1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
|
/*
* Argyll Color Correction System
* Multi-dimensional regularized spline data structure
*
* Precice gamut surface, gamut pruning, ink limiting and K min/max
* support routines.
*
* Author: Graeme W. Gill
* Date: 2008/11/21
*
* Copyright 1999 - 2008 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
* Latest simplex/linear equation version.
*/
/*
This probably needs re-writing, since (I think) it doesn't take gamut
self intersection into account. Outline would be:
Have a spactial cache structure that contains list of potentialy
intersecting triangles for any point. Create this incrementally.
Each triangle can be replaced by a list of fragment triangles
sharing the same plane.
i.e.
triangle planes
triangles
edges
vertexes
Initialization:
Locate extreme vertex
Locate triangle that uses that vertex that is most elevated
in that direction as initial surface.
Intersect that triangle with all other triangles nearby, and
retain the fragment that has that vertex.
List of open edges is initial triangle edges.
Track outward and inward faces of all triangles in open surface.
Basic loop:
While edge list is non-empty {
Locate adjacent triangle that is not part of surface that
is most accutely angled to outside face.
Intersect that triangle with all other triangles using cache structure,
hanging on to all resulting fragments that are part of that edge.
Add those fragments to the open surface.
}
Each intersection adds new nodes, and splits a triangle into
about 8 smaller triangles. Trick is to avoid slivers and
numerical issues with triangles.
*/
/* TTBD:
Add ouutput curve lookup callback support.
Cache these values in the vertex structures ?
Add ink limit support. This be done by breaking
a cell into a fixed geometry of smaller simplexes
by dividing the cell into two on each axis.
Need to then add scan that detects areas to prune,
that then ties in with rev code to mark such
areas out of gamut.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <memory.h>
#include <time.h>
#include "rspl_imp.h"
#include "numlib.h"
#include "sort.h" /* Heap sort */
#include "counters.h" /* Counter macros */
#include "vrml.h" /* If there is VRML/X3D stuff here */
/* Print a vectors value */
#define DBGVI(text, dim, out, vec, end) \
{ int pveci; \
printf("%s",text); \
for (pveci = 0 ; pveci < (dim); pveci++) \
printf(out,(vec)[pveci]); \
printf(end); \
}
/* Print a matrix value */
#define DBGMI(text, rows, cols, out, mat, end) \
{ int pveci, pvecr; \
printf("%s",text); \
for (pvecr = 0 ; pvecr < (rows); pvecr++) { \
for (pveci = 0 ; pveci < (cols); pveci++) \
printf(out,(mat)[pvecr][pveci]); \
if ((pvecr+1) < (rows)) \
printf("\n"); \
} \
printf(end); \
}
#undef VRML_TRACE /* Save a vrml at each step */
/* Do an arbitrary printf */
#define DBGI(text) printf text ;
#define DEBUG1
#undef DBG
#undef DBGV
#undef DBGM
#undef NEVER
#define ALWAYS
#ifdef DEBUG1
#undef DBGS
#undef DBG
#undef DBGV
#undef DBGM
#define DEBUG
#define DBGS(xxx) xxx
#define DBG(xxx) DBGI(xxx)
#define DBGV(xxx) DBGVI xxx
#define DBGM(xxx) DBGMI xxx
#else
#undef DEBUG
#undef DBGS
#undef DBG
#undef DBGV
#undef DBGM
#define DBGS(xxx)
#define DBG(xxx)
#define DBGV(xxx)
#define DBGM(xxx)
#endif
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
#define EPS (1e-10) /* Allowance for numeric error */
/* ====================================================== */
/* Support functions */
/* Compute the norm (length) squared of a vector define by two points */
static double norm33sq(double in1[3], double in0[3]) {
int j;
double rv;
for (rv = 0.0, j = 0; j < 3; j++) {
double tt = in1[j] - in0[j];
rv += tt * tt;
}
return rv;
}
static rvert *get_vert(rspl *s, int gix);
/* Given an output value, return the gamut radius */
static double gvprad(rspl *s, double *v) {
int f, fdi = s->fdi;
double rr = 0.0;
for (f = 0; f < fdi; f++) {
double tt;
tt = s->gam.scale[f] * (v[f] - s->gam.cent[f]);
rr += tt * tt;
}
rr = sqrt(rr);
return rr;
}
/* Given an output value, create the radial coordinate */
static void radcoord(rspl *s, double *rad, double *v) {
int f, fdi = s->fdi;
double rr = 0.0;
for (f = 0; f < fdi; f++) {
double tt;
tt = s->gam.scale[f] * (v[f] - s->gam.cent[f]);
rr += tt * tt;
}
rr = sqrt(rr);
rad[0] = rr;
}
/* Given an output value and an edge, return the side, */
/* 0 = -vem 1 = +ve */
static int eside(rspl *s, redge *ep, double *v) {
int f, fdi = s->fdi;
double tt;
for (tt = 0.0, f = 0; f < fdi; f++) {
tt += v[f] * ep->pe[f];
}
tt += ep->pe[f];
return (tt >= 0.0 ? 1 : 0);
}
/* Given a list of nodes that form an sdi-1 sub-simplex, */
/* return a list of nodes that could be added to make */
/* an sdi sub-simplex. */
/* Nodes are identified by their grid index. */
/* All possible nodes are returned, even if they are already */
/* in our surface triangulation. */
/* NOTE that inodes will be sorted into sub-simplex order! */
// ~~99 we aren't currently taking ink limit into account
/* return nz on fatal error */
static int get_ssimplex_nodes(
rspl *s,
int sdi, /* Dimensionality of target sub-simplex */
rvert **inodes, /* sdi input nodes that form an sdi-1 dimensional input sub-simplex */
int aonodes, /* Number of output nodes allowed for */
int *nonodes, /* Number of output nodes set */
rvert **onodes /* Space for up to 3^MXDI-1 output nodes */
) {
int e, di = s->di;
int i, j, k;
*nonodes = 0;
//printf("\n~1 get_ssimplex_nodes called with sdi = %d\n",sdi);
/* Sort the input nodes into normal sub-simplex order */
/* (We are assuming all the nodes are in the grid) */
for (i = 0; i < sdi-1; i++) {
for (j = i+1; j < sdi; j++) {
if (inodes[i]->gix < inodes[j]->gix) {
rvert *tt;
tt = inodes[i]; inodes[i] = inodes[j]; inodes[j] = tt;
}
}
}
//printf("~2 input nodes = %d %d\n", inodes[0]-gix, inodes[1]->gix);
/* For each sub-simplex */
for (i = 0; i < s->gam.ssi[sdi].nospx; i++) {
int kk;
//printf("~1 sub simplex %d\n",i);
/* For leaving out one node of the ssimplex in turn, */
/* check the inodes match the remaining ssimplex nodes */
for (kk = 0; kk <= sdi; kk++) { /* ssimplex node being left out */
int bix = 0; /* ssimplex base node */
if (kk == 0)
bix++;
//printf("~1 anchor node %d = %d\n",j,s->gam.ssi[sdi].spxi[i].goffs[bix]);
//printf("~2 candidate node offsets = %d %d %d\n",
//s->gam.ssi[sdi].spxi[i].offs[0],
//s->gam.ssi[sdi].spxi[i].offs[1],
//s->gam.ssi[sdi].spxi[i].offs[2]);
for (j = k = 0; j < sdi; j++, k++) { /* Check all inodes[] */
if (k == kk)
k++; /* Skip the ssimplex node being left out */
if (inodes[j]->gix != (inodes[0]->gix + s->gam.ssi[sdi].spxi[i].goffs[k]
- s->gam.ssi[sdi].spxi[i].goffs[bix])) {
//printf("~1 not a match\n");
break;
}
//printf("~1 matched node %d\n",inodes[k]->gix);
}
if (j >= sdi) { /* they all match */
//printf("~1 all match\n");
/* Check if kk offset to the base is still in the grid */
for (e = 0; e < di; e++) {
int doff = ((s->gam.ssi[sdi].spxi[i].offs[kk] >> e) & 1)
- ((s->gam.ssi[sdi].spxi[i].offs[bix] >> e) & 1);
int eflags = G_FL(inodes[0]->fg,e);
//printf("~1 checking dim %d, doff = %d, eflags = %d\n",e,doff,eflags);
if ((doff < 0 && (eflags & 4) && (eflags & 3) < 1)
|| (doff > 0 && !(eflags & 4) && (eflags & 3) < 1)) {
//printf("~1 outside grid\n");
break; /* Offset will take us past edge */
}
}
if (e >= di) { /* Remaining point is within grid */
int gix;
/* Add the remaining node to the onodes */
if (*nonodes >= aonodes)
return 1; /* Oops - ran out of return space! */
gix = inodes[0]->gix + s->gam.ssi[sdi].spxi[i].goffs[kk]
- s->gam.ssi[sdi].spxi[i].goffs[bix];
onodes[*nonodes] = get_vert(s, gix);
//printf("~1 Returning node %d\n",(onodes[*nonodes]->gix);
//printf("~1 Value %f %f %f\n", onodes[*nonodes]->p[0], onodes[*nonodes]->p[1], onodes[*nonodes]->p[2]);
(*nonodes)++;
}
}
}
}
//printf("~1 onodes = %d\n",*nonodes);
return 0;
}
/* ====================================================== */
/* Search for an existing vertex, and return it. */
/* If there is no existing edge, create it. */
/* (This is where we apply the output functions to the grid values) */
static rvert *get_vert(rspl *s, int gix) {
int f, fdi = s->fdi;
int hash;
rvert *vp = NULL;
if (gix < 0 || gix >= s->g.no) { /* Assert */
error("rspl_gam: get_vert got out of range gix %d\n",gix);
}
/* See if it is in our hash list */
hash = gix % s->gam.vhsize;
for (vp = s->gam.verts[hash]; vp != NULL; vp = vp->next) {
if (vp->gix == gix)
break;
}
if (vp == NULL) { /* No such vertex */
float *fg;
if ((vp = calloc(1, sizeof(rvert))) == NULL)
error("rspl_gam: get_vert calloc failed");
fg = s->g.a + gix * s->g.pss;
vp->n = s->gam.rvert_no++; /* serial number */
vp->fg = fg; /* Pointer to node float data */
vp->gix = gix; /* grid index */
for (f = 0; f < fdi; f++) /* Node output value */
vp->v[f] = (double)fg[f];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, vp->v, vp->v); /* Apply output lookup */
radcoord(s, vp->r, vp->v); /* Compute radial coordinate */
/* Add vertex to hash */
vp->next = s->gam.verts[hash];
s->gam.verts[hash] = vp;
/* Add the vertex to the bottom of the list of vertex */
if (s->gam.vbot == NULL) {
s->gam.vtop = s->gam.vbot = vp;
} else {
s->gam.vbot->list = vp;
s->gam.vbot = vp;
}
}
return vp;
}
/* Search for an existing edge containing the given verticies, */
/* and return it. If there is no existing edge, create it. */
/* Note that edges have fdi-2 dimensions == fdi-1 verticies. */
static redge *get_edge(rspl *s, rvert **_vv) {
int i, j, f, fdi = s->fdi;
rvert *vv[MXDO-1]; /* Sorted verticies */
int gix, hash;
redge *ep = NULL;
/* Sort the input nodes into normal sub-simplex order */
/* (We are assuming all the nodes are in the grid) */
for (i = 0; i < (fdi-1); i++)
vv[i] = _vv[i];
for (i = 0; i < (fdi-2); i++) {
for (j = i+1; j < (fdi-1); j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tt;
tt = vv[i]; vv[i] = vv[j]; vv[j] = tt;
}
}
}
for (gix = i = 0; i < (fdi-1); i++)
gix += vv[i]->gix;
//printf("~1 get edge with nodes = %d %d\n", vv[0]->gix, vv[1]->gix);
/* See if it is in our hash list */
hash = gix % s->gam.ehsize;
//printf("~1 get edge gix = %d, hash = %d\n", gix, hash);
for (ep = s->gam.edges[hash]; ep != NULL; ep = ep->next) {
for (i = 0; i < (fdi-1); i++) {
if (ep->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= (fdi-1)) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
if (ep == NULL) { /* No such edge */
int sm, lg;
if ((ep = calloc(1, sizeof(redge))) == NULL)
error("rspl_gam: get_edge calloc failed");
ep->n = s->gam.redge_no++; /* serial number */
for (i = 0; i < (fdi-1); i++)
ep->v[i] = vv[i]; /* Vertex */
printf("~1 new edge %d with nodes = %d %d\n", ep->n, ep->v[0]->gix, ep->v[1]->gix);
/* Compute plane equation to center of gamut, so */
/* that we can quickly determine which side a triangle lies on. */
/* Compute plane equation */
if (fdi < 2 || fdi > 3)
error("rspl_gam: plane equation for out dimensions other than 2 or 3 not supported!");
if (fdi == 2) {
} else {
double v1[3], v2[3];
/* Compute two vectors from the three points */
for (f = 0; f < fdi; f++) {
v1[f] = ep->v[0]->v[f] - s->gam.cent[f];
v2[f] = ep->v[1]->v[f] - s->gam.cent[f];
}
/* Compute normal to the plane using the cross product */
ep->pe[0] = ep->v[0]->v[1] * (ep->v[1]->v[2] - s->gam.cent[2])
+ ep->v[1]->v[1] * (s->gam.cent[2] - ep->v[0]->v[2])
+ s->gam.cent[1] * (ep->v[0]->v[2] - ep->v[1]->v[2]);
ep->pe[1] = ep->v[0]->v[2] * (ep->v[1]->v[0] - s->gam.cent[0])
+ ep->v[1]->v[2] * (s->gam.cent[0] - ep->v[0]->v[0])
+ s->gam.cent[2] * (ep->v[0]->v[0] - ep->v[1]->v[0]);
ep->pe[2] = ep->v[0]->v[0] * (ep->v[1]->v[1] - s->gam.cent[1])
+ ep->v[1]->v[0] * (s->gam.cent[1] - ep->v[0]->v[1])
+ s->gam.cent[0] * (ep->v[0]->v[1] - ep->v[1]->v[1]);
ep->pe[3] = - (ep->v[0]->v[0] * (ep->v[1]->v[1] * s->gam.cent[2] - s->gam.cent[1] * ep->v[1]->v[2])
+ ep->v[1]->v[0] * (s->gam.cent[1] * ep->v[0]->v[2] - ep->v[0]->v[1] * s->gam.cent[2])
+ s->gam.cent[0] * (ep->v[0]->v[1] * ep->v[1]->v[2] - ep->v[1]->v[1] * ep->v[0]->v[2]));
}
/* Add edge to hash */
ep->next = s->gam.edges[hash];
s->gam.edges[hash] = ep;
/* Add the edge to the bottom of the list of edges */
if (s->gam.ebot == NULL) {
s->gam.etop = s->gam.ebot = ep;
} else {
s->gam.ebot->list = ep;
s->gam.ebot = ep;
}
}
printf("~1 returning edge no %d\n",ep->n);
return ep;
}
/* Check whether a triangle like this already exists */
/* Return NULL if it doesn't */
static rtri *check_tri(rspl *s, redge *ep, rvert *_vv) {
int i, j, k, f, fdi = s->fdi;
rvert *vv[MXDO]; /* Sorted verticies */
int gix, hash;
rtri *tp = NULL;
/* Copy edge verticies from edge */
for (i = 0; i < (fdi-1); i++)
vv[i] = ep->v[i];
vv[i] = _vv; /* And new vertex */
/* Sort verticies */
for (i = 0; i < (fdi-1); i++) {
for (j = i+1; j < fdi; j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tv;
tv = vv[i]; vv[i] = vv[j]; vv[j] = tv;
}
}
}
/* Create hash */
for (gix = i = 0; i < fdi; i++)
gix += vv[i]->gix;
/* See if it is in our hash list */
hash = gix % s->gam.thsize;
//printf("~1 make tri gix = %d, hash = %d\n", gix, hash);
for (tp = s->gam.tris[hash]; tp != NULL; tp = tp->next) {
for (i = 0; i < fdi; i++) {
if (tp->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= fdi) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
return tp;
}
/* Create a triangle given an edge with fdi-1 verticies and a grid vertex. */
/* if inv is set, triangle is upside down wrt to center point, */
/* and so all the oppositive verticies should be placed on the */
/* opposite to their natural side. */
static rtri *make_tri(rspl *s, redge *ep, rvert *_vv, int inv) {
int i, j, k, f, fdi = s->fdi;
rvert *vv[MXDO]; /* Sorted verticies */
int gix, hash;
rtri *tp = NULL;
printf("~1 make_tri called\n");
/* Copy edge verticies from edge */
for (i = 0; i < (fdi-1); i++)
vv[i] = ep->v[i];
vv[i] = _vv; /* And new vertex */
/* Sort verticies */
for (i = 0; i < (fdi-1); i++) {
for (j = i+1; j < fdi; j++) {
if (vv[i]->gix < vv[j]->gix) {
rvert *tv;
tv = vv[i]; vv[i] = vv[j]; vv[j] = tv;
}
}
}
/* Create hash */
for (gix = i = 0; i < fdi; i++)
gix += vv[i]->gix;
/* See if it is in our hash list */
hash = gix % s->gam.thsize;
printf("~1 make tri gix = %d, hash = %d\n", gix, hash);
for (tp = s->gam.tris[hash]; tp != NULL; tp = tp->next) {
for (i = 0; i < fdi; i++) {
if (tp->v[i] != vv[i]) {
//printf("~1 verticies don't match\n");
break; /* No match */
}
}
if (i >= fdi) {
//printf("~1 all verticies match\n");
break; /* All match */
}
}
if (tp == NULL) { /* No such triangle */
//printf("~1 creating a new triangle\n");
/* Create triangle */
if ((tp = calloc(1, sizeof(rtri))) == NULL)
error("rspl_gam: make_tri calloc failed");
tp->n = s->gam.rtri_no++; /* serial number */
/* Copy edge verticies to triangle */
for (i = 0; i < fdi; i++)
tp->v[i] = vv[i];
/* Link all the triangles edges to this triangle */
printf("~1 triangle nodes = %d %d %d\n", tp->v[0]->gix, tp->v[1]->gix, tp->v[2]->gix);
//printf("~2 triangle vert 0 = %f %f %f\n", tp->v[0]->v[0], tp->f[0]->v[1], tp->f[0]->v[2]);
//printf("~2 triangle vert 1 = %f %f %f\n", tp->v[1]->v[0], tp->f[1]->v[1], tp->f[1]->v[2]);
//printf("~2 triangle vert 2 = %f %f %f\n", tp->v[2]->v[0], tp->f[2]->v[1], tp->f[2]->v[2]);
for (i = 0; i < fdi; i++) { /* For each tri verticy being odd one out */
rvert *ov, *rr[MXDO-1]; /* Odd verticy, remaining edge verticies */
int ss; /* Side */
ov = tp->v[i]; /* Odd node */
for (k = j = 0; j < fdi; j++) {
if (i == j)
continue;
rr[k++] = tp->v[j]; /* Remaining nodes */
}
//printf("~1 edge nodes = %d %d, odd = %d\n", rr[0]->gix, rr[1]->gix, ov->gix);
ep = get_edge(s, rr);
if (ep->nt >= MXNE)
error("rspl_gam: make_tri run out of triangle space %d in edge",MXNE);
ep->t[ep->nt++] = tp;
/* See which side of the edge the remaining vertex is */
ss = eside(s, ep, ov->v);
//printf("~1 node gix %d has side %d to edge %d %d\n", ov->gix, ss, ep->v[0]->gix, ep->v[1]->gix);
if (inv)
ss = 1-ss;
if (ss) { /* +ve side */
ep->t[ep->npt++] = tp;
} else {
ep->t[ep->nnt++] = tp;
}
}
/* Add triangle to hash */
tp->next = s->gam.tris[hash];
s->gam.tris[hash] = tp;
/* Add them to the linked list */
tp->list = s->gam.ttop;
s->gam.ttop = tp;
}
return tp;
}
/* ====================================================== */
/* Create a surface gamut representation. */
/* Return NZ on error */
/* Could add more flexibility with:
optional function instead of default radial distance function
option use sub set of output dimensions (ie allow for CMYK->LabK etc. ? )
*/
static int
gam_comp_gamut(
rspl *s,
double *cent, /* Optional center of gamut [fdi], default center of out range */
double *scale, /* Optional Scale of output values in vector to center [fdi], def. 1.0 */
void (*outf)(void *cntxf, double *out, double *in), /* Optional rspl val -> output value */
void *cntxf, /* Context for function */
void (*outb)(void *cntxb, double *out, double *in), /* Optional output value -> rspl val */
void *cntxb /* Context for function */
) {
int e, f, di = s->di, fdi = s->fdi;
int i, j, ssdi;
int maxp[MXDO]; /* Grid indexes of maxium function values */
rvert *fedge[MXDO-1]; /* The first "edge" containing fdi-1 verticies */
rvert *onodes[50]; /* float pointers of canditate nodes */
int aonodes = 50; /* Allocated out nodes */
int nonodes; /* Number of nodes returned */
rvert *cnodes[2][50]; /* Negative, positive candidate nodes */
double rcnodes[2][50]; /* Radius of negative, positive candidate nodes */
int ncnodes[2]; /* Number of negative, positive candidate nodes */
if (fdi < 2 || fdi > di) {
DBG(("gam: gam_comp_gamut called for di = %d, fdi = %d\n", di, fdi));
return 2;
}
/* Save output value conversion functions */
s->gam.outf = outf;
s->gam.cntxf = cntxf;
s->gam.outb = outb;
s->gam.cntxb = cntxb;
/* Deal with gamut center point, and scale */
if (cent == NULL) {
double min[MXDO], max[MXDO];
s->get_out_range(s, min, max);
if (s->gam.outf != NULL) {
s->gam.outf(s->gam.cntxf, min, min); /* Apply output lookup */
s->gam.outf(s->gam.cntxf, max, max); /* Apply output lookup */
}
for (f = 0; f < fdi; f++)
s->gam.cent[f] = 0.5 * (min[f] + max[f]);
} else {
for (f = 0; f < fdi; f++)
s->gam.cent[f] = cent[f];
}
DBGVI("Gamut center is ", fdi, "%f ", s->gam.cent, "\n")
if (scale == NULL) {
for (f = 0; f < fdi; f++)
s->gam.scale[f] = 1.0;
} else {
for (f = 0; f < fdi; f++)
s->gam.scale[f] = scale[f];
}
DBGVI("Gamut scale is ", fdi, "%f ", s->gam.scale, "\n")
for (ssdi = 1; ssdi <= fdi-1; ssdi++) {
int i, j;
/* Compute gamut surface sub-simplex geometry info */
rspl_init_ssimplex_info(s, &s->gam.ssi[ssdi], ssdi);
/* Filter the sub-simplex geometry to only include subsimplexes that */
/* use the base vertex, so that there are no duplicates. */
for (i = j = 0; i < s->gam.ssi[ssdi].nospx; i++) {
if (s->gam.ssi[ssdi].spxi[i].offs[s->gam.ssi[ssdi].sdi] == 0) {
s->gam.ssi[ssdi].spxi[j] = s->gam.ssi[ssdi].spxi[i]; /* Structure copy */
j++;
}
}
s->gam.ssi[ssdi].nospx = j;
#ifdef DEBUG
printf("Sub-simplex dim %d out of input %d\n",s->gam.ssi[ssdi].sdi,di);
printf("Number of subsimplex = %d\n",s->gam.ssi[ssdi].nospx);
for (i = 0; i < s->gam.ssi[ssdi].nospx; i++) {
printf("Cube Offset = ");
for (e = 0; e <= s->gam.ssi[ssdi].sdi; e++)
printf("%d ",s->gam.ssi[ssdi].spxi[i].offs[e]);
printf("\n");
printf("Grid Offset = ");
for (e = 0; e <= s->gam.ssi[ssdi].sdi; e++)
printf("%d ",s->gam.ssi[ssdi].spxi[i].foffs[e]);
printf("\n");
printf("\n");
}
#endif /* DEBUG */
}
/* Allocate the vertex hash array */
if ((s->gam.verts = calloc(VHASHSIZE, sizeof(rvert *))) == NULL) {
DBG(("gam: allocating vertex hash array failed\n"));
return 1;
}
s->gam.vhsize = VHASHSIZE;
/* Allocate the edge hash array */
if ((s->gam.edges = calloc(EHASHSIZE, sizeof(redge *))) == NULL) {
DBG(("gam: allocating edge hash array failed\n"));
return 1;
}
s->gam.ehsize = EHASHSIZE;
/* Allocate the triangle hash array */
if ((s->gam.tris = calloc(THASHSIZE, sizeof(rtri *))) == NULL) {
DBG(("gam: allocating tris hash array failed\n"));
return 1;
}
s->gam.thsize = THASHSIZE;
/* Get a starting gid point for surface */
// ~~99 this isn't right if the point we get is over the ink limit!!!. */
s->get_out_range_points(s, NULL, maxp); /* Maximum */
// s->get_out_range_points(s, maxp, NULL); /* Minium */
DBG(("Starting point = gix %d/%d\n",maxp[0], s->g.no));
/* Now work it up to an fdi-2 sub-simplex, so that we have a */
/* "triangle edge", and can enter the main loop. */
// ~~~9 this needs fixing to switch to "maximum angle" calculation
fedge[0] = get_vert(s, maxp[0]); /* grid index of first vertex */
if (fdi == 2) {
/* We just need one point, and we've got it */
} else if (fdi == 3) { /* Usual case */
double ba = -1.0; /* Bigest angle */
/* We just need two points, so find the other points */
/* that makes the greatest angle to the center */
if (get_ssimplex_nodes(s, 1, fedge, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
if (nonodes == 0)
error("rspl_gam: get_ssimplex_nodes fatal error - retrurned no nodes?");
printf("~1 get_ssimplex_nodes returned %d nodes\n",nonodes);
for(i = 0; i < nonodes; i++)
printf(" ~1 %d: %d\n",i,onodes[i]->gix);
/* Evaluate the choice of verticies to choose the one that */
/* will best enclose the gamut. (We use a really dumb criteria - maximum radius) */
for (i = 0; i < nonodes; i++) {
double tt, a, b, c; /* Lenght of sides of triangle squared */
a = norm33sq(onodes[i]->v, s->gam.cent);
b = norm33sq(onodes[i]->v, fedge[0]->v);
c = norm33sq(fedge[0]->v, s->gam.cent);
tt = acos((b + c - a)/(2.0 * sqrt(b * c)));
printf("~1 node %d angle = %f\n",onodes[i]->gix,tt);
if (tt > ba) {
ba = tt;
fedge[1] = onodes[i]; /* Use candidate with largest gamut as next base */
}
}
printf("~1 chosen node %d\n",fedge[1]->gix);
} else if (fdi > 3) { /* General case */
/* This isn't a correct approach ... */
for (ssdi = 1; ssdi <= fdi-2; ssdi++) {
double br = -1.0; /* Bigest radius */
DBG(("Working up ssdim %d -> %d\n",ssdi-1, ssdi));
if (get_ssimplex_nodes(s, ssdi, fedge, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
if (nonodes == 0)
error("rspl_gam: get_ssimplex_nodes fatal error - retrurned no nodes?");
printf("~1 get_ssimplex_nodes returned %d nodes\n",nonodes);
for(i = 0; i < nonodes; i++)
printf(" ~1 %d: %d\n",i,onodes[i]->gix);
/* Evaluate the choice of verticies to choose the one that */
/* will best enclose the gamut. (We use a really dumb criteria - maximum radius) */
for (i = 0; i < nonodes; i++) {
double tt;
tt = gvprad(s, onodes[i]->v); /* Compute radius */
if (tt > br) {
br = tt;
fedge[ssdi] = onodes[i]; /* Use candidate with largest gamut as next base */
}
}
printf("~1 chosen node %d\n",fedge[ssdi]->gix);
}
}
/* Creat the initial "edge" */
get_edge(s, fedge);
printf("~1 Created initial edge\n");
{
redge *ep;
double **A; /* lu value -> baricentric matrix */
double *B;
int *pivx;
pivx = ivector(0, fdi-1); /* pixv[fdi] */
A = dmatrix(0, fdi-1, 0, fdi-1); /* A[fdi][fdi] */
B = dvector(0, fdi-1); /* B[fdi] */
/* The main loop: */
/* We start with any "edges" that have less than two associated "triangles", */
/* and evaluate the vertex nodes that can make "triangles" with the "edge". */
/* We choose the node that will give the greatest slope, and make a "triangle". */
/* Loop until there are no "edges" with less than two associated "triangles". */
for (ep = s->gam.etop; ep != NULL; ep = ep->list) {
printf("~1 expanding from edge no %d\n",ep->n);
printf("~1 edge v1 = %d = %f %f %f\n", ep->v[0]->gix, ep->v[0]->v[0], ep->v[0]->v[1], ep->v[0]->v[2]);
printf("~1 edge v2 = %d = %f %f %f\n", ep->v[1]->gix, ep->v[1]->v[0], ep->v[1]->v[1], ep->v[1]->v[2]);
// if (ep->npt < 1 || ep->nnt < 1)
{
int ss;
if (get_ssimplex_nodes(s, fdi-1, ep->v, aonodes, &nonodes, onodes)) {
error("rspl_gam: get_ssimplex_nodes fatal error - too many nodes?");
}
/* Clasify the returned nodes as positive or negative side */
ncnodes[0] = ncnodes[1] = 0;
for (i = 0; i < nonodes; i++) {
double tt;
tt = gvprad(s, onodes[i]->v); /* Compute radius */
ss = eside(s, ep, onodes[i]->v); /* Side */
printf("~1 node gix %d has rad %f side %d to edge %d %d\n", onodes[i]->gix, tt, ss, ep->v[0]->gix, ep->v[1]->gix);
#ifdef NEVER /* This messes things up ? */
/* Check if this node is already in a triangle with this edge, */
/* to avoid costly matrix solution check below. */
if (check_tri(s, ep, onodes[i]) == NULL)
#endif
{
cnodes[ss][ncnodes[ss]] = onodes[i];
rcnodes[ss][ncnodes[ss]++] = tt;
}
}
/* Sort them */
for (ss = 0; ss < 2; ss++) { /* Negative side then positive */
for (i = 0; i < (ncnodes[ss]-1); i++) {
for (j = i+1; j < ncnodes[ss]; j++) {
if (rcnodes[ss][i] < rcnodes[ss][j]) {
rvert *tt;
double tr;
tt = cnodes[ss][i]; cnodes[ss][i] = cnodes[ss][j];
cnodes[ss][j] = tt;
tr = rcnodes[ss][i]; rcnodes[ss][i] = rcnodes[ss][j];
rcnodes[ss][j] = tr;
}
}
}
}
// ~~1
for (ss = 0; ss < 2; ss++) { /* Negative side then positive */
if (ss == 0)
printf("~1 -ve nodes:\n");
else
printf("~1 +ve nodes:\n");
for (i = 0; i < ncnodes[ss]; i++) {
printf("~1 node %d, rad %f\n",cnodes[ss][i]->gix,rcnodes[ss][i]);
}
}
#ifdef VRML_TRACE
{
vrml *wrl;
int i, j, k;
ECOUNT(gc, MXDIDO, di, 0, s->g.res, 0);/* coordinates */
DCOUNT(cc, MXDIDO, s->di, 0, 0, 2); /* Surrounding cube counter */
float *gp; /* Grid point pointer */
rvert *vp;
rtri *tp;
double col[3], pos[3];
if ((wrl = new_vrml("gam_diag", 1, vrml_lab)) == NULL)
error("new_vrml failed for 'gam_diag%s\n",vrml_ext());
wrl->start_line_set(wrl, 0);
/* Display the grid */
EC_INIT(gc);
for (gp = s->g.a; !EC_DONE(gc); gp += s->g.pss) {
/* Itterate cube from this base */
DC_INIT(cc)
for (i = 0; !DC_DONE(cc); i++ ) {
float *sp = s->g.a;
for (e = 0; e < s->di; e++) { /* Input tables */
int j;
j = gc[e] + cc[e];
if (j < 0 || j >= s->g.res[e]) {
sp = NULL; /* outside grid */
break;
}
sp += s->g.fci[e] * j; /* Compute pointer to surrounder */
}
if (i> 0 && e >= s->di) {
/* Create vector from base to surrounder */
pos[0] = (double)gp[0];
pos[1] = (double)gp[1];
pos[2] = (double)gp[2];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, pos, pos); /* Apply output lookup */
wrl->add_vertex(wrl, 0, pos);
pos[0] = (double)sp[0];
pos[1] = (double)sp[1];
pos[2] = (double)sp[2];
if (s->gam.outf != NULL)
s->gam.outf(s->gam.cntxf, pos, pos); /* Apply output lookup */
wrl->add_vertex(wrl, 0, pos);
}
DC_INC(cc);
}
EC_INC(gc);
}
wrl->make_lines(wrl, 0, 2);
wrl->start_line_set(wrl, 0);
/* Display the current triangles transparently */
if (s->gam.ttop != NULL) {
for (vp = s->gam.vtop; vp != NULL; vp = vp->list) {
wrl->add_vertex(wrl, 0, vp->v);
}
/* Set the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = tp->list) {
int ix[3];
ix[0] = tp->v[0]->n;
ix[1] = tp->v[1]->n;
ix[2] = tp->v[2]->n;
wrl->add_triangle(wrl, 0, ix);
}
// wrl->make_triangles(wrl, 0, 0.3, NULL);
wrl->make_triangles(wrl, 0, 0.0, NULL);
wrl->start_line_set(wrl, 0);
}
/* Show the active edge as a red cone */
col[0] = 1.0; col[1] = 0.0; col[2] = 0.0; /* Red */
wrl->add_cone(wrl, ep->v[0]->v, ep->v[1]->v, col, 1.0);
//printf("~1 edge v1 = %d = %f %f %f\n", ep->v[0]->gix, ep->v[0]->v[0], ep->v[0]->v[1], ep->v[0]->v[2]);
//printf("~1 edge v2 = %d = %f %f %f\n", ep->v[1]->gix, ep->v[1]->v[0], ep->v[1]->v[1], ep->v[1]->v[2]);
/* Show the candidate verticies */
for (ss = 0; ss < 2; ss++) {
for (i = 0; i < ncnodes[ss]; i++) { /* +ve */
if (ss) {
col[0] = 0.0; col[1] = 1.0; col[2] = 0.0; /* Green +ve */
} else {
col[0] = 0.0; col[1] = 0.0; col[2] = 1.0; /* Blue -ve */
}
wrl->add_marker(wrl, cnodes[ss][i]->v, col, 1.0);
}
}
wrl->del(wrl);
printf("Waiting for return after writing gam_diag%s\n",vrml_ext());
getchar();
}
#endif
/* See if we can make a triangle */
for (ss = 0; ss < 2; ss++) { /* For -ve and +ve sides */
int ii, si;
int sta, end, inc;
rvert **nods;
double rip; /* Row interchange parity */
printf("~1 direction = %d\n",ss);
#ifdef NEVER
if (( ss && ep->npt >= 1) /* Not looking for a positive node */
|| (!ss && ep->nnt >= 1)) { /* Not looking for a negative node */
printf("~1 no need to look for node in this direction\n");
continue;
}
#endif
if (ncnodes[ss] > 0) { /* There are nodes in wanted direction */
si = ss; /* use wanted direction nodes */
sta = 0; /* Start at max radius node */
end = ncnodes[si]; /* End and least radius node */
inc = 1; /* Increment */
nods = cnodes[si]; /* +ve nodes */
printf("~1 Looking for biggest angle, inc = %d\n",inc);
#ifdef NEVER /* Convex tracing ? */
} else if (ncnodes[1-ss] > 0) { /* There are opposited direction nodes */
si = 1-ss; /* use opposite direction nodes */
sta = ncnodes[si]-1; /* Start at min radius node */
end = -1; /* end and max radius node */
inc = -1; /* Decrement */
nods = cnodes[si];
printf("~1 Looking for smallest angle, inc = %d\n",-1);
#endif /* NEVER */
} else {
printf("~1 No points to search\n");
continue;
}
ii = 0;
if (ncnodes[si] > 1) { /* If there is more than one to choose from */
/* Go through each candidate in the most likely order */
for (ii = sta; ii != end; ii += inc) {
printf("~1 Candidate %d: node %d\n",ii,nods[ii]->gix);
/* Create the baricentric conversion for this candidate */
for (f = 0; f < fdi; f++) /* The center point */
A[f][0] = s->gam.cent[f] - nods[ii]->v[f];
for (j = 0; j < (fdi-1); j++) { /* The edge points */
for (f = 0; f < fdi; f++)
A[f][j+1] = ep->v[j]->v[f] - nods[ii]->v[f];
}
if (lu_decomp(A, fdi, pivx, &rip)) {
printf("~1 lu_decomp failed\n");
for (f = 0; f < fdi; f++) /* The center point */
A[f][0] = s->gam.cent[f] - nods[ii]->v[f];
for (j = 0; j < (fdi-1); j++) { /* The edge points */
for (f = 0; f < fdi; f++)
A[f][j+1] = ep->v[j]->v[f] - nods[ii]->v[f];
}
printf("~1 A = \n");
printf("~1 %f %f %f\n", A[0][0], A[0][1], A[0][2]);
printf("~1 %f %f %f\n", A[1][0], A[1][1], A[1][2]);
printf("~1 %f %f %f\n", A[2][0], A[2][1], A[2][2]);
warning("lu_decomp failed");
continue;
}
/* Test the remainder candidates against this simplex */
for (i = sta; i != end; i += inc) {
if (i == ii)
continue;
printf("~1 Test %d: node %d\n",i,nods[i]->gix);
for (f = 0; f < fdi; f++) /* The candidate point */
B[f] = nods[i]->v[f] - nods[ii]->v[f];
lu_backsub(A, fdi, pivx, B);
#ifdef NEVER
printf("~1 baricentric = %f %f %f %f\n",B[0],B[1],B[2],1.0-B[0]-B[1]-B[2]);
{
double tt[3], B3;
/* Check baricentric */
B3 = 1.0-B[0]-B[1]-B[2];
for (f = 0; f < fdi; f++)
tt[f] = 0.0;
for (f = 0; f < fdi; f++)
tt[f] += B[0] * s->gam.cent[f];
for (f = 0; f < fdi; f++)
tt[f] += B[1] * ep->v[0]->v[f];
for (f = 0; f < fdi; f++)
tt[f] += B[2] * ep->v[1]->v[f];
for (f = 0; f < fdi; f++)
tt[f] += B3 * nods[ii]->v[f];
printf("~1 target point %f %f %f\n", (double)nods[i][0], (double)nods[i][1], (double)nods[i][2]);
printf("~1 barice check %f %f %f\n", tt[0],tt[1],tt[2]);
}
#endif /* NEVER */
if ((inc == 1 && B[0] < -EPS) /* other point is at higher angle */
|| (inc == -1 && B[0] > EPS)) { /* other point is at lower angle */
printf("~1 candidate isn't best\n");
break;
}
}
if (i == end) {
printf("~1 candidate IS the best\n");
break; /* Candidate is at highest angle */
}
}
if (ii == end) {
printf("~1Inconsistent candidate ordering\n");
error("Inconsistent candidate ordering");
}
} else {
printf("~1 there are only %d nodes, so don't search them\n",ncnodes[si]);
}
printf("~1 Making triangle with %d: node %d\n",ii,nods[ii]->gix);
make_tri(s, ep, nods[ii], inc == -1);
}
if (ep->npt < 1 || ep->nnt < 1) {
if (ep->npt < 1)
warning("###### Unable to locate +ve triangles for edge %d\n",ep->n);
if (ep->nnt < 1)
warning("###### Unable to locate -ve triangles for edge %d\n",ep->n);
}
}
}
free_ivector(pivx, 0, fdi-1);
free_dmatrix(A, 0, fdi-1, 0, fdi-1);
free_dvector(B, 0, fdi-1);
/* Dump out the edges */
for (ep = s->gam.etop; ep != NULL; ep = ep->list) {
printf("~1 edge no %d, npt = %d, nnt = %d\n",ep->n, ep->npt, ep->nnt);
}
}
return 0;
}
/* ====================================================== */
/* Gamut rspl setup functions */
/* Called by rspl initialisation */
void
init_gam(rspl *s) {
/* Methods */
s->comp_gamut = gam_comp_gamut;
}
/* Free up all the gamut info */
void free_gam(
rspl *s /* Pointer to rspl grid */
) {
int i;
int ssdi;
rvert *vp, *nvp;
redge *ep, *nep;
rtri *tp, *ntp;
for (ssdi = 1; ssdi <= s->fdi-1; ssdi++)
rspl_free_ssimplex_info(s, &s->gam.ssi[ssdi]);
/* Free the verticies */
for (vp = s->gam.vtop; vp != NULL; vp = nvp) {
nvp = vp->list;
free(vp);
}
free(s->gam.verts);
/* Free the edges */
for (ep = s->gam.etop; ep != NULL; ep = nep) {
nep = ep->list;
free(ep);
}
free(s->gam.edges);
/* Free the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = ntp) {
ntp = tp->list;
free(tp);
}
free(s->gam.tris);
}
/* Create the gamut surface structure. */
/* Current this is:
not rationalized to be non-overlapping
culled to eliminate overlaps
Have ink limits applied
*/
/* ~~~ we need space ing gam to:
store radial coordinates of output values
mark nodes as being visited.
store surface triangle structures
hold tadial output bounding acceleration structures
There is a lot in common with rev here.
we need to know input channel significance (what's black)
plus ink limit info.
we're going to create black generation information used by rev.
*/
/* ---------------------- */
/* rspl gam diagnostic */
/* Diagnostic */
void rspl_gam_plot(rspl *s, char *name) {
int i;
double col[3] = { 0.7, 0.7, 0.7 };
rvert *vp, *nvp;
rtri *tp, *ntp;
vrml *wrl;
if ((wrl = new_vrml(name, 1, 0)) == NULL)
error("new_vrml failed for '%s%s'\n",name,vrml_ext());
/* Set the verticies */
for (vp = s->gam.vtop; vp != NULL; vp = vp->list) {
wrl->add_vertex(wrl, 0, vp->v);
}
/* Set the triangles */
for (tp = s->gam.ttop; tp != NULL; tp = ntp) {
int ix[3];
ntp = tp->list;
ix[0] = tp->v[0]->n;
ix[1] = tp->v[1]->n;
ix[2] = tp->v[2]->n;
wrl->add_triangle(wrl, 0, ix);
}
wrl->make_triangles(wrl, 0, 0.0, NULL);
// wrl->make_triangles(wrl, 0, 0.0, col);
wrl->del(wrl);
}
#undef DEBUG
#undef DBGV
#undef DBG
#define DBGV(xxx)
#define DBG(xxx)
|