
				bb = (-slen_2 * rhs_1/(slen * slen)+slen * rhs_2/(slen_2 * slen_2))/(slen - slen_2);
				if (aa == 0.0)
					slen_t = -slope/(2.0 * bb);
				else {
					double dd = bb * bb - 3.0 * aa * slope;
					if (dd < 0.0)
						slen_t = 0.5 * slen;
					else if (bb <= 0.0)
						slen_t = (-bb + sqrt(dd))/(3.0 * aa);
					else
						slen_t = -slope/(bb + sqrt(dd));
				}
				if (slen_t > 0.5 * slen)
					slen_t = 0.5 * slen;
			}
		}
		slen_2 = slen;
		fval = *pfp;
		slen = FMAX(slen_t, 0.1 * slen);
	}
}