1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
|
/*
* Argyll Color Correction System
*
* Scattered Data Interpolation with multilevel B-splines library.
* This can be used by rspl, or independently by any other routine.
*
* Author: Graeme W. Gill
* Date: 2001/1/1
*
* Copyright 2000 - 2001 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/*
* This is from the paper
* "Scattered Data Interpolation with Multilevel B-Splines"
* by Seungyong Lee, George Wolberg and Sung Yong Shin,
* IEEE Transactions on Visualisation and Computer Graphics
* Vol. 3, No. 3, July-September 1997, pp 228.
*/
/* TTBD:
*
* Figure out why the results are rubbish ?
*
* Can this be adapted to be adaptive in it smoothness,
* like the non-linear regularized spline stuff that Don Bone used ?
*
* Get rid of error() calls - return status instead
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <math.h>
#if defined(__IBMC__) && defined(_M_IX86)
#include <float.h>
#endif
#include "numlib.h"
#include "mlbs.h"
#ifndef NUMSUP_H
void error(char *fmt, ...), warning(char *fmt, ...);
#endif
static void delete_mlbs(mlbs *p);
static int lookup_mlbs(mlbs *p, co *c);
/* Allocate a new empty mlbs */
mlbs *alloc_mlbs(
int di, /* Input dimensionality */
int fdi, /* Output dimesionality */
int res, /* Target resolution */
double smf /* Smoothing factor */
) {
mlbs *p;
if ((p = (mlbs *)malloc(sizeof(mlbs))) == NULL)
error("Malloc mlbs failed");
p->di = di;
p->fdi = fdi;
p->tres = res;
p->smf = smf;
p->s = NULL;
p->lookup = lookup_mlbs;
p->del = delete_mlbs;
return p;
}
static void delete_slbs(slbs *s);
static void delete_mlbs(mlbs *p) {
if (p != NULL) {
delete_slbs(p->s);
free(p);
}
}
/* Create a new empty slbs */
static slbs *new_slbs(
mlbs *p, /* Parent mlbs */
int res /* Resolution of this slbs */
) {
slbs *s;
int e, f;
double *_lat, *lat; /* Latice base address */
int ix, oe, oo[MXDI]; /* Neighborhood offset index, counter */
if ((s = (slbs *)malloc(sizeof(slbs))) == NULL)
error("Malloc slbs failed");
s->p = p;
s->res = res;
for (s->lsize = p->fdi, s->nsize = 1, e = 0; e < p->di; e++) {
s->coi[e] = s->lsize; /* (double) increment in this input dimension */
s->lsize *= (res + 2); /* Latice in 1D +/- 1 */
s->nsize *= 4; /* Neighborhood of 4 */
}
if ((s->_lat = (double *)malloc(s->lsize * sizeof(double))) == NULL)
error("Malloc slbs latice failed");
/* Compute the base address */
for (s->loff = 0, e = 0; e < p->di; e++) {
s->loff += s->coi[e]; /* Offset by 1 in each input dimension */
}
s->lat = s->_lat + s->loff;
/* Figure the cell width */
for (e = 0; e < p->di; e++)
s->w[e] = (p->h[e] - p->l[e])/(res-1.0);
/* Setup neighborhood cache info */
if ((s->n = (neigh *)malloc(s->nsize * sizeof(neigh))) == NULL)
error("Malloc slbs neighborhood failed");
for (oe = 0; oe < p->di; oe++)
oo[oe] = 0;
for(ix = oe = 0; oe < p->di; ix++) {
int xo;
for (xo = e = 0; e < p->di; e++) {
s->n[ix].c[e] = oo[e];
xo += s->coi[e] * oo[e]; /* Accumulate latice offset */
}
s->n[ix].xo = xo;
s->n[ix].w = 0.0;
/* Increment destination offset counter */
for (oe = 0; oe < p->di; oe++) {
if (++oo[oe] <= 3) /* Counting from 0 ... 3 */
break;
oo[oe] = 0;
}
}
return s;
}
/* Destroy a slbs */
static void delete_slbs(slbs *s) {
if (s != NULL) {
free(s->_lat);
free(s->n);
free(s);
}
}
/* Dump the 2D -> 1D contents of an slbs */
static void dump_slbs(slbs *s) {
int e, f;
int ce, co[MXDI]; /* latice counter */
mlbs *p = s->p; /* Parent object */
/* Init the counter */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
f = 0;
while(ce < p->di) {
double v;
int off = 0; /* Latice offset */
for (e = 0; e < p->di; e++) {
off += co[e] * s->coi[e]; /* Accumulate latice offset */
}
v = s->lat[off + f]; /* Value of this latice point */
printf("Latice at [%d][%d] = %f\n",co[1],co[0],v);
/* Increment the latice counter */
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= s->res) /* Counting from -1 ... s->res */
break;
co[ce] = -1;
}
}
}
/* Initialise an slbs with a linear approximation to the scattered data */
static void linear_slbs(
slbs *s
) {
int i, e, f;
mlbs *p = s->p; /* Parent object */
double **A; /* A matrix holding scattered data points */
double *B; /* B matrix holding RHS & solution */
/* Allocate the matricies */
B = dvector(0, p->npts-1);
A = dmatrix(0, p->npts-1, 0, p->di);
/* For each output dimension, solve the linear equation coeficients */
for (f = 0; f < p->fdi; f++) {
int ce, co[MXDI]; /* latice counter */
/* Init A[][] with the scattered data points positions */
/* Also init B[] with the value for this output dimension */
for (i = 0; i < p->npts; i++) {
for (e = 0; e < p->di; e++)
A[i][e] = p->pts[i].p[e];
A[i][e] = 1.0;
B[i] = p->pts[i].v[f];
}
/* Solve the equation A.x = b using SVD */
/* (The w[] values are thresholded for best accuracy) */
/* Return non-zero if no solution found */
if (svdsolve(A, B, p->npts, p->di+1) != 0)
error("SVD least squares failed");
/* A[][] will have been changed, and B[] holds the p->di+1 coefficients */
/* Use the coefficients to initialise the slbs values */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
while(ce < p->di) {
double v = B[p->di]; /* Constant */
int off = 0; /* Latice offset */
for (e = 0; e < p->di; e++) {
double lv;
lv = p->l[e] + s->w[e] * co[e]; /* Input value for this latice location */
v += B[e] * lv;
off += co[e] * s->coi[e]; /* Accumulate latice offset */
}
s->lat[off + f] = v; /* Value of this latice point */
/* Increment the latice counter */
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= s->res) /* Counting from -1 ... s->res */
break;
co[ce] = -1;
}
}
}
free_dmatrix(A, 0, p->npts-1, 0, p->di);
free_dvector(B, 0, p->npts-1);
}
/* Do a latice refinement - upsample the current */
/* source latice to the destination latice. */
static void refine_slbs(
slbs *ds, /* Destination slbs */
slbs *ss /* Source slbs */
) {
mlbs *p = ss->p; /* Parent object */
int ce, co[MXDI]; /* Source coordinate counter */
int six; /* Source index */
int dix; /* destination index */
static double _wt[5] = { 1.0/8.0, 4.0/8.0, 6.0/8.0, 4.0/8.0, 1.0/8.0 };
static double *wt = &_wt[2]; /* 1D Distribution weighting */
/* Zero the destination latice before accumulating values */
for (dix = 0; dix < ds->lsize; dix++)
ds->_lat[dix] = 0.0;
/* Now for each source latice entry, add weighted portions */
/* to the associated destination points */
/* Init the source coordinate counter */
for (ce = 0; ce < p->di; ce++)
co[ce] = -1;
ce = 0;
six = -ss->loff;
while(ce < p->di) {
int oe, oo[MXDI]; /* Destination offset counter */
//printf("Source coord %d %d, offset %d, value %f\n",co[0], co[1], six, ss->lat[six]);
/* calc destination index, and init offest counter */
for (dix = oe = 0; oe < p->di; oe++) {
oo[oe] = -2;
dix += co[oe] * 2 * ds->coi[oe]; /* Accumulate dest offset */
}
oe = 0;
//printf("Dest coord %d %d\n",co[0] * 2, co[1] * 2);
/* For all the offsets from the destination point */
while(oe < p->di) {
int e, f, dixo; /* Destination index offset */
double w = 1.0; /* Weighting */
//printf("dest offset %d %d\n",oo[0], oo[1]);
/* Compute dest index offset, and check that we are not outside the destination */
for (dixo = e = 0; e < p->di; e++) {
int x = co[e] * 2 + oo[e]; /* dest coord */
dixo += oo[e] * ds->coi[e]; /* Accumulate dest offset */
//printf("x[%d] = %d\n",e, x);
w *= wt[oo[e]]; /* Compute distribution weighting */
if (x < -1 || x > ds->res)
break; /* No good */
}
if (e >= p->di) { /* We are within the destination latice */
//if ((co[0] * 2 + oo[0]) == 0 && (co[1] * 2 + oo[1]) == 0) {
//printf("Source coord %d %d, offset %d, value %f\n",co[0], co[1], six, ss->lat[six]);
//printf("Dest coord %d %d ix %d, weight %f\n",co[0] * 2 + oo[0], co[1] * 2 + oo[1], dix+dixo, w);
//}
for (f = 0; f < p->fdi; f++) { /* Distribute weighted values */
double v = ss->lat[six + f];
//if ((co[0] * 2 + oo[0]) == 0 && (co[1] * 2 + oo[1]) == 0)
//printf("Value being dist %f, weighted value %f\n", v, v * w);
ds->lat[dix + dixo + f] += v * w;
}
}
/* Increment destination offset counter */
for (oe = 0; oe < p->di; oe++) {
if (++oo[oe] <= 2) /* Counting from -2 ... +2 */
break;
oo[oe] = -2;
}
}
/* Increment the source index and coordinat counter */
six += p->fdi;
for (ce = 0; ce < p->di; ce++) {
if (++co[ce] <= ss->res) /* Counting from -1 ... ss->res */
break;
co[ce] = -1;
}
}
}
/* Compute the Cubic B-spline weightings for a given t */
void basis(double b[4], double t) {
double _t3, _t2, _t1, _3t3, _3t2, _3t1, _6t2;
_t1 = t/6.0;
_t2 = _t1 * _t1;
_t3 = _t2 * _t1;
_3t1 = 3.0 * _t1;
_3t2 = 3.0 * _t2;
_3t3 = 3.0 * _t3;
_6t2 = 6.0 * _t2;
b[0] = - _t3 + _3t2 - _3t1 + 1.0/6.0;
b[1] = _3t3 - _6t2 + 4.0/6.0;
b[2] = -_3t3 + _3t2 + _3t1 + 1.0/6.0;
b[3] = _t3;
}
/* Improve an slbs to make it closer to the scattered data */
static void improve_slbs(
slbs *s
) {
int i, e, f;
mlbs *p = s->p; /* Parent object */
double *delta; /* Delta accumulation */
double *omega; /* Omega accumulation */
/* Allocate temporary accumulation arrays */
if ((delta = (double *)calloc(sizeof(double), s->lsize)) == NULL)
error("Malloc slbs temp latice failed");
delta += s->loff;
if ((omega = (double *)calloc(sizeof(double), s->lsize)) == NULL)
error("Malloc slbs temp latice failed");
omega += s->loff;
/* For each scattered data point */
for (i = 0; i < p->npts; i++) {
int ix; /* Latice index of base of neighborhood */
double b[MXDI][4]; /* B-spline basis factors for each dimension */
double sws; /* Sum of all the basis factors squared */
double ve[MXDO]; /* Current output value error */
int nn; /* Neighbor counter */
/* Figure out our neighborhood */
for (ix = e = 0; e < p->di; e++) {
int x;
double t, sp, fp;
sp = (p->pts[i].p[e] - p->l[e])/s->w[e]; /* Scaled position */
fp = floor(sp);
x = (int)(fp - 1.0); /* Grid coordinate */
ix += s->coi[e] * x; /* Accume latice offset */
t = sp - fp; /* Spline parameter */
basis(b[e], t); /* Compute basis function values */
}
/* Compute the grid basis weight functions, */
/* the sum of the weights squared, and the current */
/* output value estimate. */
for (f = 0; f < p->fdi; f++)
ve[f] = p->pts[i].v[f]; /* Target output value */
for (sws = 0.0, nn = 0; nn < s->nsize; nn++) {
double w;
for (w = 1.0, e = 0; e < p->di; e++)
w *= b[e][s->n[nn].c[e]];
s->n[nn].w = w; /* cache weighting */
sws += w * w;
for (f = 0; f < p->fdi; f++)
ve[f] -= w * s->lat[ix + s->n[nn].xo + f]; /* Subtract current aprox value */
}
//printf("Error at point %d = %f\n",i,ve[0]);
/* Accumulate the delta and omega factors */
/* for this resolutions improvement. */
for (nn = 0; nn < s->nsize; nn++) {
double ws, ww, w = s->n[nn].w;
int xo = ix + s->n[nn].xo; /* Latice offset */
ww = w * w;
ws = ww * w/sws; /* Scale factor for delta */
omega[xo] += ww; /* Accumulate omega */
for (f = 0; f < p->fdi; f++)
delta[xo + f] += ws * ve[f]; /* Accumulate delta */
//printf("Distributing omega %f to %d %d\n",ww,s->n[nn].c[0],s->n[nn].c[1]);
//printf("Distributing delta %f to %d %d\n",ws * ve[0],s->n[nn].c[0],s->n[nn].c[1]);
}
}
omega -= s->loff; /* Base them back to -1 corner */
delta -= s->loff;
/* Go through the delta and omega arrays, */
/* compute and add the refinements to the current */
/* B-spline control latice. */
for (i = 0; i < s->lsize; i++) {
double om = omega[i];
if (om != 0.0) {
for (f = 0; f < p->fdi; f++)
s->_lat[i] += delta[i + f]/om;
//printf("Adjusting latice index %d by %f to give %f\n",i, delta[i]/om, s->_lat[i]);
}
}
/* Done with temporary arrays */
free(omega);
free(delta);
}
/* Return the interpolated value for a given point */
/* Return NZ if input point is out of range */
static int lookup_mlbs(
mlbs *p,
co *c /* Point to interpolate */
) {
slbs *s = p->s;
int e, f;
int ix; /* Latice index of base of neighborhood */
double b[MXDI][4]; /* B-spline basis factors for each dimension */
int nn; /* Neighbor counter */
/* Figure out our neighborhood */
for (ix = e = 0; e < p->di; e++) {
int x;
double t, sp, fp;
sp = c->p[e];
if (sp < p->l[e] || sp > p->h[e])
return 1;
sp = (sp - p->l[e])/s->w[e]; /* Scaled position */
fp = floor(sp);
x = (int)(fp - 1.0); /* Grid coordinate */
ix += s->coi[e] * x; /* Accume latice offset */
t = sp - fp; /* Spline parameter */
basis(b[e], t); /* Compute basis function values */
}
/* Compute the the current output value. */
for (f = 0; f < p->fdi; f++)
c->v[f] = 0.0;
for (nn = 0; nn < s->nsize; nn++) {
double w;
for (w = 1.0, e = 0; e < p->di; e++)
w *= b[e][s->n[nn].c[e]];
for (f = 0; f < p->fdi; f++)
c->v[f] += w * s->lat[ix + s->n[nn].xo + f]; /* Accume spline value */
}
return 0;
}
/* Take a list of scattered data points, */
/* and setup the mlbs. */
static void set_mlbs(
mlbs *p, /* mlbs to set up */
dpnts *pts, /* scattered data points and weights */
int npts, /* number of scattered data points */
double *l, /* Input data range, low (May be NULL) */
double *h /* Input data range, high (May be NULL) */
) {
int res;
int i, e, f;
slbs *s0 = NULL, *s1;
/* Establish the input data range */
for (e = 0; e < p->di; e++) {
if (l == NULL)
p->l[e] = 1e60;
else
p->l[e] = l[e];
if (h == NULL)
p->h[e] = -1e60;
else
p->h[e] = h[e];
}
for (i = 0; i < npts; i++) {
for (e = 0; e < p->di; e++) {
if (pts[i].p[e] < p->l[e])
p->l[e] = pts[i].p[e];
if (pts[i].p[e] > p->h[e])
p->h[e] = pts[i].p[e];
}
}
/* Make point data available during init */
p->pts = pts;
p->npts = npts;
/* Create an initial slbs */
res = 2;
if ((s1 = new_slbs(p, 2)) == NULL)
error("new_slbs failed");
/* Set it up with a linear first approximation */
linear_slbs(s1);
//dump_slbs(s1);
/* Build up the resolution */
for (; res < p->tres;) {
res = 2 * res -1;
printf("~1 doing resolution %d\n",res);
delete_slbs(s0);
s0 = s1;
if ((s1 = new_slbs(p, res)) == NULL)
error("new_slbs failed");
refine_slbs(s1, s0);
//dump_slbs(s1);
improve_slbs(s1);
}
delete_slbs(s0);
p->s = s1; /* Final resolution */
/* We can't assume point data will stick around */
p->pts = NULL;
p->npts = 0;
}
/* Create a new empty mlbs */
mlbs *new_mlbs(
int di, /* Input dimensionality */
int fdi, /* Output dimesionality */
int res, /* Minimum final resolution */
dpnts *pts, /* scattered data points and weights */
int npts, /* number of scattered data points */
double *l, /* Input data range, low (May be NULL) */
double *h, /* Input data range, high (May be NULL) */
double smf /* Smoothing factor */
) {
mlbs *p;
if ((p = alloc_mlbs(di, fdi, res, smf)) == NULL)
return p;
set_mlbs(p, pts, npts, l, h);
return p;
}
#ifndef NUMSUP_H
/* Basic printf type error() and warning() routines */
void
error(char *fmt, ...)
{
va_list args;
fprintf(stderr,"stest: Error - ");
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
exit (-1);
}
void
warning(char *fmt, ...)
{
va_list args;
fprintf(stderr,"stest: Warning - ");
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
}
#endif /* NUMSUP_H */
|