1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
|
/*
* Argyll Color Correction System
*
* Author: Graeme W. Gill
* Date: 20015
*
* Copyright 2006 - 2015 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU GENERAL PUBLIC LICENSE Version 2 or later :-
* see the License2.txt file for licencing details.
*
* Derived from i1pro_imp.c & munki_imp.c
*/
/*
* A library for processing raw spectrometer values.
*
* Currently this is setup for the EX1 spectrometer,
* but the longer term plan is to expand the functionality
* so that it becomes more generic, and can replace a lot
* of common code in i1pro_imp.c & munki_imp.c.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <time.h>
#if defined(UNIX)
# include <utime.h>
#else
# include <sys/utime.h>
#endif
#include <sys/stat.h>
#include <stdarg.h>
#ifndef SALONEINSTLIB
#include "copyright.h"
#include "aconfig.h"
#include "numlib.h"
#else /* !SALONEINSTLIB */
#include "sa_config.h"
#include "numsup.h"
#endif /* !SALONEINSTLIB */
#include "xspect.h"
#include "insttypes.h"
#include "conv.h"
#include "icoms.h"
#include "inst.h"
#include "rspec.h"
/* -------------------------------------------------- */
#if defined(__APPLE__) && defined(__POWERPC__)
/* Workaround for a ppc gcc 3.3 optimiser bug... */
static int gcc_bug_fix(int i) {
static int nn;
nn += i;
return nn;
}
#endif /* APPLE */
/* -------------------------------------------------- */
/* Setup code */
/* Fit a wavelength polynomial to a set of mapping points */
// ~~~~9999
/* Completely clear an rspec_inf. */
void clear_rspec_inf(rspec_inf *inf) {
memset(inf, 0, sizeof(rspec_inf));
}
/* Completely free contesnt of rspec_inf. */
void free_rspec_inf(rspec_inf *inf) {
if (inf != NULL) {
if (inf->straylight != NULL) {
error("rspec_inf: help - don't know how to free straylight!");
}
if (inf->wlcal)
free(inf->wlcal);
if (inf->findex != NULL)
free(inf->findex);
if (inf->fnocoef != NULL)
free(inf->fnocoef);
if (inf->fcoef != NULL)
free(inf->fcoef);
if (inf->lin != NULL)
free(inf->lin);
if (inf->idark[0] != NULL)
del_rspec(inf->idark[0]);
if (inf->idark[1] != NULL)
del_rspec(inf->idark[1]);
if (inf->ecal != NULL)
free(inf->ecal);
clear_rspec_inf(inf); /* In case it gets reused */
}
}
/* return the number of samples for the given spectral type */
int rspec_typesize(rspec_inf *inf, rspec_type ty) {
int no;
if (ty == rspec_sensor)
no = inf->nsen;
else if (ty == rspec_raw)
no = inf->nraw;
else if (ty == rspec_wav)
no = inf->nwav;
else
error("rspec_typesize type %d unknown",ty);
return no;
}
/* Compute the valid raw range from the calibration information */
void rspec_comp_raw_range_from_ecal(rspec_inf *inf) {
int i;
if (inf->ecaltype != rspec_raw)
error("rspec_comp_raw_range_from_ecal: ecaltype not raw");
for (i = 0; i < inf->nraw; i++) {
if (inf->ecal[i] != 0.0) {
inf->rawrange.off = i;
break;
}
}
if (i >= inf->nraw)
error("rspec_comp_raw_range_from_ecal: ecal is zero");
for (i = inf->rawrange.off; i < inf->nraw; i++) {
if (inf->ecal[i] == 0.0) {
break;
}
}
inf->rawrange.num = i - inf->rawrange.off;
}
/* Convert a raw index to nm using polynomial */
double rspec_raw2nm(rspec_inf *inf, double rix) {
int k;
double wl;
if (inf->nwlcal == 0)
error("rspec_raw2nm: nwlcal == 0");
// ~~~~9999 test fudge
// rix += 15;
/* Compute polinomial */
for (wl = inf->wlcal[inf->nwlcal-1], k = inf->nwlcal-2; k >= 0; k--)
wl = wl * rix + inf->wlcal[k];
return wl;
}
/* Convert a cooked index to nm */
double rspec_wav2nm(rspec_inf *inf, double ix) {
return inf->wl_short + ix * inf->wl_space;
}
/* -------------------------------------------------- */
/* Create a new rspec from scratch. */
/* Don't allocate samp if nmeas == 0 */
/* This always succeeds (i.e. application bombs if malloc fails) */
rspec *new_rspec(rspec_inf *inf, rspec_type ty, int nmeas) {
rspec *p;
int no;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = inf;
p->stype = ty;
p->nmeas = nmeas;
p->nsamp = rspec_typesize(inf, p->stype);
if (nmeas > 0)
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
return p;
}
/* Create a new rspec based on an existing prototype */
/* If nmeas == 0, create space for the same number or measurements */
rspec *new_rspec_proto(rspec *rs, int nmeas) {
rspec *p;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = rs->inf;
p->stype = rs->stype;
p->mtype = rs->mtype;
p->state = rs->state;
p->inttime = rs->inttime;
if (nmeas == 0)
p->nmeas = rs->nmeas;
else
p->nmeas = nmeas;
p->nsamp = rs->nsamp;
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
return p;
}
/* Create a new rspec by cloning an existing one */
rspec *new_rspec_clone(rspec *rs) {
rspec *p;
int i, j;
if ((p = (rspec *)calloc(1, sizeof(rspec))) == NULL) {
error("Malloc failure in rspec()");
}
p->inf = rs->inf;
p->stype = rs->stype;
p->mtype = rs->mtype;
p->state = rs->state;
p->inttime = rs->inttime;
p->nmeas = rs->nmeas;
p->nsamp = rs->nsamp;
p->samp = dmatrix(0, p->nmeas-1, 0, p->nsamp-1);
for (i = 0; i < p->nmeas; i++) {
for (j = 0; j < p->nsamp; j++) {
p->samp[i][j] = rs->samp[i][j];
}
}
return p;
}
/* Free a rspec */
void del_rspec(rspec *p) {
if (p != NULL) {
if (p->samp != NULL)
free_dmatrix(p->samp, 0, p->nmeas-1, 0, p->nsamp-1);
free(p);
}
}
/* Plot the first rspec */
void plot_rspec1(rspec *p) {
int i, no;
double xx[RSPEC_MAXSAMP];
double yy[RSPEC_MAXSAMP];
no = rspec_typesize(p->inf, p->stype);
for (i = 0; i < no; i++) {
if (p->stype == rspec_wav)
xx[i] = rspec_wav2nm(p->inf, (double)i);
else
xx[i] = (double)i;
yy[i] = p->samp[0][i];
}
do_plot(xx, yy, NULL, NULL, no);
}
/* Plot the first rspec of 2 */
void plot_rspec2(rspec *p1, rspec *p2) {
int i, no;
double xx[RSPEC_MAXSAMP];
double y1[RSPEC_MAXSAMP];
double y2[RSPEC_MAXSAMP];
// Should check p1 & p2 are compatible ??
no = rspec_typesize(p1->inf, p1->stype);
for (i = 0; i < no; i++) {
if (p1->stype == rspec_wav)
xx[i] = rspec_wav2nm(p1->inf, (double)i);
else
xx[i] = (double)i;
y1[i] = p1->samp[0][i];
y2[i] = p2->samp[0][i];
}
do_plot(xx, y1, y2, NULL, no);
}
void plot_ecal(rspec_inf *inf) {
int i, no;
double xx[RSPEC_MAXSAMP];
double yy[RSPEC_MAXSAMP];
no = rspec_typesize(inf, inf->ecaltype);
for (i = 0; i < no; i++) {
if (inf->ecaltype == rspec_wav)
xx[i] = rspec_wav2nm(inf, (double)i);
else
xx[i] = (double)i;
yy[i] = inf->ecal[i];
}
do_plot(xx, yy, NULL, NULL, no);
}
/* -------------------------------------------------- */
/* Return the largest value */
/* Optionally return the measurement and sample idex of that sample */
double largest_val_rspec(int *pmix, int *psix, rspec *raw) {
double mx = -1e38;
int mi = -1, mj = -1;
int i, j;
if (raw->nmeas <= 0)
error("largest_val_rspec: raw has zero measurements");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
if (raw->samp[i][j] > mx) {
mx = raw->samp[i][j];
mi = i;
mj = j;
}
}
}
if (pmix != NULL)
*pmix = mi;
if (psix != NULL)
*psix = mj;
return mx;
}
/* return a raw rspec from a sensor rspec */
/* (This does not make any adjustments to the values) */
rspec *extract_raw_from_sensor_rspec(rspec *sens) {
rspec *raw;
int off, i, j;
if (sens->stype != rspec_sensor)
error("extract_raw_from_sensor_rspec: input is not sensor type");
raw = new_rspec(sens->inf, rspec_raw, sens->nmeas);
raw->mtype = sens->mtype;
raw->state = sens->state;
raw->inttime = sens->inttime;
off = sens->inf->lightrange.off;
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] = sens->samp[i][off + j];
}
}
return raw;
}
/* Return an interpolated dark reference value from idark */
double ex1_interp_idark_val(rspec_inf *inf, int mix, int six, double inttime) {
double idv;
double w0, w1;
int i, j;
w1 = (inttime - inf->idark[0]->inttime)/(inf->idark[1]->inttime - inf->idark[0]->inttime);
w0 = 1.0 - w1;
idv = w0 * inf->idark[0]->samp[mix][six] + w1 * inf->idark[1]->samp[mix][six];
return idv;
}
/* Return an interpolated dark reference from idark */
rspec *ex1_interp_idark(rspec_inf *inf, double inttime) {
double w0, w1;
int i, j;
rspec *dark;
w1 = (inttime - inf->idark[0]->inttime)/(inf->idark[1]->inttime - inf->idark[0]->inttime);
w0 = 1.0 - w1;
dark = new_rspec_proto(inf->idark[0], 0);
for (i = 0; i < inf->idark[0]->nmeas; i++) {
for (j = 0; j < inf->idark[0]->nsamp; j++)
dark->samp[i][j] = w0 * inf->idark[0]->samp[i][j] + w1 * inf->idark[1]->samp[i][j];
}
return dark;
}
/* Subtract the adaptive black */
void subtract_idark_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
rspec *dark;
if (raw->state & rspec_dcal)
error("subtract_idark_rspec: already done");
if (raw->stype != inf->idark[0]->stype)
error("subtract_idark_rspect: idark does not match rspec type");
dark = ex1_interp_idark(inf, raw->inttime);
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] -= dark->samp[0][j];
}
}
raw->state |= rspec_dcal;
}
/* Apply non-linearity */
double linearize_val_rspec(rspec_inf *inf, double ival) {
double oval = ival;
int k;
if (ival >= 0.0) {
for (oval = inf->lin[inf->nlin-1], k = inf->nlin-2; k >= 0; k--) {
oval = oval * ival + inf->lin[k];
}
if (inf->lindiv) /* EX1 divides */
oval = ival/oval;
}
return oval;
}
/* Invert non-linearity. */
/* Since the linearisation is nearly a straight line, */
/* a simple Newton inversion will suffice. */
double inv_linearize_val_rspec(rspec_inf *inf, double targv) {
double oval, ival = targv, del = 100.0;
int i, k;
for (i = 0; i < 200 && fabs(del) > 1e-7; i++) {
for (oval = inf->lin[inf->nlin-1], k = inf->nlin-2; k >= 0; k--)
oval = oval * ival + inf->lin[k];
if (inf->lindiv) /* EX1 divides */
oval = ival/oval;
del = (targv - oval);
ival += 0.99 * del;
}
return ival;
}
/* Correct non-linearity */
void linearize_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
rspec *dark;
if (raw->state & rspec_lin)
error("linearize_rspec: already done");
if (raw->state & rspec_int)
error("linearize_rspec: can't be integration time adjusted");
if (!(raw->state & rspec_dcal))
error("linearize_rspec: needs black subtract");
if (inf->nlin > 0) {
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] = linearize_val_rspec(inf, raw->samp[i][j]);
}
}
}
raw->state |= rspec_lin;
}
/* Apply the emsissive calibration */
void emis_calibrate_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
if (raw->state & rspec_cal)
error("emis_calibrate_rspec: already done");
if (raw->stype != raw->inf->ecaltype)
error("emis_calibrate_rspec: ecaltype does not match rspec type");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] *= inf->ecal[j];
}
}
raw->state |= rspec_cal;
}
/* Scale to the integration time */
void inttime_calibrate_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
int i, j;
if (raw->state & rspec_int)
error("inttime_calibrate_rspec: already done");
for (i = 0; i < raw->nmeas; i++) {
for (j = 0; j < raw->nsamp; j++) {
raw->samp[i][j] /= raw->inttime;
}
}
raw->inttime = 1.0;
raw->state |= rspec_int;
}
/* return a wav rspec from a raw rspec */
/* (This does not make any adjustments to the values) */
rspec *convert_wav_from_raw_rspec(rspec *raw) {
rspec_inf *inf = raw->inf;
rspec *wav;
int cx, sx, i, j, k;
if (raw->stype != rspec_raw)
error("extract_raw_from_sensor_rspec: input is not raw type");
wav = new_rspec(raw->inf, rspec_wav, raw->nmeas);
wav->mtype = raw->mtype;
wav->state = raw->state;
wav->inttime = raw->inttime;
for (i = 0; i < wav->nmeas; i++) { /* For each measurement */
for (cx = j = 0; j < inf->nwav; j++) { /* For each wav sample */
double oval = 0.0;
sx = inf->findex[j]; /* Starting index */
for (k = 0; k < inf->fnocoef[j]; k++, cx++, sx++) /* For each matrix value */
oval += inf->fcoef[cx] * raw->samp[i][sx];
wav->samp[i][j] = oval;
}
}
return wav;
}
/* -------------------------------------------------- */
/* Filter code in i1pro_imp is in:
i1pro_compute_wav_filters() X-Rite way
i1pro_create_hr() Using gausian
*/
/* Resampling kernels. (There are more in i1pro_imp.c) */
/* They aren't expected to be unity area, as they will be */
/* normalized anyway. */
/* wi is the width of the filter */
static double triangle(double wi, double x) {
double y = 0.0;
x = fabs(x/wi);
y = 1.0 - x;
if (y < 0.0)
y = 0.0;
return y;
}
static double gausian(double wi, double x) {
double y = 0.0;
wi = wi/(sqrt(2.0 * log(2.0))); /* Convert width at half max to std. dev. */
x = x/wi;
y = exp(-(x * x)); /* Center at 1.0 */
return y;
}
static double lanczos2(double wi, double x) {
double y = 0.0;
wi *= 1.05; // Improves smoothness. Why ?
x = fabs(1.0 * x/wi);
if (x >= 2.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/2.0)/(DBL_PI * x/2.0);
return y;
}
static double lanczos3(double wi, double x) {
double y = 0.0;
x = fabs(1.0 * x/wi);
if (x >= 3.0)
return 0.0;
if (x < 1e-6)
return 1.0;
y = sin(DBL_PI * x)/(DBL_PI * x) * sin(DBL_PI * x/3.0)/(DBL_PI * x/3.0);
return y;
}
static double cubicspline(double wi, double x) {
double y = 0.0;
double xx = x;
double bb, cc;
xx = fabs(1.0 * x/wi);
// bb = cc = 1.0/3.0; /* Mitchell */
bb = 0.5;
cc = 0.5;
if (xx < 1.0) {
y = ( 12.0 - 9.0 * bb - 6.0 * cc) * xx * xx * xx
+ (-18.0 + 12.0 * bb + 6.0 * cc) * xx * xx
+ ( 6.0 - 2.0 * bb);
y /= (6.0 - 2.0 * bb);
} else if (xx < 2.0) {
y = ( -1.0 * bb - 6.0 * cc) * xx * xx * xx
+ ( 6.0 * bb + 30.0 * cc) * xx * xx
+ (-12.0 * bb - 48.0 * cc) * xx
+ ( 8.0 * bb + 24.0 * cc);
y /= (6.0 - 2.0 * bb);
} else {
y = 0.0;
}
return y;
}
/* Create the wavelength resampling filters */
void rspec_make_resample_filters(rspec_inf *inf) {
double twidth = inf->wl_space;
double rawspace; /* Average raw band spacing wl */
double fshmax; /* filter shape max wavelength from center */
double finc; /* Integration step size */
int maxcoeffs; /* Maximum coefficients per filter */
int **coeff_ix; /* [band][coef] Raw index */
double **coeff_we; /* [band][coef] Weighting */
double (*kernel)(double wi, double x) = NULL; /* Filter kernel */
int xcount;
int i, j, k;
if (inf->ktype == rspec_triangle)
kernel = triangle;
else if (inf->ktype == rspec_gausian)
kernel = gausian;
else if (inf->ktype == rspec_lanczos2)
kernel = lanczos2;
else if (inf->ktype == rspec_lanczos3)
kernel = lanczos3;
else if (inf->ktype == rspec_cubicspline)
kernel = cubicspline;
else
error("rspec_make_resample_filters: unknown kernel %d",inf->ktype);
#ifdef NEVER // Check kernel sums to 1.0
{
double x, y;
for (x = 0.0; x < 5.0; x += 0.1) {
y = kernel(1.0, x - 4.0)
+ kernel(1.0, x - 3.0)
+ kernel(1.0, x - 2.0)
+ kernel(1.0, x - 1.0)
+ kernel(1.0, x)
+ kernel(1.0, x + 1.0)
+ kernel(1.0, x + 2.0);
+ kernel(1.0, x + 3.0);
+ kernel(1.0, x + 4.0);
printf("Offset %f sum %f\n",x,y);
}
}
#endif // NEVER
/* Aproximate raw value spacing in nm */
rawspace = (inf->wl_long - inf->wl_short)/inf->rawrange.num;
//printf("~1 rawspace = %f\n",rawspace);
/* Figure the extent of the filter kernel. We assume they */
/* all have a finite extent. */
for (fshmax = 50.0; fshmax >= 0.0; fshmax -= 0.01) {
if (fabs(kernel(twidth, fshmax)) > 1e-6) {
fshmax += 0.01;
break;
}
}
//printf("~1 fshmax = %f\n",fshmax);
if (fshmax <= 0.0)
error("rspec_make_resample_filters: fshmax search failed\n");
a1logd(inf->log, 4,"rspec_make_resample_filters: fshmax = %f\n",fshmax);
/* Figure number of raw samples over kernel extent. */
/* (Allow generous factor for non-linearity) */
maxcoeffs = (int)floor(2.0 * 1.4 * fshmax/rawspace + 3.0);
a1logd(inf->log, 4,"rspec_make_resample_filters: maxcoeffs = %d\n",maxcoeffs);
/* Figure out integration step size */
#ifdef FAST_HIGH_RES_SETUP
finc = twidth/50.0;
if (rawspace/finc < 10.0)
finc = rawspace/10.0;
#else
finc = twidth/15.0;
if (rawspace/finc < 4.0)
finc = rawspace/4.0;
#endif
a1logd(inf->log, 4,"rspec_make_resample_filters: integration step = %f\n",finc);
if (inf->fnocoef != NULL)
free(inf->fnocoef);
if ((inf->fnocoef = (int *)calloc(inf->nwav, sizeof(int))) == NULL)
error("rspec_make_resample_filters: malloc failure");
/* Space to build filter coeficients */
coeff_ix = imatrix(0, inf->nwav-1, 0, maxcoeffs-1);
coeff_we = dmatrix(0, inf->nwav-1, 0, maxcoeffs-1);
/* For all the usable raw bands */
for (i = inf->rawrange.off+1; i < (inf->rawrange.off+inf->rawrange.num-1); i++) {
double w1, wl, w2;
/* Translate CCD center and boundaries to calibrated wavelength */
wl = rspec_raw2nm(inf, (double)i);
w1 = rspec_raw2nm(inf, (double)i - 0.5);
w2 = rspec_raw2nm(inf, (double)i + 0.5);
// printf("~1 CCD %d, w1 %f, wl %f, w2 %f\n",i,w1,wl,w2);
/* For each output filter */
for (j = 0; j < inf->nwav; j++) {
double cwl, rwl; /* center, relative wavelegth */
double we;
cwl = rspec_wav2nm(inf, (double)j);
rwl = wl - cwl; /* raw relative wavelength to filter */
if (fabs(w1 - cwl) > fshmax && fabs(w2 - cwl) > fshmax)
continue; /* Doesn't fall into this filter */
/* Integrate in finc nm increments from filter shape */
/* using triangular integration. */
{
int nn;
double lw, ll;
nn = (int)(fabs(w2 - w1)/finc + 0.5); /* Number to integrate over */
lw = w1; /* start at lower boundary of CCD cell */
ll = kernel(twidth, w1 - cwl);
we = 0.0;
for (k = 0; k < nn; k++) {
double cw, cl;
#if defined(__APPLE__) && defined(__POWERPC__)
gcc_bug_fix(k);
#endif
cw = w1 + (k+1.0)/(nn + 1.0) * fabs(w2 - w1); /* wl to sample */
cl = kernel(twidth, cw - cwl);
we += 0.5 * (cl + ll) * fabs(lw - cw); /* Area under triangle */
ll = cl;
lw = cw;
}
}
if (inf->fnocoef[j] >= maxcoeffs)
error("rspec_make_resample_filters: run out of high res filter space\n");
coeff_ix[j][inf->fnocoef[j]] = i;
coeff_we[j][inf->fnocoef[j]++] = we;
// printf("~1 filter %d, cwl %f, rwl %f, ix %d, we %f, nocoefs %d\n",j,cwl,rwl,i,we,info->fnocoef[j]);
}
}
/* Convert hires filters into runtime format: */
/* Allocate or reallocate high res filter tables */
if (inf->findex != NULL)
free(inf->findex);
if (inf->fcoef != NULL)
free(inf->fcoef);
if ((inf->findex = (int *)calloc(inf->nraw, sizeof(int))) == NULL)
error("rspec_make_resample_filters: malloc index failed!\n");
/* Count the total number of coefficients */
for (xcount = j = 0; j < inf->nwav; j++) {
inf->findex[j] = coeff_ix[j][0]; /* raw starting index */
xcount += inf->fnocoef[j];
}
//printf("~1 total coefs = %d\n",xcount);
/* Allocate space for them */
if ((inf->fcoef = (double *)calloc(xcount, sizeof(double))) == NULL)
error("rspec_make_resample_filters: malloc index failed!\n");
/* Normalize the weight * nm to 1.0, and pack them into the run-time format */
for (i = j = 0; j < inf->nwav; j++) {
int sx;
double rwi, twe = 0.0;
sx = inf->findex[j]; /* raw starting index */
for (k = 0; k < inf->fnocoef[j]; sx++, k++) {
/* Width of raw band in nm */
rwi = fabs(rspec_raw2nm(inf, (double)sx - 0.5)
- rspec_raw2nm(inf, (double)sx + 0.5));
twe += rwi * coeff_we[j][k];
}
if (twe > 0.0)
twe = 1.0/twe;
else
twe = 1.0;
// printf("Output %d, nocoefs %d, norm weight %f:\n",j,inf->fnocoef[j],twe);
for (k = 0; k < inf->fnocoef[j]; k++, i++) {
inf->fcoef[i] = coeff_we[j][k] * twe;
// printf(" coef %d packed %d from raw %d val %f\n",k,i,inf->findex[j]+k,inf->fcoef[i]);
}
}
free_imatrix(coeff_ix, 0, inf->nwav-1, 0, maxcoeffs-1);
free_dmatrix(coeff_we, 0, inf->nwav-1, 0, maxcoeffs-1);
}
//printf("~1 line %d\n",__LINE__);
/* Plot the wave resampling filters */
void plot_resample_filters(rspec_inf *inf) {
double *xx, *ss;
double **yy;
int i, j, k, sx;
//printf("~1 nraw = %d\n",inf->nraw);
xx = dvectorz(0, inf->nraw-1); /* X index */
yy = dmatrixz(0, 5, 0, inf->nraw-1); /* Curves distributed amongst 5 graphs */
/* with 6th holding sum */
for (i = 0; i < inf->nraw; i++)
xx[i] = i;
/* For each output wavelength */
for (i = j = 0; j < inf->nwav; j++) {
sx = inf->findex[j]; /* raw starting index */
//printf("Output %d raw sx %d\n",j,sx);
/* For each matrix value */
for (k = 0; k < inf->fnocoef[j]; k++, sx++, i++) {
yy[5][sx] += 0.5 * inf->fcoef[i];
yy[j % 5][sx] = inf->fcoef[i];
//printf(" filter %d six %d weight = %e\n",k,sx,inf->fcoef[i]);
}
}
printf("Wavelength re-sampling curves:\n");
// do_plot6(xx, yy[0], yy[1], yy[2], yy[3], yy[4], yy[5], 150);
do_plot6(xx, yy[0], yy[1], yy[2], yy[3], yy[4], yy[5], inf->nraw);
free_dvector(xx, 0, inf->nraw-1);
free_dmatrix(yy, 0, 2, 0, inf->nraw-1);
}
/* ================================================== */
/* Calibration file support */
/* Open the file. nz wr for write mode, else read */
/* Return nz on error */
int calf_open(calf *x, a1log *log, char *fname, int wr) {
char nmode[10];
char cal_name[200];
char **cal_paths = NULL;
int no_paths = 0;
memset((void *)x, 0, sizeof(calf));
x->log = log;
if (wr)
strcpy(nmode, "w");
else
strcpy(nmode, "r");
#if !defined(O_CREAT) && !defined(_O_CREAT)
# error "Need to #include fcntl.h!"
#endif
#if defined(O_BINARY) || defined(_O_BINARY)
strcat(nmode, "b");
#endif
/* Create the file name */
if (wr)
sprintf(cal_name, "ArgyllCMS/%s", fname);
else
sprintf(cal_name, "ArgyllCMS/%s" SSEPS "color/%s", fname, fname);
if ((no_paths = xdg_bds(NULL, &cal_paths, xdg_cache, xdg_write, xdg_user, cal_name)) < 1) {
a1logd(x->log,1,"calf_open: xdg_bds returned no paths\n");
return 1;
}
a1logd(x->log,2,"calf_open: %s file '%s'\n",cal_paths[0], wr ? "saving to" : "restoring from");
/* Check the last modification time */
if (!wr) {
struct sys_stat sbuf;
if (sys_stat(cal_paths[0], &sbuf) == 0) {
x->lo_secs = time(NULL) - sbuf.st_mtime;
a1logd(x->log,2,"calf_open:: %d secs from instrument last open\n",x->lo_secs);
} else {
a1logd(x->log,2,"calf_open:: stat on file failed\n");
}
}
if ((wr && create_parent_directories(cal_paths[0]))
|| (x->fp = fopen(cal_paths[0], nmode)) == NULL) {
a1logd(x->log,2,"calf_open: failed to open file for %s\n",wr ? "writing" : "reading");
xdg_free(cal_paths, no_paths);
return 1;
}
xdg_free(cal_paths, no_paths);
a1logd(x->log,2,"calf_open: suceeded\n");
return 0;
}
/* Update the modification time */
/* Return nz on error */
int calf_touch(a1log *log, char *fname) {
char cal_name[200];
char **cal_paths = NULL;
int no_paths = 0;
int rv;
/* Locate the file name */
sprintf(cal_name, "ArgyllCMS/%s" SSEPS "color/%s", fname, fname);
if ((no_paths = xdg_bds(NULL, &cal_paths, xdg_cache, xdg_read, xdg_user, cal_name)) < 1) {
a1logd(log,2,"calf_touch: xdg_bds failed to locate file'\n");
return 1;
}
a1logd(log,2,"calf_touch: touching file '%s'\n",cal_paths[0]);
if ((rv = sys_utime(cal_paths[0], NULL)) != 0) {
a1logd(log,2,"calf_touch: failed with %d\n",rv);
xdg_free(cal_paths, no_paths);
return 1;
}
xdg_free(cal_paths, no_paths);
return 0;
}
/* Rewind and reset for another read */
void calf_rewind(calf *x) {
x->ef = 0;
x->chsum = 0;
x->nbytes = 0;
rewind(x->fp);
}
/* Close the file and free any memory */
/* return nz on error */
int calf_done(calf *x) {
int rv = 0;
if (x->fp != NULL) {
if (fclose(x->fp)) {
a1logd(x->log,2,"calf_done: closing file failed\n");
rv = 1;
}
}
if (x->buf != NULL)
free(x->buf);
x->buf = NULL;
return rv;
}
static void sizebuf(calf *x, size_t size) {
if (x->bufsz < size)
x->buf = realloc(x->buf, size);
if (x->buf == NULL)
error("calf: sizebuf malloc failed");
}
static void update_chsum(calf *x, unsigned char *p, int nn) {
int i;
for (i = 0; i < nn; i++, p++)
x->chsum = ((x->chsum << 13) | (x->chsum >> (32-13))) + *p;
x->nbytes += nn;
}
/* Write an array of ints to the file. Set the error flag to nz on error */
void calf_wints(calf *x, int *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(int), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wints: write failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(int) * n);
}
}
/* Write an array of doubles to the file. Set the error flag to nz on error */
void calf_wdoubles(calf *x, double *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(double), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wdoubles: write failed for %d doubles at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(double) * n);
}
}
/* Write an array of time_t's to the file. Set the error flag to nz on error */
/* (This will cause file checksum fail if different executables on the same */
/* system have different time_t values) */
void calf_wtime_ts(calf *x, time_t *dp, int n) {
if (x->ef)
return;
if (fwrite((void *)dp, sizeof(time_t), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wtime_ts: write failed for %d time_ts at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(time_t) * n);
}
}
/* Write a zero terminated string */
void calf_wstrz(calf *x, char *dp) {
int n;
if (x->ef)
return;
n = strlen(dp) + 1;
calf_wints(x, &n, 1);
if (fwrite((void *)dp, sizeof(char), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_wstrz: write failed for %d long string at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(char) * n);
}
}
/* Read an array of ints from the file. Set the error flag to nz on error */
/* Always read (ignore rd flag) */
void calf_rints2(calf *x, int *dp, int n) {
if (x->ef)
return;
if (fread((void *)dp, sizeof(int), n, x->fp) != n) {
x->ef = 1;
a1logd(x->log,2,"calf_rints2: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char *)dp, sizeof(int) * n);
}
}
/* Read an array of ints from the file. Set the error flag to nz on error */
void calf_rints(calf *x, int *dp, int n) {
size_t nbytes = n * sizeof(int);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rints: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read an array of doubles from the file. Set the error flag to nz on error */
void calf_rdoubles(calf *x, double *dp, int n) {
size_t nbytes = n * sizeof(double);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rdoubles: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read an array of time_t's from the file. Set the error flag to nz on error */
/* (This will cause file checksum fail if different executables on the same */
/* system have different time_t values) */
void calf_rtime_ts(calf *x, time_t *dp, int n) {
size_t nbytes = n * sizeof(time_t);
void *dest = (void *)dp;
if (x->ef)
return;
if (x->rd == 0) { /* Dummy read */
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rtime_ts: read failed for %d ints at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, dest, nbytes);
}
}
/* Read a zero terminated string. */
void calf_rstrz(calf *x, char **dp) {
int n;
size_t nbytes = 0;
char *dest = NULL;
if (x->ef)
return;
calf_rints2(x, &n, 1);
nbytes = sizeof(char) * n;
if (x->ef || n == 0)
return;
if (x->rd != 0) { /* Reading for real */
if (*dp != NULL)
free(*dp);
if ((*dp = dest = malloc(nbytes)) == NULL)
error("calf: calf_rstrz malloc failed");
} else {
sizebuf(x, nbytes);
dest = x->buf;
}
if (fread(dest, 1, nbytes, x->fp) != nbytes) {
x->ef = 1;
a1logd(x->log,2,"calf_rstrz: read failed for %d long string at offset %d\n",n,x->nbytes);
} else {
update_chsum(x, (unsigned char*)dest, nbytes);
}
}
void calf_rstrz2(calf *x, char **dp) {
int rd = x->rd;
x->rd = 1;
calf_rstrz(x, dp);
x->rd = rd;
}
/* ================================================== */
/* Save a rspec to a calibration file */
void calf_wrspec(calf *x, rspec *s) {
int i;
if (x->ef)
return;
calf_wints(x, (int *)&s->stype, 1);
calf_wints(x, (int *)&s->mtype, 1);
calf_wints(x, (int *)&s->state, 1);
calf_wdoubles(x, &s->inttime, 1);
calf_wints(x, &s->nmeas, 1);
calf_wints(x, &s->nsamp, 1);
for (i = 0; i < s->nmeas; i++) {
calf_wdoubles(x, s->samp[i], s->nsamp);
}
}
/* Create a rspec from a calibration file */
void calf_rrspec(calf *x, rspec **dp, rspec_inf *inf) {
rspec *s, dumy;
int no, i;
if (x->ef)
return;
if (x->rd != 0) {
if (*dp != NULL)
del_rspec(*dp);
*dp = s = new_rspec(inf, rspec_sensor, 0);
} else {
s = &dumy;
}
calf_rints2(x, (int *)&s->stype, 1);
calf_rints2(x, (int *)&s->mtype, 1);
calf_rints2(x, (int *)&s->state, 1);
calf_rdoubles(x, &s->inttime, 1);
calf_rints2(x, &s->nmeas, 1);
calf_rints2(x, &s->nsamp, 1);
/* Sanity check. */
no = rspec_typesize(inf, s->stype);
if (no != s->nsamp) {
a1logd(inf->log, 4,"calf_rrspec: unexpected nsamp %d (expect %d)\n",s->nsamp,no);
x->ef = 1;
return;
}
if (x->rd != 0) {
s->samp = dmatrix(0, s->nmeas-1, 0, s->nsamp-1);
for (i = 0; i < s->nmeas; i++) {
calf_rdoubles(x, s->samp[i], s->nsamp);
}
} else {
for (i = 0; i < s->nmeas; i++) {
calf_rdoubles(x, NULL, s->nsamp);
}
}
}
|