1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
|
/*
* Argyll Color Correction System
* Multi-dimensional regularized splines data fitter
*
* Author: Graeme W. Gill
* Date: 30/1/00
*
* Copyright 1996 - 2004 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* Version that a combination of relaxation and conjugate gradient */
/* solution techniques. */
/* TTBD:
To save space, the full columns of A should only be allocated when needed ?
(Does this actually save much space for a realistic data sample set ?)
Get rid of error() calls - return status instead.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <time.h>
#if defined(__IBMC__) && defined(_M_IX86)
#include <float.h>
#endif
#include "rspl_imp.h"
#include "numlib.h"
#include "counters.h" /* Counter macros */
#undef DEBUG
#undef DEBUGLU /* Debug fwd interpolation */
#undef VERBOSE
#undef NEVER
#define ALWAYS
#ifdef DEBUGLU
# define DEBLU(xxxx) printf xxxx
#else
# define DEBLU(xxxx)
#endif
/* Implemeted in this file: */
rspl *new_rspl(int flags, int di, int fdi);
static void free_rspl(rspl *s);
static void init_grid(rspl *s);
static void free_grid(rspl *s);
static void get_in_range(rspl *s, double *min, double *max);
static void get_out_range(rspl *s, double *min, double *max);
static void get_out_range_points(rspl *s, int *minp, int *maxp);
static double get_out_scale(rspl *s);
static unsigned int get_next_touch(rspl *s);
static int within_restrictedsize(rspl *s);
static int interp_rspl_sx(rspl *s, co *pp);
static int part_interp_rspl_sx(rspl *s, co *p1, co *p2);
static int interp_rspl_nl(rspl *s, co *p);
int is_mono(rspl *s);
static int set_rspl(rspl *s, int flags, void *cbctx,
void (*func)(void *cbctx, double *out, double *in),
datai glow, datai ghigh, int gres[MXDI], datao vlow, datao vhigh);
static int re_set_rspl(struct _rspl *s, int flags, void *cbntx,
void (*func)(void *cbntx, double *out, double *in));
static void scan_rspl(struct _rspl *s, int flags, void *cbntx,
void (*func)(void *cbntx, double *out, double *in));
static void filter_rspl(struct _rspl *s, int flags, void *cbctx,
void (*func)(void *cbntx, float **out, double *in, int cvi));
extern int add_rspl(rspl *s, int flags, co *d, int dno);
extern void init_data(rspl *s);
extern void free_data(rspl *s);
/* Implemented in rev.c: */
void init_rev(rspl *s);
void free_rev(rspl *s);
/* Implemented in gam.c: */
void init_gam(rspl *s);
void free_gam(rspl *s);
/* Implemented in spline.c: */
void init_spline(rspl *s);
void free_spline(rspl *s);
/* Implemented in opt.c: */
int opt_rspl_imp(struct _rspl *s, int flags, int tdi, int adi, double **vdata,
double (*func)(void *fdata, double *inout, double *surav, int first, double *cw),
void *fdata, datai glow, datai ghigh, int gres[MXDI], datao vlow, datao vhigh);
/* Convention is to use:
i to index grid points u.a
n to index data points d.a
e to index position dimension di
f to index output function dimension fdi
j misc and cube corners
k misc
*/
/* ================================ */
/* Allocate an empty rspl object. */
rspl *
new_rspl(
int flags,
int di,
int fdi
) {
rspl *s;
#ifdef DEBUG
fprintf(stderr,"new_rspl with flags 0x%x, di %d, fdi %d\n",flags,di,fdi);
#endif
/* Allocate a structure */
if ((s = (rspl *) calloc(1, sizeof(rspl))) == NULL)
error("rspl: malloc failed - main structure");
/* Set our fundamental parameters */
if (di < 1 || di > MXDI)
error("rspl: can't handle input dimension %d",di);
s->di = di;
if (fdi < 1 || fdi > MXDO)
error("rspl: can't handle output dimension %d",fdi);
s->fdi = fdi;
/* And appropriate flags */
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
/* Allocate space for cube offset arrays */
s->g.hi = s->g.a_hi;
s->g.fhi = s->g.a_fhi;
if ((1 << di) > DEF2MXDI) {
if ((s->g.hi = (int *) malloc(sizeof(int) * (1 << di))) == NULL)
error("rspl malloc failed - hi[]");
if ((s->g.fhi = (int *) malloc(sizeof(int) * (1 << di))) == NULL)
error("rspl malloc failed - fhi[]");
}
/* Init sub sections */
init_data(s);
init_grid(s);
init_rev(s);
init_gam(s);
init_spline(s);
if (flags & RSPL_FASTREVSETUP)
s->rev.fastsetup = 1;
else
s->rev.fastsetup = 0;
/* Set pointers to methods in this file */
s->del = free_rspl;
s->interp = interp_rspl_sx; /* Default to simplex interp */
#ifdef NEVER
#define USING_INTERP_NL
printf("!!!! rspl.c using interp_rspl_nl !!!!");
s->interp = interp_rspl_nl;
#endif
s->part_interp = part_interp_rspl_sx;
s->set_rspl = set_rspl;
s->scan_rspl = scan_rspl;
s->re_set_rspl = re_set_rspl;
s->opt_rspl = opt_rspl_imp;
s->filter_rspl = filter_rspl;
s->get_in_range = get_in_range;
s->get_out_range = get_out_range;
s->get_out_range_points = get_out_range_points;
s->get_out_scale = get_out_scale;
s->get_next_touch = get_next_touch;
s->within_restrictedsize = within_restrictedsize;
return s;
}
/* Free the rspl and all its contents */
static void free_rspl(rspl *s) {
int e;
/* Free everying contained */
free_data(s); /* Free any scattered data */
free_rev(s); /* Free any reverse lookup data */
free_gam(s); /* Free any grid data */
free_grid(s); /* Free any grid data */
/* Free spline interpolation data ~~~~ */
/* Free structure */
for (e = 0; e < s->di; e++) {
if (s->g.ipos[e] != NULL)
free(s->g.ipos[e]);
}
if (s->g.hi != s->g.a_hi) {
free(s->g.hi);
free(s->g.fhi);
}
free((void *) s);
}
/* ======================================================== */
/* Allocate rspl grid data, and initialise grid associated stuff */
void
alloc_grid(rspl *s) {
int di = s->di, fdi = s->fdi;
int e,g,i;
int gno; /* Number of points in grid */
ECOUNT(gc, MXDIDO, di, 0, s->g.res, 0);/* coordinates */
float *gp; /* Grid point pointer */
#ifdef DEBUG
fprintf(stderr,"rspl allocating grid res %s\n",icmPiv(di, s->g.res));
#endif
/* Compute total number of elements in the grid */
for (gno = 1, e = 0; e < di; gno *= s->g.res[e], e++)
;
s->g.no = gno;
s->g.pss = fdi+G_XTRA; /* float for each output value + nme + flags */
/* Compute index coordinate increments into linear grid for each dimension */
/* ie. 1, gres, gres^2, gres^3 */
for (s->g.ci[0] = 1, e = 1; e < di; e++)
s->g.ci[e] = s->g.ci[e-1] * s->g.res[e-1]; /* In grid points */
for (e = 0; e < di; e++)
s->g.fci[e] = s->g.ci[e] * s->g.pss; /* In floats */
/* Compute index offsets from base of cube to other corners. */
for (s->g.hi[0] = e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++)
s->g.hi[g+i] = s->g.hi[i] + s->g.ci[e]; /* In grid points */
}
/* same as hi, but in floats */
for (i = 0; i < (1 << di); i++)
s->g.fhi[i] = s->g.hi[i] * s->g.pss; /* In floats */
/* Allocate space for grid */
if ((s->g.alloc = (float *) malloc(sizeof(float) * gno * s->g.pss)) == NULL)
error("rspl malloc failed - grid points");
s->g.a = s->g.alloc + G_XTRA; /* make -1 be nme, and -2 be (unsigned int) flags */
/* Set initial value of cell touch count */
s->g.touch = 0;
/* Init near edge flags, and touched flag */
EC_INIT(gc);
for (i = 0, gp = s->g.a; !EC_DONE(gc); i++, gp += s->g.pss) {
gp[-1] = L_UNINIT; /* Init Ink limit function value to -1e38 */
I_FL(gp); /* Init all flags to zero */
for (e = 0; e < di; e++) {
int e1,e2;
e1 = gc[e]; /* Dist to bottom edge */
e2 = (s->g.res[e]-1) - gc[e]; /* Dist to top edge */
if (e2 < e1) { /* Top edge is closer */
if (e2 > 2)
e2 = 2; /* Max dist = 2 */
S_FL(gp,e,e2); /* Set flag value */
} else { /* Bot edge is closer */
if (e1 > 2)
e1 = 2; /* Max dist = 2 */
S_FL(gp,e,e1 | 0x4); /* Set flag value */
}
}
TOUCHF(gp) = 0;
EC_INC(gc);
}
s->g.limitv_cached = 0; /* No limit values are current cached */
}
/* Init grid related elements of rspl */
static void
init_grid(rspl *s) {
s->g.alloc = NULL;
}
/* Free the grid allocation */
static void
free_grid(rspl *s) {
if (s->g.alloc != NULL)
free((void *)s->g.alloc);
}
/* ============================================ */
/* Return the range of possible input values that the grid can represent */
static void
get_in_range(
rspl *s, /* Grid to search */
double *min, double *max /* Return min/max values */
) {
int e;
for (e = 0; e < s->di; e++) {
min[e] = s->g.l[e];
max[e] = s->g.h[e];
}
}
/* ============================================ */
/* Discover the range of possible output values */
static void
get_out_range(
rspl *s, /* Grid to search */
double *min, double *max /* Return min/max values */
) {
float *gp,*ep; /* Grid pointer */
int f;
if (s->g.fminmax_valid == 0) { /* Not valid, so compute it */
for (f = 0; f < s->fdi; f++) {
s->g.fmin[f] = 1e30;
s->g.fmax[f] = -1e30;
s->g.fminx[f] = -1;
s->g.fmaxx[f] = -1;
}
/* Scan the Grid points for min/max values */
for (gp = s->g.a, ep = s->g.a + s->g.no * s->g.pss; gp < ep; gp += s->g.pss) {
for (f = 0; f < s->fdi; f++) {
if (s->g.fmin[f] > gp[f]) {
s->g.fmin[f] = gp[f];
s->g.fminx[f] = (gp - s->g.a)/s->g.pss;
}
if (s->g.fmax[f] < gp[f]) {
s->g.fmax[f] = gp[f];
s->g.fmaxx[f] = (gp - s->g.a)/s->g.pss;
}
}
}
/* Compute overall output scale */
for (s->g.fscale = 0.0, f = 0; f < s->fdi; f++) {
double tt = s->g.fmax[f] - s->g.fmin[f];
s->g.fscale += tt * tt;
}
s->g.fscale = sqrt(s->g.fscale);
s->g.fminmax_valid = 1; /* Now is valid */
}
for (f = 0; f < s->fdi; f++) {
if (min != NULL)
min[f] = s->g.fmin[f];
if (max != NULL)
max[f] = s->g.fmax[f];
}
}
/* ============================================ */
/* return the grid index of the grid values at the min & max output values */
static void get_out_range_points(rspl *s, int *minp, int *maxp) {
int f;
if (s->g.fminmax_valid == 0) /* Not valid, so compute it */
get_out_range(s, NULL, NULL);
for (f = 0; f < s->fdi; f++) {
if (minp != NULL)
minp[f] = s->g.fminx[f];
if (maxp != NULL)
maxp[f] = s->g.fmaxx[f];
}
}
/* ============================================ */
/* Discover the csale of the output values */
static double
get_out_scale(rspl *s) {
if (s->g.fminmax_valid == 0) /* Not valid, so compute it */
get_out_range(s, NULL, NULL);
return s->g.fscale;
}
/* ============================================ */
/* Return the next touched flag count value. */
/* Whenever this rolls over, all the flags in the grid array will be reset. */
/* */
/* The touch flag is a way of some grid accessor (ie. rev()) making sure */
/* that it doesn't access cells more than once for a particular operation, */
/* without sorting a list of items to be accessed, or having to reset a */
/* binary flag on all the cells for each operation. */
/* If the value of a cells TOUCHF() is less than s->g.touch, then it hasn't */
/* been accessed yet. Once the cell has been acessed, then TOUCHF() should */
/* be set to s->g.touch. After 2^32 operations, the cell touch flags will */
/* have been set to values between 0 and 2^32-1, so it is time to reset */
/* all the flags. For that reason, the following method should be used */
/* to get the next touch generation value at the start of each operation. */
static unsigned int
get_next_touch(
rspl *s
) {
unsigned int tg;
float *gp,*ep; /* Grid pointer */
if ((tg = ++s->g.touch) == 0) {
/* We have to reset all the cell flags to zero before we roll over */
for (gp = s->g.a, ep = s->g.a + s->g.no * s->g.pss; gp < ep; gp += s->g.pss) {
TOUCHF(gp) = 0;
}
tg = ++s->g.touch; /* return 1 */
}
return tg;
}
/* ============================================ */
/* Return non-zero if this rspl can be */
/* used with Restricted Size functions. */
static int within_restrictedsize(
rspl *s
) {
if (s->di <= MXRI && s->fdi <= MXRO)
return 1;
return 0;
}
/* ============================================ */
/* Do a forward interpolation using an simplex interpolation method. */
/* Return 0 if OK, 1 if input was clipped to grid */
/* Return 0 on success, 1 if clipping occured, 2 on other error */
// ~~999
//int rspldb = 0;
static int interp_rspl_sx(
rspl *s,
co *p /* Input value and returned function value */
) {
int e, di = s->di;
int f, fdi = s->fdi;
double we[MXDI]; /* Coordinate offset within the grid cell */
int si[MXDI]; /* we[] Sort index, [0] = smallest */
float *gp; /* Pointer to grid cube base */
int rv = 0; /* Register clip */
/* We are using a simplex (ie. tetrahedral for 3D input) interpolation. */
DEBLU(("In %s\n", icmPdv(di, p->p)));
/* Figure out which grid cell the point falls into */
{
gp = s->g.a; /* Base of grid array */
for (e = 0; e < di; e++) {
int gres_1 = s->g.res[e]-1;
double pe, t;
int mi;
pe = p->p[e];
if (pe < s->g.l[e]) { /* Clip to grid */
pe = s->g.l[e];
rv = 1;
}
if (pe > s->g.h[e]) {
pe = s->g.h[e];
rv = 1;
}
t = (pe - s->g.l[e])/s->g.w[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres_1)
mi = gres_1-1;
gp += mi * s->g.fci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
//if (rspldb && di == 3) printf("~1 e = %d, ix = %d, we = %f\n", e, mi, we[e]);
}
DEBLU(("ix %d, we %s\n", (gp - s->g.a)/s->g.pss, icmPdv(di, p->p)));
}
/* Do selection sort on coordinates */
{
for (e = 0; e < di; e++)
si[e] = e; /* Initial unsorted indexes */
for (e = 0; e < (di-1); e++) {
double cosn;
cosn = we[si[e]]; /* Current smallest value */
for (f = e+1; f < di; f++) { /* Check against rest */
int tt;
tt = si[f];
if (cosn > we[tt]) {
si[f] = si[e]; /* Exchange */
si[e] = tt;
cosn = we[tt];
}
}
}
}
DEBLU(("si[] = %s\n", icmPiv(di, si)));
/* Now compute the weightings, simplex vertices and output values */
{
double w; /* Current vertex weight */
w = 1.0 - we[si[di-1]]; /* Vertex at base of cell */
for (f = 0; f < fdi; f++)
p->v[f] = w * gp[f];
DEBLU(("ix %d: w %f * val %s\n", (gp - s->g.a)/s->g.pss, w, icmPfv(fdi,gp)));
for (e = di-1; e > 0; e--) { /* Middle verticies */
w = we[si[e]] - we[si[e-1]];
gp += s->g.fci[si[e]]; /* Move to top of cell in next largest dimension */
for (f = 0; f < fdi; f++)
p->v[f] += w * gp[f];
DEBLU(("ix %d: w %f * val %s\n", (gp - s->g.a)/s->g.pss, w, icmPfv(fdi,gp)));
}
w = we[si[0]];
gp += s->g.fci[si[0]]; /* Far corner from base of cell */
for (f = 0; f < fdi; f++)
p->v[f] += w * gp[f];
DEBLU(("ix %d: w %f * val %s\n", (gp - s->g.a)/s->g.pss, w, icmPfv(fdi,gp)));
DEBLU(("Outval %s\n", icmPdv(fdi, p->v)));
}
return rv;
}
/* ============================================ */
/* Do forward (partial) interpolation to allow input & output curves to be applied, */
/* and allow input delta E to be estimated from output delta E. */
/* Call with input value in p1[0].p[], */
/* In order smallest to largest weight: */
/* Return di+1 vertex values in p1[]].v[] and */
/* 0-1 sub-cell weight values as (p1[].p[0] - p1[].p[1]). */
/* Optionally in input channel order: */
/* Returns di+1 partial derivatives + base value in p2[].v[], */
/* with matching weight values for each in p2[].p[0] (last weight = 1)*/
/* Return 0 if OK, 1 if input was clipped to grid */
static int part_interp_rspl_sx(
struct _rspl *s, /* this */
co *p1,
co *p2 /* optional - return partial derivatives for each input channel */
) {
int e, di = s->di;
int f, fdi = s->fdi;
double we[MXDI]; /* Coordinate offset within the grid cell */
int si[MXDI]; /* we[] Sort index, [0] = smallest */
float *gp; /* Pointer to grid cube base */
int rv = 0; /* Register clip */
/* We are using a simplex (ie. tetrahedral for 3D input) interpolation. */
/* Figure out which grid cell the point falls into */
{
gp = s->g.a; /* Base of grid array */
for (e = 0; e < di; e++) {
int gres_1 = s->g.res[e]-1;
double pe, t;
int mi;
pe = p1[0].p[e];
if (pe < s->g.l[e]) { /* Clip to grid */
pe = s->g.l[e];
rv = 1;
}
if (pe > s->g.h[e]) {
pe = s->g.h[e];
rv = 1;
}
t = (pe - s->g.l[e])/s->g.w[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres_1)
mi = gres_1-1;
gp += mi * s->g.fci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
}
}
/* Do selection sort on coordinates */
{
for (e = 0; e < di; e++)
si[e] = e; /* Initial unsorted indexes */
for (e = 0; e < (di-1); e++) {
double cosn;
cosn = we[si[e]]; /* Current smallest value */
for (f = e+1; f < di; f++) { /* Check against rest */
int tt;
tt = si[f];
if (cosn > we[tt]) {
si[f] = si[e]; /* Exchange */
si[e] = tt;
cosn = we[tt];
}
}
}
}
/* Now compute the vertex values that correspond */
/* to the input faction weightings + fixed value */
/* Scale the slopes + weights to make slopes */
/* valid as partial derivative of input values */
{
p1[di].p[0] = 1.0;
p1[di].p[1] = we[si[di-1]]; /* Vertex at base of cell */
for (f = 0; f < fdi; f++)
p1[di].v[f] = gp[f];
if (p2 != NULL) {
for (f = 0; f < fdi; f++)
p2[di].v[f] = gp[f]; /* Constant term @ vertex base */
p2[di].p[0] = 1.0;
}
for (e = di-1; e >= 0; e--) { /* Middle verticies to far vertex from base */
int ee = si[e];
float *lgp = gp; /* Last gp[] */
gp += s->g.fci[ee]; /* Move to top of cell in next largest dimension */
p1[e].p[0] = we[si[e]];
p1[e].p[1] = e > 0 ? we[si[e-1]] : 0.0;
for (f = 0; f < fdi; f++)
p1[e].v[f] = gp[f];
if (p2 != NULL) {
for (f = 0; f < fdi; f++)
p2[ee].v[f] = (gp[f] - lgp[f]) / s->g.w[ee];
p2[ee].p[0] = we[ee] * s->g.w[ee];
}
}
}
return rv;
}
#ifdef NEVER
/* Test out part_interp_rspl_sx() */
/* Designed to test with a CMYK->Lab lookup */
static int interp_rspl_sx(
rspl *s,
co *p /* Input value and returned function value */
) {
int rv, rv2;
int e, f, m;
co p1[MXDI+1];
co p2[MXDI+1];
co p3;
double v1[MXDO];
double v2[MXDO];
for (e = 0; e < s->di; e++) {
p1[0].p[e] = p->p[e];
p3.p[e] = p->p[e];
}
rv = _interp_rspl_sx(s, p);
if ((s->di != 4 || s->fdi != 3)
&& (s->di != 3 || s->fdi != 4))
return rv;
rv2 = part_interp_rspl_sx(s, p1, p2);
/* Check interpolation values returned in p1 and p2 form */
for (f = 0; f < s->fdi; f++)
v1[f] = v2[f] = 0.0;
for (e = 0; e <= s->di; e++) {
for (f = 0; f < s->fdi; f++) {
/* We could converts p1[].p[0] and p1[].p[1] through sub curve lookup, */
/* and p1[].v[] though inverse output curve lookup, */
/* then convert v1[] through output curve lookup. */
v1[f] += p1[e].v[f] * (p1[e].p[0] - p1[e].p[1]);
/* v2 is using base + partial derivatives */
v2[f] += p2[e].v[f] * p2[e].p[0];
}
}
if (s->di == 4) {
printf("~1 %f %f %f %f ->\n",p->p[0], p->p[1], p->p[2], p->p[3]);
printf("~1 ref %d -> %f %f %f\n", rv, p->v[0], p->v[1], p->v[2]);
printf("~1 check1 %d -> %f %f %f\n", rv2, v1[0], v1[1], v1[2]);
printf("~1 check2 %d -> %f %f %f\n", rv2, v2[0], v2[1], v2[2]);
} else {
printf("~1 %f %f %f ->\n",p->p[0], p->p[1], p->p[2]);
printf("~1 ref %d -> %f %f %f %f\n", rv, p->v[0], p->v[1], p->v[2], p->v[3]);
printf("~1 check1 %d -> %f %f %f %f\n", rv2, v1[0], v1[1], v1[2], v1[3]);
printf("~1 check2 %d -> %f %f %f %f\n", rv2, v2[0], v2[1], v2[2], v2[3]);
}
/* Check partial derivs in p2 */
for (m = 0; m < s->di; m++) {
p3.p[m] += 1e-5;
_interp_rspl_sx(s, &p3);
for (f = 0; f < s->fdi; f++)
p3.v[f] = (p3.v[f] - p->v[f])/1e-5;
if (s->di == 4) {
printf("~1 deriv %d:\n", m);
printf("~1 ref del %f %f %f\n", p3.v[0], p3.v[1], p3.v[2]);
printf("~1 check del %f %f %f\n", p2[m].v[0], p2[m].v[1], p2[m].v[2]);
} else {
printf("~1 deriv %d:\n", m);
printf("~1 ref del %f %f %f %f\n", p3.v[0], p3.v[1], p3.v[2], p3.v[3]);
printf("~1 check del %f %f %f %f\n", p2[m].v[0], p2[m].v[1], p2[m].v[2], p2[m].v[3]);
}
p3.p[m] -= 1e-5;
}
return rv;
}
#endif
/* ============================================ */
#ifdef USING_INTERP_NL
/* Alternate, not currently used */
/* Do a forward interpolation using an n-linear method. */
/* Return 0 if OK, 1 if input was clipped to grid */
/* Alternative to interp_rspl_sx */
static int interp_rspl_nl(
rspl *s,
co *p /* Input value and returned function value */
) {
int e, di = s->di;
int f, fdi = s->fdi;
double we[MXDI]; /* 1.0 - Weight in each dimension */
double *gw; /* weight for each grid cube corner */
double a_gw[DEF2MXDI]; /* Default space for gw */
float *gp; /* Pointer to grid cube base */
int rv = 0;
gw = a_gw;
if ((1 << di) > DEF2MXDI) {
if ((gw = (double *) malloc(sizeof(double) * (1 << di))) == NULL)
error("rspl malloc failed - interp_rspl_nl");
}
/* Figure out which grid cell the point falls into */
{
gp = s->g.a; /* Base of grid array */
for (e = 0; e < di; e++) {
int gres_1 = s->g.res[e]-1;
double pe, t;
int mi;
pe = p->p[e];
if (pe < s->g.l[e]) { /* Clip to grid */
pe = s->g.l[e];
rv = 1;
}
if (pe > s->g.h[e]) {
pe = s->g.h[e];
rv = 1;
}
t = (pe - s->g.l[e])/s->g.w[e];
mi = (int)floor(t); /* Grid coordinate */
if (mi < 0) /* Limit to valid cube base index range */
mi = 0;
else if (mi >= gres_1)
mi = gres_1-1;
gp += mi * s->g.fci[e]; /* Add Index offset for grid cube base in dimen */
we[e] = t - (double)mi; /* 1.0 - weight */
}
}
/* Compute corner weights needed for interpolation */
{
int i, g;
gw[0] = 1.0;
for (e = 0, g = 1; e < di; g *= 2, e++) {
for (i = 0; i < g; i++) {
gw[g+i] = gw[i] * we[e];
gw[i] *= (1.0 - we[e]);
}
}
}
/* Now compute the output values */
{
int i;
double w = gw[0];
float *d = gp + s->g.fhi[0];
for (f = 0; f < fdi; f++) /* Base of cube */
p->v[f] = w * d[f];
for (i = 1; i < (1 << di); i++) { /* For all other corners of cube */
double w = gw[i]; /* Strength reduce */
float *d = gp + s->g.fhi[i];
for (f = 0; f < fdi; f++)
p->v[f] += w * d[f];
}
}
if (gw != a_gw)
free(gw);
return rv;
}
#endif /* USING_INTERP_NL */
/* ============================================ */
/* Non-mono calculations */
/* Compute non-monotonicity factor for each grid point, and */
/* return non-zero if the overall grid is monotonic. */
/* (Note that this is not a true non-monotonicity test. */
/* A true test has to deal with PCS combination values.) */
int
is_mono(
rspl *s
) {
int f;
int di = s->di;
int fdi = s->fdi;
int *fci = s->g.fci; /* Strength reduction */
float *gp, *ep;
double mcinc = MCINC/(s->g.mres-1); /* Scaled version of MCINC */
double min = 1e20; /* Minimum clearance found */
/* Find the minimum step between grid points */
for (gp = s->g.a, ep = s->g.a + s->g.no * s->g.pss; gp < ep; gp += s->g.pss) {
for (f = 0; f < fdi; f++) {
int e;
double e1,e2; /* Smallest/largest surrounting point */
double u; /* Current output value we are considering */
double ce; /* nm error */
/* Find smallest and largest surrounding points */
/* In +/- 1 dimension directions */
e1 = 1e20; e2 = -1e20;
for (e = 0; e < di; e++) {
int dof; /* Double offset */
float vv;
if ((G_FL(gp,e) & 3) < 1)
break; /* Skip to next grid point if on edge */
dof = fci[e];
vv = gp[f + dof];
if (vv < e1)
e1 = vv;
if (vv > e2)
e2 = vv;
vv = gp[f - dof];
if (vv < e1)
e1 = vv;
if (vv > e2)
e2 = vv;
}
if (e < di) /* We broke because we are on the edge */
continue;
u = gp[f];
e1 = u - e1;
e2 = e2 - u;
ce = (e1 < e2 ? e1 : e2); /* Smallest step */
if (ce < min) /* Current smallest step */
min = ce;
}
}
//if (min < mcinc) printf("~1 is_mono failed by %e < %e\n",min,mcinc);
return min < mcinc;
}
/* ============================================ */
/* Initialize the grid from a provided function. By default the grid */
/* values are set to exactly the value returned by func(), unless the */
/* RSPL_SET_APXLS flag is set, in which case an attempt is made to have */
/* the grid points represent a least squares aproximation to the underlying */
/* surface, by using extra samples in the middle of grid cells. */
/* RSPL_SET_APXLS tends to improve the fit to the underlying function. */
/* Grid index values are supplied "under" in[] at *((int*)&iv[-e-1]), */
/* but if RSPL_SET_APXLS is set, the grid index will be the base of */
/* the cell the center point is sampled from every second sample. */
/* Return non-monotonic status */
static int set_rspl(
struct _rspl *s,/* this */
int flags, /* Combination of flags */
void *cbctx, /* Opaque function context */
void (*func)(void *cbctx, double *out, double *in), /* Function to set from */
datai glow, /* Grid low scale - will expand to enclose data, NULL = default 0.0 */
datai ghigh, /* Grid high scale - will expand to enclose data, NULL = default 1.0 */
int gres[MXDI], /* Spline grid resolution for each dimension */
datao vlow, /* Data value low normalize, NULL = default 0.0 */
datao vhigh /* Data value high normalize - NULL = default 1.0 */
) {
int e, f, j;
rpsh counter; /* Pseudo-hilbert counter */
int gc[MXDI]; /* Grid index value */
float *gp; /* Pointer to grid data */
float *cc = NULL; /* Pointer to cell center data */
double _iv[2 * MXDI], *iv = &_iv[MXDI]; /* Real index value/table value */
double ov[MXDO];
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
/* transfer desired grid range to structure */
s->g.mres = 1.0;
s->g.bres = 0;
for (e = 0; e < s->di; e++) {
if (gres[e] < 2)
error("rspl: grid res must be >= 2!");
s->g.res[e] = gres[e]; /* record the desired resolution of the grid */
s->g.mres *= gres[e];
if (gres[e] > s->g.bres) {
s->g.bres = gres[e];
s->g.brix = e;
}
if (glow == NULL)
s->g.l[e] = 0.0;
else
s->g.l[e] = glow[e];
if (ghigh == NULL)
s->g.h[e] = 1.0;
else
s->g.h[e] = ghigh[e];
/* compute width of each grid cell */
s->g.w[e] = (s->g.h[e] - s->g.l[e])/(double)(s->g.res[e]-1);
/* ?? Should h be recomputed as (l + gres-1) * w ?? */
}
s->g.mres = pow(s->g.mres, 1.0/e); /* geometric mean */
/* record low and width data normalizing factors */
for (f = 0; f < s->fdi; f++) {
if (vlow == NULL)
s->d.vl[f] = 0.0;
else
s->d.vl[f] = vlow[f];
if (vhigh == NULL)
s->d.vw[f] = 1.0 - s->d.vl[f];
else
s->d.vw[f] = vhigh[f] - s->d.vl[f];
}
/* Allocate the grid data */
alloc_grid(s);
/* Allocate space for cell center value lookup */
if (flags & RSPL_SET_APXLS) {
if ((cc = (float *)malloc(sizeof(float) * s->g.no * s->fdi)) == NULL)
error("rspl malloc failed - center cell points");
}
/* Reset output min/max */
for (f = 0; f < s->fdi; f++) {
s->g.fmin[f] = 1e30;
s->g.fmax[f] = -1e30;
s->g.fminx[f] = -1;
s->g.fmaxx[f] = -1;
}
/* Set the grid points value from the provided function */
/* To make this clut function cache friendly, we use the pseudo-hilbert */
/* count sequence. This keeps each point close to the last in the */
/* multi-dimensional space. */
rpsh_init(&counter, s->di, (unsigned int *)gres, gc); /* Initialise counter */
for (;;) {
/* Compute grid pointer and input sample values */
gp = s->g.a; /* Base of grid data */
for (e = 0; e < s->di; e++) { /* Input tables */
gp += gc[e] * s->g.fci[e]; /* Grid value pointer */
iv[e] = s->g.l[e] + gc[e] * s->g.w[e]; /* Input sample values */
*((int *)&iv[-e-1]) = gc[e]; /* Trick to supply grid index in iv[] */
}
/* Apply incolor -> outcolor function we want to represent */
func(cbctx, ov, iv);
for (f = 0; f < s->fdi; f++) { /* Output chans */
gp[f] = (float)ov[f]; /* Set output value */
if (s->g.fmin[f] > gp[f]) {
s->g.fmin[f] = gp[f];
s->g.fminx[f] = (gp - s->g.a)/s->g.pss;
}
if (s->g.fmax[f] < gp[f]) {
s->g.fmax[f] = gp[f];
s->g.fmaxx[f] = (gp - s->g.a)/s->g.pss;
}
}
/* For RSPL_SET_APXLS, get the center of the cell values as well. */
if (cc != NULL) {
float *ccp;
ccp = cc;
for (e = 0; e < s->di; e++) { /* Input tables */
if (gc[e] >= (gres[e]-1))
break; /* No center for outer row */
iv[e] = s->g.l[e] + (gc[e] + 0.5) * s->g.w[e]; /* Input sample values */
ccp += gc[e] * s->g.ci[e] * s->fdi; /* cc location */
}
if (e >= s->di) { /* Not outer row */
/* Apply incolor -> outcolor function we want to represent */
func(cbctx, ov, iv);
for (f = 0; f < s->fdi; f++) { /* Output chans */
ccp[f] = (float)ov[f]; /* Set output value */
}
}
}
/* Increment counter */
if (rpsh_inc(&counter, gc))
break;
}
/* For RSPL_SET_APXLS, deal with cell center value, aproximate least squares adjustment */
if (cc != NULL) {
int ee;
double cw = 1.0/(double)(1 << s->di); /* Weight for each cube corner */
float *ccp;
for (e = 0; e < s->di; e++)
gc[e] = 0; /* init coords */
/* Compute linear interpolated error to actual cell center value */
for (ee = 0; ee < s->di;) {
gp = s->g.a; /* Base of grid data */
ccp = cc; /* Base of center data */
for (e = 0; e < s->di; e++) { /* Input tables */
gp += gc[e] * s->g.fci[e]; /* Grid value pointer */
ccp += gc[e] * s->g.ci[e] * s->fdi; /* cc location */
}
for (f = 0; f < s->fdi; f++) { /* Output chans */
double sum = 0.0;
for (j = 0; j < (1 << s->di); j++) /* For corners of cube */
sum += (gp + s->g.fhi[j])[f];
sum *= cw; /* Interpolated value */
ccp[f] -= sum; /* Correction to actual value */
/* Average half the error to cube corners */
ccp[f] *= 0.5 * cw; /* Distribution fraction */
}
/* Increment coord */
for (ee = 0; ee < s->di; ee++) {
if (++gc[ee] < (gres[ee]-1)) /* Don't go through upper edge */
break; /* No carry */
gc[ee] = 0;
}
}
for (e = 0; e < s->di; e++)
gc[e] = 0; /* init coords */
/* Distribute the center error to the cell corners */
for (ee = 0; ee < s->di;) {
gp = s->g.a; /* Base of grid data */
ccp = cc; /* Base of center data */
for (e = 0; e < s->di; e++) { /* Input tables */
gp += gc[e] * s->g.fci[e]; /* Grid value pointer */
ccp += gc[e] * s->g.ci[e] * s->fdi; /* cc location */
}
for (j = 0; j < (1 << s->di); j++) { /* For corners of cube */
double sc = 1.0; /* Scale factor for non-edge nodes */
/* Don't distribute error to edge nodes since there may */
/* an expectation that they have precicely set values */
/* (ie. white and black points) */
for (e = 0; e < s->di; e++) {
if ((gc[e] == 0 && (j & (1 << e)) == 0)
|| (gc[e] == ((gres[e]-2)) && (j & (1 << e)) != 0))
sc *= 0.0;
}
for (f = 0; f < s->fdi; f++) { /* Output chans */
double vv;
vv = (gp + s->g.fhi[j])[f]; /* Current value */
vv += sc * cc[f]; /* Correction */
(gp + s->g.fhi[j])[f] = vv;
if (s->g.fmin[f] > vv) {
s->g.fmin[f] = vv;
s->g.fminx[f] = (gp + s->g.fhi[j] - s->g.a)/s->g.pss;
}
if (s->g.fmax[f] < vv) {
s->g.fmax[f] = vv;
s->g.fmaxx[f] = (gp + s->g.fhi[j] - s->g.a)/s->g.pss;
}
}
}
/* Increment coord */
for (ee = 0; ee < s->di; ee++) {
if (++gc[ee] < (gres[ee]-1)) /* Don't go through upper edge */
break; /* No carry */
gc[ee] = 0;
}
}
free((void *)cc);
}
/* Compute overall output scale */
for (s->g.fscale = 0.0, f = 0; f < s->fdi; f++) {
double tt = s->g.fmax[f] - s->g.fmin[f];
s->g.fscale += tt * tt;
}
s->g.fscale = sqrt(s->g.fscale);
s->g.fminmax_valid = 1; /* Now is valid */
/* Return non-mono check */
return is_mono(s);
}
/* ============================================ */
/* Scan or change each grid point in the rspl. */
static int scan_set_rspl(
struct _rspl *s, /* this */
int flags, /* Combination of flags */
void *cbctx, /* Opaque function context */
void (*func)(void *cbntx, double *out, double *in), /* Function to get/set from */
int change /* Flag - nz means change values, 0 means scan values */
) {
int e, f;
rpsh counter; /* Pseudo-hilbert counter */
int gc[MXDI]; /* Grid index value */
float *gp; /* Pointer to grid data */
double _iv[2 * MXDI], *iv = &_iv[MXDI]; /* Real index value/table value */
double ov[MXDO];
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
if (change) {
/* Reset output min/max */
for (f = 0; f < s->fdi; f++) {
s->g.fmin[f] = 1e30;
s->g.fmax[f] = -1e30;
s->g.fminx[f] = -1;
s->g.fmaxx[f] = -1;
}
}
/* Set the grid points value from the provided function */
/* Give the function both the grid position and the existing output values */
/* To make this clut function cache friendly, we use the pseudo-hilbert */
/* count sequence. This keeps each point close to the last in the */
/* multi-dimensional space. */
rpsh_init(&counter, s->di, (unsigned int *)s->g.res, gc); /* Initialise counter */
for (;;) {
/* Compute grid pointer and input sample values */
gp = s->g.a; /* Base of grid data */
for (e = 0; e < s->di; e++) { /* Input tables */
gp += s->g.fci[e] * gc[e]; /* Grid value pointer */
iv[e] = s->g.l[e] + gc[e] * s->g.w[e]; /* Input sample values */
*((int *)&iv[-e-1]) = gc[e]; /* Trick to supply grid index in iv[] */
}
for (f = 0; f < s->fdi; f++) /* Output chans */
ov[f] = gp[f];
/* Let function scan the input and output values, or */
/* Apply incolor -> outcolor, or oldoutcolor->outcolor function we want to represent */
func(cbctx, ov, iv);
if (change) { /* Put new output values back */
for (f = 0; f < s->fdi; f++) { /* Output chans */
gp[f] = (float)ov[f];
if (s->g.fmin[f] > gp[f]) {
s->g.fmin[f] = gp[f];
s->g.fminx[f] = (gp - s->g.a)/s->g.pss;
}
if (s->g.fmax[f] < gp[f]) {
s->g.fmax[f] = gp[f];
s->g.fmaxx[f] = (gp - s->g.a)/s->g.pss;
}
}
}
/* Increment counter */
if (rpsh_inc(&counter, gc))
break;
}
if (change == 0) {
return 0;
}
/* Compute overall output scale */
for (s->g.fscale = 0.0, f = 0; f < s->fdi; f++) {
double tt = s->g.fmax[f] - s->g.fmin[f];
s->g.fscale += tt * tt;
}
s->g.fscale = sqrt(s->g.fscale);
s->g.fminmax_valid = 1; /* Now is valid */
/* Invalidate various things */
free_data(s); /* Free any scattered data */
free_rev(s); /* Free any reverse lookup data */
/* Return non-mono check */
return is_mono(s);
}
/* Re-initialize the grid from existing grid values, and the provided function */
/* Grid index values are supplied "under" in[] at *((int*)&iv[-e-1]) */
/* Return non-monotonic status. We assume that the ouput scale factors don't change. */
static int re_set_rspl(
struct _rspl *s, /* this */
int flags, /* Combination of flags */
void *cbctx, /* Opaque function context */
void (*func)(void *cbntx, double *out, double *in) /* Function to set from */
) {
return scan_set_rspl(s, flags, cbctx, func, 1);
}
/* Scan the rspl grid point locations and values. Grid index values are */
/* supplied "under" in[] *((int*)&iv[-e-1]) */
static void scan_rspl(
struct _rspl *s, /* this */
int flags, /* Combination of flags */
void *cbctx, /* Opaque function context */
void (*func)(void *cbntx, double *out, double *in) /* Function to get from */
) {
scan_set_rspl(s, flags, cbctx, func, 0);
}
/* ============================================ */
/* Allow the grid values to be filtered. */
/* For each grid value, provide the input value and */
/* pointers to all the output values in a 3^di grid around */
/* the output value. Pointers will be NULL if neigbour is outside */
/* the grid. cvi is the index of the output value. */
/* Grid index values are supplied "under" in[] at *((int*)&iv[-e-1]) */
/* After all the grid values have been done, they will be updated */
/* with their new values. */
static void filter_rspl(
struct _rspl *s, /* this */
int flags, /* Combination of flags */
void *cbctx, /* Opaque function context */
void (*func)(void *cbntx, float **out, double *in, int cvi) /* Function to set from */
) {
int e, f;
ECOUNT(gc, MXDIDO, s->di, 0, s->g.res, 0); /* coordinates */
DCOUNT(cc, MXDIDO, s->di, -1, -1, 2); /* Surrounding cube counter */
float *gp, *ep; /* Pointer to grid data */
float *tarry, *tp; /* Temporary array of values */
double _iv[2 * MXDI], *iv = &_iv[MXDI]; /* Real index value/table value */
int cvi; /* Center value index = 3^di-1)/2 */
int pow3di = 1;
float **svals; /* Pointer to surrounding output values */
float *a_svals[DEF3MXDI];/* default allocation for svals */
if (flags & RSPL_VERBOSE) /* Turn on progress messages to stdout */
s->verbose = 1;
if (flags & RSPL_NOVERBOSE) /* Turn off progress messages to stdout */
s->verbose = 0;
/* Allocate svals array */
svals = a_svals;
for (e = 0; e < s->di; e++)
pow3di *= 3;
if (pow3di > DEF3MXDI) {
if ((svals = (float **) malloc(sizeof(float *) * pow3di)) == NULL)
error("rspl malloc failed - filter_rspl");
}
/* Compute the center value index */
for (cvi = 1, e = 0; e < s->di; e++)
cvi *= 3;
cvi = (cvi-1)/2;
/* Allocate a temporary array for the new output values */
if ((tarry = (float *)malloc(sizeof(float) * s->g.no * s->fdi)) == NULL) {
if (svals != a_svals)
free(svals);
error("rspl malloc failed - filter_rspl array");
}
/* Set the grid points value from the provided function */
/* Give the function both the grid position and the existing output values */
/* in the 3x3 surrounding grid */
EC_INIT(gc);
for (tp = tarry; !EC_DONE(gc); tp += s->fdi) {
int i;
/* Compute grid pointer and input sample values */
for (e = 0; e < s->di; e++) {
iv[e] = s->g.l[e] + gc[e] * s->g.w[e]; /* Input sample values */
*((int *)&iv[-e-1]) = gc[e]; /* Trick to supply grid index in iv[] */
}
/* Set pointers to 3x3 surrounders */
DC_INIT(cc)
for (i = 0; !DC_DONE(cc); i++ ) {
float *sp = s->g.a;
for (e = 0; e < s->di; e++) { /* Input tables */
int j;
j = gc[e] + cc[e];
if (j < 0 || j >= s->g.res[e]) {
sp = NULL; /* outside grid */
break;
}
sp += s->g.fci[e] * j; /* Compute pointer to surrounder */
}
svals[i] = sp;
DC_INC(cc);
}
for (f = 0; f < s->fdi; f++) /* Set default no change new values */
tp[f] = svals[cvi][f];
svals[cvi] = tp; /* Make sure output value goes into temp array */
/* Apply incolor -> outcolor, or oldoutcolor->outcolor function we want to represent */
func(cbctx, svals, iv, cvi);
EC_INC(gc);
}
/* Reset output min/max */
for (f = 0; f < s->fdi; f++) {
s->g.fmin[f] = 1e30;
s->g.fmax[f] = -1e30;
s->g.fminx[f] = -1;
s->g.fmaxx[f] = -1;
}
/* Now update all the values */
for (tp = tarry, gp = s->g.a, ep = s->g.a + s->g.no * s->g.pss;
gp < ep; gp += s->g.pss, tp += s->fdi) {
for (f = 0; f < s->fdi; f++) /* Output chans */
gp[f] = tp[f];
for (f = 0; f < s->fdi; f++) { /* Output chans */
if (s->g.fmin[f] > gp[f]) {
s->g.fmin[f] = gp[f];
s->g.fminx[f] = (gp - s->g.a)/s->g.pss;
}
if (s->g.fmax[f] < gp[f]) {
s->g.fmax[f] = gp[f];
s->g.fmaxx[f] = (gp - s->g.a)/s->g.pss;
}
}
}
/* Compute overall output scale */
for (s->g.fscale = 0.0, f = 0; f < s->fdi; f++) {
double tt = s->g.fmax[f] - s->g.fmin[f];
s->g.fscale += tt * tt;
}
s->g.fscale = sqrt(s->g.fscale);
s->g.fminmax_valid = 1; /* Now is valid */
if (svals != a_svals)
free(svals);
free(tarry);
/* Invalidate various things */
free_data(s); /* Free any scattered data */
free_rev(s); /* Free any reverse lookup data */
}
/* =============================================== */
/* Utility function */
/* Pseudo - Hilbert count sequencer */
/* Initialise, returns total usable count */
unsigned rpsh_init(
rpsh *p, /* Pointer to structure to initialise */
int di, /* Dimensionality */
unsigned int *res, /* Size per coordinate */
int co[] /* Coordinates to initialise (May be NULL) */
) {
int e;
p->di = di;
p->tbits = 0;
for (e = 0; e < di; e++) {
p->res[e] = res[e];
/* Compute bits */
for (p->bits[e] = 0; (1u << p->bits[e]) < res[e]; p->bits[e]++)
;
p->tbits += p->bits[e];
}
/* Compute the total count mask */
p->tmask = ((((unsigned)1) << p->tbits)-1);
/* Compute usable count */
p->count = 1;
for (e = 0; e < di; e++)
p->count *= res[e];
/* Reset the counter */
p->ix = 0;
if (co != NULL) {
for (e = 0; e < di; e++)
co[e] = 0;
}
return p->count;
}
/* Reset the counter */
void rpsh_reset(
rpsh *p /* Pointer to structure */
) {
p->ix = 0;
}
/* Increment pseudo-hilbert coordinates */
/* Return non-zero if count rolls over to 0 */
int rpsh_inc(
rpsh *p, /* Pointer to structure */
int coa[] /* Coordinates to return */
) {
int di = p->di;
int e;
do {
unsigned int b, tb;
int gix; /* Gray code index */
p->ix = (p->ix + 1) & p->tmask;
gix = p->ix ^ (p->ix >> 1); /* Convert to gray code index */
for (e = 0; e < di; e++)
coa[e] = 0;
for (b = tb = 0; tb < p->tbits ; b++) { /* Distribute bits */
if (b & 1) {
for (e = di-1; e >= 0; e--) { /* In reverse coord order */
if (b < p->bits[e]) {
coa[e] |= (gix & 1) << b; /* ls bits of gix */
gix >>= 1;
tb++;
}
}
} else {
for (e = 0; e < di; e++) { /* In normal coord order */
if (b < p->bits[e]) {
coa[e] |= (gix & 1) << b; /* ls bits of gix */
gix >>= 1;
tb++;
}
}
}
}
/* Convert from Gray to binary coordinates */
for (e = 0; e < di; e++) {
unsigned sh, tv;
for(sh = 1, tv = coa[e];; sh <<= 1) {
unsigned ptv = tv;
tv ^= (tv >> sh);
if (ptv <= 1 || sh == 16)
break;
}
if (tv >= p->res[e]) /* Dumbo filter - increment again if outside cube range */
break;
coa[e] = tv;
}
} while (e < di);
return (p->ix == 0);
}
/* =============================================== */
|