summaryrefslogtreecommitdiff
path: root/target/ifarp.c
blob: 544f316a522f07067f28d932617d02c05e493188 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

/* 
 * Argyll Color Correction System
 *
 * Incremental far point class
 *
 * Author: Graeme W. Gill
 * Date:   6/11/2002
 *
 * Copyright 2002 Graeme W. Gill
 * All rights reserved.
 *
 * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
 * see the License.txt file for licencing details.
 */

/*
   Algorithm:

   Starting with a previous test point as a seed, use a random starte point
   and minimisation algorithm to locate another point that is as far as
   possible from the nearest existing test point in perceptual space,
   while remaining in gamut at all tines. This means that ideally each
   point "fills in" the gaps in the existing distribution, while starting
   from an existing point.

   The performance is still not very good, as the inner loop involves
   locating the nearest existing point, as well as converting from
   device coordinates to perceptual space. If the powell search radius
   is reduced too much the uniformity of the distribution suffers.

 */

/* TTBD:

	It would probably help the uniformity of distribution if we could
    aproximately locate the next seed point as the one with the
    biggest adjoing "gap", and this may speed things up by allowing us
    to reduce the powel search radius. 

	Perhaps switching to a balltree indexing structure would speed up
    nearest ppoint finding as well as providing a mechanism to quickly
    locate the nearest "void".

	Subsequent experience indicates that furthest distance in perceptual
	space may not be the best strategy, but furthest distance in device
	space may be. Add #define allowing this to be tested ?? 

 */

#undef DEBUG
#define PERC_PLOT 1		/* Emit perceptive space plots (if DEBUG) */
#define DO_WAIT 1		/* Wait for user key after each plot */

#define ASSERTS

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#if defined(__IBMC__)
#include <float.h>
#endif
#ifdef DEBUG
# include "plot.h"
# include "ui.h"
#endif
#include "numlib.h"
#include "sort.h"
#include "icc.h"
#include "xcolorants.h"
#include "targen.h"
#include "ifarp.h"
#include "sort.h"		/* Heap sort */

#ifdef DEBUG
static void dump_image(ifarp *s, int pcp);
static void dump_image_final(ifarp *s, int pcp);
#endif

#define MAX_TRIES   30		/* Maximum itterations */


/* nn functions */
static double nearest(ifarp *s, double *q);
static void init_nn(ifarp *s);
static void add_nn(ifarp *s);
static void del_nn(ifarp *s);

/* ----------------------------------------------------- */
/* Default convert the nodes device coordinates into approximate perceptual coordinates */
static void
ifarp_to_percept(void *od, double *p, double *d) {
	ifarp *s = (ifarp *)od;
	int e;

	/* Do nothing - copy device to perceptual. */
	for (e = 0; e < s->di; e++) {
		p[e] = d[e] * 100.0;
	}
}


/* Return the largest distance of the point outside the device gamut. */
/* This will be 0 if inside the gamut, and > 0 if outside.  */
static double
ifarp_in_dev_gamut(ifarp *s, double *d) {
	int e;
	int di = s->di;
	double tt, dd = 0.0;
	double ss = 0.0;

	for (e = 0; e < di; e++) {
		ss += d[e];

		tt = 0.0 - d[e];
		if (tt > 0.0) {
			if (tt > dd)
				dd = tt;
		}
		tt = d[e] - 1.0; 
		if (tt > 0.0) {
			if (tt > dd)
				dd = tt;
		}
	}
	tt = ss - s->ilimit;
	if (tt > 0.0) {
		if (tt > dd)
			dd = tt;
	}
	return dd;
}

/* Snap a point to the device gamut boundary. */
/* Return nz if it has been snapped. */
static int snap_to_gamut(ifarp *s, double *d) {
	int e;
	int di = s->di;
	double dd;			/* Smallest distance */
	double ss;			/* Sum */
	int rv = 0;

	/* Snap to ink limit first */
	for (ss = 0.0, e = 0; e < di; e++)
		ss += d[e];
	dd = fabs(ss - s->ilimit);

	if (dd < 0.0) {
		int j;
		for (j = 0; j < di; j++) 
			d[j] *= s->ilimit/ss;	/* Snap to ink limit */
		rv = 1;
	}

	/* Now snap to any other dimension */
	for (e = 0; e < di; e++) {

		dd = fabs(d[e] - 0.0);
		if (dd < 0.0) {
			d[e] = 0.0;		/* Snap to orthogonal boundary */
			rv = 1;
		}
		dd = fabs(1.0 - d[e]); 
		if (dd < 0.0) {
			d[e] = 1.0;		/* Snap to orthogonal boundary */
			rv = 1;
		}
	}

	return rv;
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Reverse lookup function :- perceptual to device coordinates */

/* Definition of the optimization functions handed to powell() */

/* Return metric to be minimised, and */
/* an error >= 50000 on being out of device gamut */
static double efunc(void *edata, double p[]) {
	ifarp *s = (ifarp *)edata;
	double rv;
	if ((rv = (ifarp_in_dev_gamut(s, p))) > 0.0) {
		rv = rv * 500.0 + 500.0;		/* Discourage being out of gamut */
	} else {
		double v[MXTD];
		s->percept(s->od, v, p);
		rv = 500.0 - nearest(s, v);
	}
//printf("~1 rv = %f from %f %f\n",rv,p[0],p[1]);
	return rv;
}

/* Given a point in device space, optimise it to be */
/* within the device gamut, as well as being as far as */
/* possible from the nearest point in perceptual space. */
/* return nz if powell failed */
static int
optimise_point(
ifarp *s,
double *d		/* starting and returned device position */
) {
	int e, di = s->di;
	double sr[MXTD];	/* Search radius in each device dimension */
	double drad = 1.0;	/* Search Radius (affects fill evenness) */
	double ptol = 0.001;	/* Tolerance */
	double tt;

// ~~99
	for (e = 0; e < di; e++)
		sr[e] = drad;			/* Device space search radius */
	if (powell(&tt, di, d, sr,  ptol, 500, efunc, (void *)s, NULL, NULL) != 0 || tt >= 50000.0) {
#ifdef DEBUG
		warning("ifarp: powell failed, tt = %f",tt);
#endif
		return 1;
	}
	snap_to_gamut(s, d);
	return 0;
}

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

/* Create a new node. */
/* Return current number of nodes */
static int new_node(
ifarp *s,
int ix		/* Index of point to start from */
) {
	int di = s->di;
	int e;

// ~~99
	/* Retry if powell failes */
	for (;;) {

		/* Create the new point by cloning the existing point */
		s->nodes[s->np].fx = 0;			/* Not a fixed/pre-existing node */
		for (e = 0; e < di; e++) {
			s->nodes[s->np].p[e] = s->nodes[ix].p[e];
		}
		/* Compute new point location that is farthest from nearest existing point */
		if (optimise_point(s, s->nodes[s->np].p) == 0)
			break;
	}

	/* compute perceptual location */
	s->percept(s->od, s->nodes[s->np].v, s->nodes[s->np].p);

#ifdef DEBUG
printf("Added node %d at perc %f %f, dev %f %f\n",
s->np,
s->nodes[s->np].v[0],
s->nodes[s->np].v[1],
s->nodes[s->np].p[0],
s->nodes[s->np].p[1]);
#endif

	/* Add the node to our current list */
	s->nodes[s->np].touch = s->tbase;
	s->np++;
	add_nn(s);

	return s->np;
}

/* ============================================= */
/* Main object functions */

/* Initialise, ready to read out all the points */
static void ifarp_reset(ifarp *s) {
	s->rix = 0;
}

/* Read the next set of non-fixed points values */
/* return non-zero when no more points */
static int ifarp_read(
ifarp *s,
double *d,		/* Device position */
double *p		/* Perceptual value */
) {
	int j;

	for (; s->rix < s->np; s->rix++) {

		if (s->nodes[s->rix].fx == 0) {
			for (j = 0; j < s->di; j++) {
				if (d != NULL)
					d[j] = s->nodes[s->rix].p[j];
				if (p != NULL)
					p[j] = s->nodes[s->rix].v[j];
			}
			s->rix++;
			return 0;
		}
	}
	return 1;
}

/* Destroy ourselves */
static void
ifarp_del(ifarp *s) {

	if (s->nodes != NULL)
		free(s->nodes);

	free (s);
}

/* Constructor */
ifarp *new_ifarp(
int di,					/* Dimensionality of device space */
double ilimit,			/* Ink limit (sum of device coords max) */
int inp,				/* Number of points to generate */
fxpos *fxlist,			/* List of existing fixed points (may be NULL) */
int fxno,				/* Number of existing fixes points */
void (*percept)(void *od, double *out, double *in),		/* Perceptual lookup func. */
void *od				/* context for Perceptual function */
) {
	ifarp *s;
	int e, i;
	int verb = 1;

#ifdef DEBUG
	printf("new_ifarp called with di %d, inp %d, fxno = %d\n",di,inp,fxno);
#endif

	if ((s = (ifarp *)calloc(sizeof(ifarp), 1)) == NULL)
		error ("ifarp: ifarp malloc failed");

#if defined(__IBMC__)
	_control87(EM_UNDERFLOW, EM_UNDERFLOW);
	_control87(EM_OVERFLOW, EM_OVERFLOW);
#endif

	s->reset = ifarp_reset;
	s->read  = ifarp_read;
	s->del   = ifarp_del;

	/* If no perceptual function given, use default */
	if (percept == NULL) {
		s->percept = ifarp_to_percept;
		s->od = s;
	} else {
		s->percept = percept;
		s->od = od;
	}

	s->ilimit = ilimit;

	s->inp = inp;	/* Intended number of points */
	s->np = 0;

	if (di > MXTD)
		error ("ifarp: Can't handle di %d",di);
	s->di = di;
	s->tbase = 0;
	
	/* Initial alloc of nodes */
	if ((s->nodes = (ifpnode *)malloc(s->inp * sizeof(ifpnode))) == NULL)
		error ("ifarp: nodes malloc failed");

	/* Copy fixed nodes */
	for (i = 0; (i < fxno) && (s->np < s->inp); i++) {
		s->nodes[s->np].fx = 1;
		for (e = 0; e < di; e++)
			s->nodes[s->np].p[e] = fxlist[i].p[e];
		s->percept(s->od, s->nodes[i].v, s->nodes[i].p);
		s->nodes[s->np].touch = s->tbase;
		s->np++;
	}

	/* Create at least one seed point */
	if (s->np == 0) {
		s->nodes[s->np].fx = 0;

		for (e = 0; e < di; e++)
			s->nodes[s->np].p[e] = 0.0;		/* This is assumed to be in gamut */
		s->percept(s->od, s->nodes[i].v, s->nodes[i].p);
		s->nodes[s->np].touch = s->tbase;
		s->np++;
	}

	/* Setup initial nearest point acceleration structure */
	init_nn(s);

	/* Create initial patches */
// ~~99

	if (verb)
		printf("Full points:\n");

	for (i = 0; s->np < s->inp; i += 17) {
		i %= s->np;
		new_node(s, i);
		if (verb) {
			int pc = (int)(100.0 * s->np/s->inp + 0.5);
			printf("  % 3d%%%c",pc,cr_char); fflush(stdout);
		}
	}

	if (verb)
		printf("\n");

	/* We're done with acceleration structure */
	del_nn(s);

	return s;
}

/* --------------------------------------------------- */
/* (This code is has been copied from gamut/gamut.c) */

#ifdef DEBUG
#define NN_INF 100000.0
#else
#define NN_INF 1e307
#endif

/* Given a point, */
/* return the nearest existint test point. */
static double
nearest(
ifarp *s,
double *q		/* Target point location */
) {
	int e, i, k;
	int di = s->di;
	int wex[MXTD * 2];		/* Current window edge indexes */
	double wed[MXTD * 2];	/* Current window edge distances */
							/* Indexes are axis * 2 +0 for lower edge, */
							/* +1 for upper edge of search box. */
							/* We are comparing lower edge of search box */
							/* with upper edge of bounding box etc. */ 

//printf("~1 nearest called\n");

	/* We have to find out which existing point the point will be nearest */

	if ((s->tbase + di) < s->tbase) {	/* Overflow of touch count */
		for (i = 0; i < s->np; i++)
			s->sax[0][i]->touch = 0;		/* reset it in all the objects */
		s->tbase = 0;
	}
	s->ttarget = s->tbase + di;		/* Target touch value */

//printf("\n");
//printf("Query point is %f %f\n",q[0], q[1]);

	/* Find starting indexes within axis arrays */
	for (e = 0; e < (2 * di); e++) {	/* For all axes min & max */
		int f = e/2;			/* Axis */
		int i0, i1, i2;			/* Search indexes */
		double v0, v1, v2;		/* Box */
		double qf, ww;

		/* Binary search this edge */
		qf = q[f]; 		/* strength reduced q[f] */

//printf("\n");
//printf("isearching axis %d %s for %f\n",f, e & 1 ? "max" : "min", qf);
		i0 = 0;
		i2 = s->np - 1;
		v0 = s->sax[f][i0]->v[f];
		v2 = s->sax[f][i2]->v[f];
//printf("start points %d - %d, bound %f - %f\n",i0, i2, v0, v2);

		if (qf <= v0) {
			i2 = i0;
			v2 = v0;
		} else if (qf >= v2) {
			i0 = i2;
			v0 = v2;
		} else {
			do {
				i1 = (i2 + i0)/2;		/* Trial point */
				v1 = s->sax[f][i1]->v[f];	/* Value at trial */
				if (v1 < qf) {
					i0 = i1;			/* Take top half */
					v0 = v1;
				} else {
					i2 = i1;			/* Take bottom half */
					v2 = v1;
				}
//printf("current point %d - %d, bound %f - %f\n",i0, i2, v0, v2);
			} while ((i2 - i0) > 1);
		}

		if (e & 1) {			/* Max side of window */
			int tc;				/* total object count */

			ww = v2 - qf;
			wed[e] = fabs(ww) * ww;
			wex[e] = i2;

			/* Check that min and max together will cover at least s->np objects */
			tc = s->np - i2 + wex[e ^ 1] + 1;
//printf("got %d, expected %d\n",tc, s->np);

			/* (I don't really understand why this works!) */
			if (tc < s->np) {		/* We haven't accounted for all the objects */
				int el = e ^ 1;		/* Low side sax */
				int ti0, ti2;
				double tv0, tv2;

				ti0 = wex[el];
				ti2 = i2;
//printf("We have straddling objects, initial indexes are %d - %d\n",ti0, ti2);

				/* While straddling objects remain undiscovered: */
				while (tc < s->np) {
					tv0 =  NN_INF;		/* Guard values */
					tv2 = -NN_INF;

					/* Increment low side until we find a straddler */
					while (ti0 < (s->np-1)) {
						ww = s->sax[f][++ti0]->v[f];	/* Position of the other end */
						if (ww < qf) {
//printf("found low object %d at index %d that straddles\n",s->sax[f][ti0]-s->nodes,ti0);
							tv0 = qf - s->sax[f][ti0]->v[f];
							break;
						}
					}

					/* Decrement high side until we find a straddler */
					while (ti2 > 0) {
						ww = s->sax[f][--ti2]->v[f];	/* Position of the other end */
						if (ww > qf) {
//printf("found high object %d at index %d that straddles\n",s->sax[f][ti2]-s->nodes,ti2);
							tv2 = s->sax[f][ti2]->v[f] - qf;
							break;
						}
					}
					/* Choose the closest */
					if (tv0 > tv2) {
						wed[el] = fabs(tv0) * tv0;
						wex[el] = ti0;
						tc++;
					} else {
						wed[e] = fabs(tv2) * tv2;
						wex[e] = ti2;
						tc++;
					}
				}
//printf("After correction we have %d - %d\n",wex[e^1], wex[e]);
			}
		} else {				/* Min side of window */
			ww = q[f] - v0;
			wed[e] = fabs(ww) * ww;
			wex[e] = i0;
		}
	}

	/* Expand a di dimenstional cube centered on the target point, */
	/* jumping to the next nearest point on any axis, discovering */
	/* any bounding boxes that are within the expanding window */
	/* by checking their touch count. */

	/* The first point found establishes the initial best distance. */
	/* When the window expands beyond the point where it can improve */
	/* the best distance, stop */

	{
		double bw = 0.0;		/* Current window distance */
		double bdist = NN_INF;	/* Best possible distance to an object outside the window */
		int bix;				/* Index of best point */

		/* Until we're done */
		for (;;) {
			int ee;				/* Axis & expanding box edge */
			int ff;				/* Axis */
			int ii;				/* Index of chosen point */
			ifpnode *ob;		/* Current object */
			unsigned int ctv;	/* Current touch value */
//printf("\n");
//printf("wwidth = %f, bdist = %f, window = %d-%d, %d-%d\n",
//bw, bdist, wex[0], wex[1], wex[2], wex[3]);
//printf("window edge distances are = %f-%f, %f-%f\n",
//wed[0], wed[1], wed[2], wed[3]);

			/* find next (smallest) window increment axis and direction */
			ee = 0;
			ii = wex[ee];
			bw = wed[ee];
			for (e = 1; e < (2 * di); e++) {
				if (wed[e] < bw) {
					ee = e;
					ii = wex[e];
					bw = wed[e];
				}
			}
//printf("Next best is axisdir %d, object %d, axis index %d, best possible dist %f\n",
//ee, s->sax[ee/2][ii] - s->nodes, ii, bw);

			if (bw == NN_INF || bw > bdist) {
				break;		/* Can't go any further, or further points will be worse */
			}

#ifdef ASSERTS
if (ii < 0 || ii >= s->np) {
printf("Assert: went out of bounds of sorted axis array\n");
exit(0);
}
#endif
			/* Chosen point on ee axis/direction, index ii */
			ff = ee / 2;			/* Axis only */

			ob = s->sax[ff][ii];

			/* Touch value of current object */
			ctv = ob->touch;

			if (ctv < s->ttarget) {		/* Not been dealt with before */

				/* Touch this new window boundary point */
				ob->touch = ctv = ((ctv < s->tbase) ? s->tbase : ctv) + 1;

//printf("New touch count on %d is %d, target %d\n",
//ob - s->nodes, s->sax[ff][ii]->touch, s->ttarget);

				/* Check the point out */
				if (ctv == (s->tbase + di)) {	/* Is within window on all axes */
					double tdist = 0.0;

					/* Compute distance from query point to this object */
					for (k = 0; k < di; k++) {
						double tt = ob->v[k] - q[k];
						tdist += tt * tt;
					}
					
//printf("Got new best point %d, dist %f\n",ob-s->nodes,sqrt(tdist));
					if (tdist < bdist) {	/* New closest distance */
						bdist = tdist;
						bix = ob - s->nodes;
					}
				}
			}

			/* Increment next window edge candidate, and figure new edge distance */
			if (ee & 1) {					/* Top */
				if (++wex[ee] >= s->np) {
					wed[ee] = NN_INF;
					wex[ee]--;
				} else {
					double ww = s->sax[ff][wex[ee]]->v[ff] - q[ff];
					wed[ee] = fabs(ww) * ww;
				}
			} else {
				if (--wex[ee] < 0) {
					wed[ee] = NN_INF;
					wex[ee]++;
				} else {
					double ww = q[ff] - s->sax[ff][wex[ee]]->v[ff];
					wed[ee] = fabs(ww) * ww;
				}
			}
		}

		s->tbase += di;			/* Next touch */

//printf("~1 returning closest to node %d distance %f\n",bix,sqrt(bdist));
		return sqrt(bdist);	/* Return nearest distance */
	}
}


/* Setup the nearest function acceleration structure */
/* with the existing points */
static void
init_nn(
ifarp *s
) {
	int di = s->di;
	int i, k;
	int np = s->np;		/* Existing number of points */

//printf("~9 init_nn called\n");

	s->tbase = 0;		/* Initialse touch flag */

	/* Allocate the arrays spaces for intended number of points */
	for (k = 0; k < di; k++) {
		if ((s->sax[k] = (ifpnode **)malloc(sizeof(ifpnode *) * s->inp)) == NULL)
			error("Failed to allocate sorted index array");
	}

	/* Add each existing test point to the axis lists. */
	for (i = 0; i < np; i++) {
		for (k = 0; k < di; k++)
			s->sax[k][i] = &s->nodes[i];
	}

	/* Sort the axis arrays */
	for (k = 0; k < di; k++) {
			/* Sort nodes edge list */
#define 	HEAP_COMPARE(A,B) (A->v[k] < B->v[k])
			HEAPSORT(ifpnode *, &s->sax[k][0], np)
#undef HEAP_COMPARE
	}
//printf("~9 init_nn done\n");
}


#ifdef NEVER		/* Slower but simpler version */

/* Add the last point to the acceleration structure */
static void
add_nn(
ifarp *s
) {
	int di = s->di;
	int i, k;
	int np = s->np;		/* Existing number of points */
	int ap = np - 1;	/* Index of point ot add */

//printf("~9 add_nn called with point ix %d, pos %f %f\n",ap, s->nodes[ap].v[0],s->nodes[ap].v[1]);

	for (k = 0; k < di; k++) {
		s->sax[k][ap] = &s->nodes[ap];
	}

	/* Sort the axis arrays */
	for (k = 0; k < di; k++) {
			/* Sort nodes edge list */
#define 	HEAP_COMPARE(A,B) (A->v[k] < B->v[k])
			HEAPSORT(ifpnode *, &s->sax[k][0], np)
#undef HEAP_COMPARE
	}
}

#else

/* Add the last point to the acceleration structure */
static void
add_nn(
ifarp *s
) {
	int di = s->di;
	int e;
	int np = s->np;		/* Existing number of points */
	int ap = np - 1;	/* Index of point to add */

//printf("~9 add_nn called with point ix %d, pos %f %f\n",ap, s->nodes[ap].v[0],s->nodes[ap].v[1]);

	for (e = 0; e < di; e++) {	/* For all axes */
		int i0, i1, i2;			/* Search indexes */
		double v0, v1, v2;		/* Box */
		double qf;

		qf = s->nodes[ap].v[e];	/* value to be insertion sorted */

//printf("isearching axis %d for %f\n",e, qf);

		/* Find index of lowest value that is greater than target */
		i0 = 0;
		i2 = ap - 1;
		v0 = s->sax[e][i0]->v[e];
		v2 = s->sax[e][i2]->v[e];
//printf("start points %d - %d, bound %f - %f\n",i0, i2, v0, v2);

		if (qf <= v0) {
			i1 = i0;
		} else if (qf >= v2) {
			i1 = ap;
		} else {
			do {
				i1 = (i2 + i0)/2;			/* Trial point */
				v1 = s->sax[e][i1]->v[e];	/* Value at trial */

				if (qf > v1) {
					i0 = i1;			/* Take top half */
					v0 = v1;
				} else { /* qf <= v1 */
					i2 = i1;			/* Take bottom half */
					v2 = v1;
				}
//printf("current point %d - %d, bound %f - %f\n",i0, i2, v0, v2);
			} while ((i2 - i0) > 1);

			i1 = i0;
			v1 = s->sax[e][i1]->v[e];

			/* Ensure we're > than target */
			while (v1 <= qf) {
				i1++;
				if (i1 < ap)
					v1 = s->sax[e][i1]->v[e];
				else 
					break;
			}
		}

		/* Make room */
		if (i1 < ap) {
			memmove((void *)&s->sax[e][i1+1], (void *)&s->sax[e][i1], (ap - i1) * sizeof(ifpnode *));
		}
		/* Insert */
		s->sax[e][i1] = &s->nodes[ap];
	}
}

#endif

/* Free everything to do with the nn */
static void del_nn(ifarp *s) {
	int di = s->di;
	int k;

	for (k = 0; k < di; k++) {
		free (s->sax[k]);
	}
}

/* =================================================== */

#ifdef STANDALONE_TEST

icxColorantLu *clu;

void sa_percept(void *od, double *out, double *in) {
	
#ifdef NEVER
	double lab[3];
	clu->dev_to_rLab(clu, lab, in);

	out[0] = lab[0];
//	out[1] = (lab[1]+100.0)/2.0;
	out[1] = (lab[2]+100.0)/2.0;
#else

	out[0] = in[0] * 100.0;
	out[1] = in[1] * 100.0;

#endif
}

int
main(argc,argv)
int argc;
char *argv[];
{
	int npoints = 500;
	ifarp *s;
	int mask = ICX_BLACK | ICX_GREEN;
	int di = 2;
	
	error_program = argv[0];
	check_if_not_interactive();

	if (argc > 1)
		npoints = atoi(argv[1]);

	if ((clu = new_icxColorantLu(mask)) == NULL)
		error ("Creation of xcolorant lu object failed");

	/* Create the required points */
	s = new_ifarp(di, 1.5, npoints, NULL, 0, sa_percept, (void *)NULL);

#ifdef DEBUG
	/* Dump perceptual map */
	dump_image(s, PERC_PLOT);
#endif /* DEBUG */

	s->del(s);

	return 0;
}

#endif /* STANDALONE_TEST */



#ifdef DEBUG

/* Dump the current point positions to a plot window file */
static void
dump_image(ifarp *s, int pcp) {
	double minx, miny, maxx, maxy;
	double *x1a = NULL;
	double *y1a = NULL;
	double *x2a = NULL;
	double *y2a = NULL;
	double *x3a = NULL;
	double *y3a = NULL;

	int i, nu;
	ifpnode *p;

	if (s->np == 0)
		return;

	if (pcp) {	/* Perceptual range */
		minx = 0.0;	/* Assume */
		miny = 0.0;
		maxx = 100.0;
		maxy = 100.0;
	} else {
		minx = 0.0;	/* Assume */
		miny = 0.0;
		maxx = 1.0;
		maxy = 1.0;
	}
	
	if ((x1a = (double *)malloc(s->np * sizeof(double))) == NULL)
		error ("ifarp: plot malloc failed %d",s->np);
	if ((y1a = (double *)malloc(s->np * sizeof(double))) == NULL)
		error ("ifarp: plot malloc failed %d",s->np);
	if ((x2a = (double *)malloc(s->np * sizeof(double))) == NULL)
		error ("ifarp: plot malloc failed %d",s->np);
	if ((y2a = (double *)malloc(s->np * sizeof(double))) == NULL)
		error ("ifarp: plot malloc failed %d",s->np);

	for (nu = i = 0; i < s->np; i++) {
		p = &s->nodes[i];

		if (pcp) {
			x1a[nu] = p->v[0];
			y1a[nu] = p->v[1];
			x2a[nu] = p->v[0];
			y2a[nu] = p->v[1];
		} else {
			x1a[nu] = p->p[0];
			y1a[nu] = p->p[1];
			x2a[nu] = p->p[0];
			y2a[nu] = p->p[1];
		}
		nu++;
	}

	/* Plot the vectors */
	do_plot_vec(minx, maxx, miny, maxy, 
				x1a, y1a, x2a, y2a, nu, DO_WAIT, x3a, y3a, 0);

	free(x1a);
	free(y1a);
	free(x2a);
	free(y2a);
}

#endif /* DEBUG */