1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
|
/*
* Argyll Color Correction System
*
* Simplex perceptual space latice test point class
* set to generate an equilateral simplex regular lattice,
* in perceptual space.
*
* Author: Graeme W. Gill
* Date: 27/3/2002
*
* Copyright 2002 - 2004 Graeme W. Gill
* All rights reserved.
*
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* TTBD:
This seems too inexact/slow to read a specified number of test
points for use in higher dimensions.
*/
#undef SPHERICAL /* spherical (equalateral simplex) packing, rather */
/* than body centered cubic lattice. Better than face centered, */
/* worse than body centered. */
#undef FCCPACK /* Face centered cubic lattice (worse than body centered and spherical) */
#undef DEBUG
#undef DUMP_PLOT /* Show on screen plot */
#define PERC_PLOT 1 /* Emit perceptive space plots */
#define DO_WAIT 1 /* Wait for user key after each plot */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#if defined(__IBMC__)
#include <float.h>
#endif
#if defined(DEBUG) || defined(DUMP_PLOT)
# include "plot.h"
# include "ui.h"
#endif
#include "numlib.h"
#include "sort.h"
#include "icc.h"
#include "xcolorants.h"
#include "targen.h"
#include "simplat.h"
#if defined(DEBUG) || defined(DUMP_PLOT)
static void dump_image(simplat *s, int pcp);
static void dump_image_final(simplat *s, int pcp);
#endif
#define SNAP_TOL 0.01 /* Snap to gamut boundary tollerance */
#define MAX_TRIES 30 /* Maximum itterations */
/* ----------------------------------------------------- */
/* Default convert the nodes device coordinates into approximate perceptual coordinates */
/* (usually overriden by caller supplied function) */
static void
default_simplat_to_percept(void *od, double *p, double *d) {
simplat *s = (simplat *)od;
int e;
/* Default Do nothing - copy device to perceptual. */
for (e = 0; e < s->di; e++) {
p[e] = d[e] * 100.0;
}
}
/* Return the largest distance of the point outside the device gamut. */
/* This will be 0 if inside the gamut, and > 0 if outside. */
static double
simplat_in_dev_gamut(simplat *s, double *d) {
int e;
int di = s->di;
double tt, dd = 0.0;
double ss = 0.0;
for (e = 0; e < di; e++) {
ss += d[e];
tt = 0.0 - d[e];
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
tt = d[e] - 1.0;
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
}
tt = ss - s->ilimit;
if (tt > 0.0) {
if (tt > dd)
dd = tt;
}
return dd;
}
/* Snap a point to the device gamut boundary. */
/* Return nz if it has been snapped. */
static int snap_to_gamut(simplat *s, double *d) {
int e;
int di = s->di;
double dd; /* Smallest distance */
double ss; /* Sum */
int rv = 0;
/* Snap to ink limit first */
for (ss = 0.0, e = 0; e < di; e++)
ss += d[e];
dd = fabs(ss - s->ilimit);
if (dd <= s->tol) {
int j;
for (j = 0; j < di; j++)
d[j] *= s->ilimit/ss; /* Snap to ink limit */
rv = 1;
}
/* Now snap to any other dimension */
for (e = 0; e < di; e++) {
dd = fabs(d[e] - 0.0);
if (dd < s->tol) {
d[e] = 0.0; /* Snap to orthogonal boundary */
rv = 1;
}
dd = fabs(1.0 - d[e]);
if (dd < s->tol) {
d[e] = 1.0; /* Snap to orthogonal boundary */
rv = 1;
}
}
return rv;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Reverse lookup function :- perceptual to device coordinates */
/* Structure to hold data for optimization function */
struct _edatas {
simplat *s; /* simplat structure */
double *ptp; /* Perceptual target point */
}; typedef struct _edatas edatas;
/* Definition of the optimization functions handed to powell() */
/* This one returns error from perceptual target point, and */
/* an error >= 50000 on being out of device gamut */
static double efunc(void *edata, double p[]) {
edatas *ed = (edatas *)edata;
simplat *s = ed->s;
int e, di = s->di;
double rv, pp[MXTD];
if ((rv = (simplat_in_dev_gamut(s, p))) > 0.0) {
rv = rv * 5000.0 + 100000.0; /* Discourage being out of gamut */
} else {
s->percept(s->od, pp, p);
for (rv = 0.0, e = 0; e < di; e++) {
double tt = pp[e] - ed->ptp[e];
rv += tt * tt;
}
}
//printf("rv = %f from %f %f\n",rv,p[0],p[1]);
return rv;
}
/* Given a point in perceptual space, an approximate point */
/* in device space, return the device value corresponding to */
/* the perceptual value, plus the clipped perceptual value. */
/* Return 1 if the point has been clipped. */
/* Return 2 if the point has been clipped by a dia. */
static int
simplat_from_percept(
simplat *s,
double *d, /* return device position */
double *p /* Given perceptual value */
) {
int e, di = s->di;
edatas ed;
double pp[MXTD];
double sr[MXTD]; /* Search radius */
double tt;
double drad = 50.0; /* Search radius */
double ptol = 0.00001; /* Tolerance */
ed.s = s;
ed.ptp = p; /* Set target perceptual point */
for (e = 0; e < di; e++) {
sr[e] = drad; /* Device space search radius */
}
if (powell(&tt, di, d, sr, ptol, 500, efunc, (void *)&ed, NULL, NULL) != 0 || tt >= 50000.0) {
error("simplat: powell failed, tt = %f\n",tt);
}
snap_to_gamut(s, d);
s->percept(s->od, pp, d); /* Lookup clipped perceptual */
tt = 0.0;
for (e = 0; e < di; e++) {
double t = p[e] - pp[e];
p[e] = pp[e];
tt += t * t;
}
tt = sqrt(tt);
//printf("~1 perc %f %f -> %f %f dev %f %f, err = %f\n",ed.ptp[0],ed.ptp[1],p[0],p[1],d[0],d[1],tt);
if (tt > (0.5 * s->dia))
return 2; /* invalid & !explore */
if (tt > 0.5)
return 1; /* Valid & explore */
return 0;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Compute the simplex basis vectors */
static void comp_basis(
simplat *s,
double dia, /* Diameter of simplex circumspehere */
double off, /* Starting offset in device space */
double angle /* Rotation angle 0.0 - 1.0 */
) {
int i, j, di = s->di;
double sx[MXTD+1][MXTD]; /* Simplex verticies */
#ifdef SPHERICAL
/* Create the node positions for the */
/* equalateral simplex basis vectors */
for (i = 0; i < (di+1); i++) {
double rr = 1.0; /* Current radius squared */
double ss = dia / sqrt(3.0); /* Scale */
/* The bounding points form a equalateral simplex */
/* whose vertexes are on a sphere about the data */
for (j = 0; j < di; j++) {
double ddi;
double hh = 1.0/(di-j); /* Weight for remaining points */
if (j > i)
sx[i][j] = 0.0; /* If beyond last */
else if (j == i) /* If last non-zero */
sx[i][j] = ss * sqrt(rr);
else /* If before last */
sx[i][j] = -hh * ss * sqrt(rr);
ddi = (double)(di - j);
rr *= (ddi * ddi - 1.0)/(ddi * ddi);
}
}
#else /* !SPHERICAL */
#ifdef FCCPACK
/* Create the node positions for the */
/* face centered arrangement */
/* Face centered places points at locations where the */
/* sum of the lattice integer coordinates is even. */
for (i = 0; i < (di+1); i++) {
for (j = 0; j < di; j++)
sx[i][j] = 0.0 * -0.5;
if (i > 0 && i < di) {
sx[i][i-1] += 0.5 * dia;
sx[i][di-1] += 0.5 * dia;
} else if (i == di) {
sx[i][di-1] += dia;
}
}
#else /* Body cenetered */
/* Create the node positions for body centered */
/* cubic latice simplex basis vectors */
/* Body centered places points at locations where the */
/* lattice integer coordinates are all even or all odd. */
for (i = 0; i < (di+1); i++) {
for (j = 0; j < di; j++)
sx[i][j] = -0.5;
if (i < di) {
if (i > 0)
sx[i][i-1] += dia;
} else {
for (j = 0; j < di; j++)
sx[i][j] += 0.5 * dia;
}
}
#endif /* !FCCPACK */
#endif /* !SPHERICAL */
/* Apply a rotation to avoid possible alignment with */
/* the device axes */
{
int m, k;
int ldi = di-1; /* Last dimension */
double a, b;
b = angle;
a = sqrt(1.0 - b * b);
/* Apply rotation to all except last dimension */
for (m = 0; m < ldi; m++) { /* Dimension being rotated */
for (i = 0; i < (di+1); i++) { /* Node being rotated */
double out[MXTD];
for (j = 0; j < di; j++) { /* Coord being produced */
out[j] = 0.0;
for (k = 0; k < di; k++) { /* Coord being used */
if ((j == m && k == m)
|| (j == ldi && k == ldi))
out[j] += a * sx[i][k]; /* Diagonal multiplier */
else if (j == m && k == ldi)
out[j] += b * sx[i][k];
else if (j == ldi && k == m)
out[j] -= b * sx[i][k];
else if (j == k)
out[j] += sx[i][k];
}
}
for (j = 0; j < di; j++)
sx[i][j] = out[j]; /* Transfer result */
}
}
}
#ifdef DEBUG /* Dump stats on verticies */
for(i = 0; i < (di+1); i++) {
double val = 0.0;
printf("vert %d = ",i);
for(j = 0; j < di; j++) {
val += sx[i][j] * sx[i][j];
printf("%f ",sx[i][j]);
}
printf(" (%f)\n",sqrt(val));
}
for(i = 0; i < di; i++) {
for (j = i+1; j < (di+1); j++) {
int e;
double val;
/* Distance between nodes */
for (val = 0.0, e = 0; e < di; e++) {
double tt = sx[i][e] - sx[j][e];
val += tt * tt;
}
val = sqrt(val);
printf("dist %d %d = %f\n",i,j,val);
}
}
#endif /* DEBUG */
/* Convert from di+1 verticies to di base vectors */
for (i = 0; i < di; i++) {
for (j = 0; j < di; j++) {
s->bv[i][j] = sx[i+1][j] - sx[i][j];
}
}
/* Establish the basis origin */
{
double dv[MXTD];
for (j = 0; j < di; j++)
dv[j] = off * s->ilimit/di;
s->percept(s->od, s->bo, dv);
}
}
/* Compute the hash */
static int comp_hash(
simplat *s,
int *x /* Index */
) {
int j, di = s->di;
unsigned long hash;
for (hash = 0, j = 0; j < di; j++)
hash = hash * 7 + x[j];
hash %= SPT_HASHSIZE;
return hash;
}
/* Check if a node already exists. Return -1 if not, */
/* or node index if it does. */
static int check_exists(
simplat *s,
int *x, /* Index */
int hash /* Hash */
) {
int di = s->di;
int hp; /* node index */
int j;
for (hp = s->hash[hash]; hp >= 0; hp = s->nodes[hp].hp) {
/* Check if we have a match */
for (j = 0; j < di; j++) {
if (s->nodes[hp].x[j] != x[j])
break;
}
if (j >= di)
break; /* Found a match */
}
return hp;
}
/* Create a new node. We assume it doesn't already exist */
/* Return its index */
static int new_node(
simplat *s,
int *x, /* Index */
int hash /* Hash */
) {
int di = s->di;
int b = 0; /* NZ if a boundary point */
int nn; /* New node index */
int hp; /* Hash chain index */
int i, j;
/* Make room for it */
if ((s->np+1) >= s->np_a) {
s->np_a *= 2;
if ((s->nodes = (sptnode *)realloc(s->nodes, s->np_a * sizeof(sptnode))) == NULL)
error ("simplat: node realloc failed");
}
nn = s->np++; /* Add the new point */
/* Compute the target perceptual value */
for (j = 0; j < di; j++) {
s->nodes[nn].v[j] = s->bo[j];
s->nodes[nn].p[j] = 0.5; /* Search start point */
}
for (i = 0; i < di; i++) {
for (j = 0; j < di; j++) {
s->nodes[nn].v[j] += x[i] * s->bv[i][j]; /* Sum basis vector product */
}
}
/* Lookup the device position */
b = simplat_from_percept(s, s->nodes[nn].p, s->nodes[nn].v);
/* Store node information */
for (j = 0; j < di; j++)
s->nodes[nn].x[j] = x[j];
s->nodes[nn].b = b;
if (b < 2) {
s->nodes[nn].vald = 1; /* Valid if within or on gamut */
s->nvp++; /* Got another valid one */
} else
s->nodes[nn].vald = 0; /* Not valid if it's a boundary point */
s->nodes[nn].expm[0] =
s->nodes[nn].expm[1] = (1 << di)-1; /* Assum all dimensions need exploring */
s->nodes[nn].hp = s->nodes[nn].up = -1; /* Linked list indexes */
/* Add an entry in the hash table */
if (s->hash[hash] < 0)
s->hash[hash] = nn; /* We are the only entry */
else {
hp = s->hash[hash];
while (s->nodes[hp].hp >= 0)
hp = s->nodes[hp].hp; /* Follow chain */
s->nodes[hp].hp = nn; /* Add at the end of the chain */
}
return nn;
}
/* ============================================= */
/* Main object functions */
/* Initialise, ready to read out all the points */
static void simplat_reset(simplat *s) {
s->rix = 0;
}
/* Read the next set of non-fixed points values */
/* return non-zero when no more points */
static int simplat_read(
simplat *s,
double *d, /* Device position */
double *p /* Perceptual value */
) {
int j;
for (; s->rix < s->bnp; s->rix++) {
if (s->bnodes[s->rix].vald != 0) {
for (j = 0; j < s->di; j++) {
if (d != NULL)
d[j] = s->bnodes[s->rix].p[j];
if (p != NULL)
p[j] = s->bnodes[s->rix].v[j];
}
s->rix++;
return 0;
}
}
return 1;
}
/* Do a pass of seed filling the whole gamut, given a simplex dia. */
/* Return the number of nodes produced */
static int do_pass(
simplat *s,
double dia /* Simplex diameter to try */
) {
int di = s->di;
int hash;
int i, j, k;
int x[MXTD];
int nn; /* New nodes index */
int np;
/* Rest the current list */
s->np = 0;
s->nvp = 0;
for (i = 0; i < SPT_HASHSIZE; i++)
s->hash[i] = -1;
/* Initial alloc of nodes */
if (s->nodes == NULL) {
s->np_a = 10;
if ((s->nodes = (sptnode *)malloc(s->np_a * sizeof(sptnode))) == NULL)
error ("simplat: nodes malloc failed");
}
/* Compute the simplex basis vectors */
/* arguments: simplex diameter, device space offset, angle to skew grid */
comp_basis(s, dia, 0.5, s->angle);
// comp_basis(s, dia, 0.5, ANGLE);
// comp_basis(s, dia, 0.5, dia/200.0);
// comp_basis(s, dia, 0.4 + dia/150.0, ANGLE);
// comp_basis(s, dia, 0.4 + dia/150.0, dia/147.0);
// comp_basis(s, dia, 0.5, fmod(dia, 1.0));
s->dia = dia;
/* Add an initial seed point */
for (j = 0; j < di; j++)
x[j] = 0;
hash = comp_hash(s, x);
nn = new_node(s, x, hash);
if (s->nodes[nn].b > 1) {
error("simplat: initial seed point is not within gamut");
}
s->unex = nn; /* Initial entry in unexplored list */
//printf("~1 seed node is [%d %d]\n",s->nodes[nn].x[0], s->nodes[nn].x[1]);
/* While there is more unexplored area */
/* and we arn't finding a ridiculous number of points */
while(s->unex >= 0 && (s->nvp < 3 * s->inp)) {
int pos; /* Positive or -ve direction */
nn = s->unex; /* Node we're looking at */
s->unex = s->nodes[nn].up; /* remove from unexplored list */
//printf("\n~1 exploring beyond node [%d %d]\n",s->nodes[nn].x[0], s->nodes[nn].x[1]);
if (s->nodes[nn].b > 1)
continue; /* Don't look at boundary points */
/* For all unexplored directions */
for (i = 0; i < di; i++) {
for (pos = 0; pos < 2; pos++) {
int on; /* Other node index */
//printf("~1 checking direction dim %d, sign %d, [%d %d]\n",i,pos,x[0],x[1]);
if (((1 << i) & s->nodes[nn].expm[pos]) == 0) {
//printf("~1 that direction has been explored\n");
continue; /* Try next direction */
}
/* Check out that direction */
for (j = 0; j < di; j++)
x[j] = s->nodes[nn].x[j];
x[i] += pos ? 1 : -1;
/* If that node already exists */
hash = comp_hash(s, x);
if ((on = check_exists(s, x, hash)) >= 0) {
/* back direction doesn't need checking */
s->nodes[on].expm[pos ^ 1] &= ~(1 << i);
//printf("~1 that node already exists\n");
continue; /* Try next direction */
}
/* Create a new node in that direction */
on = new_node(s, x, hash);
if (s->nodes[on].b > 1) { /* If new node is boundary, don't explore beyond it */
//printf("~1 added new boundary node [%d %d]\n",x[0],x[1]);
continue;
}
/* back direction on new node doesn't need checking */
s->nodes[on].expm[pos ^ 1] &= ~(1 << i);
//printf("~1 added new internal node [%d %d] **\n",x[0],x[1]);
s->nodes[on].up = s->unex; /* Add this node to unexplored list */
s->unex = on;
}
}
}
/* Rationalise cooincident points, and count final valid */
s->nvp = 0;
for (i = 0; i < s->np; i++) {
//printf("~1 rationalising %d, = %f %f\n",i, s->nodes[i].v[0], s->nodes[i].v[1]);
if (s->nodes[i].vald == 0) {
//printf("~1 point %d is not valid\n",i);
continue;
}
/* First against fixed points in device space */
for (k = 0; k < s->fxno; k++) {
double dd;
/* Compute distance */
dd = 0.0;
for (j = 0; j < di; j++) {
double tt = s->nodes[i].v[j] - s->fxlist[k].v[j];
dd += tt * tt;
}
dd = 0.01 * sqrt(dd);
if (dd < s->tol) {
s->nodes[i].vald = 0; /* Ignore this point */
//printf("~1 point %d matches input point %d\n",i, k);
break;
}
}
if (s->nodes[i].vald == 0)
continue;
/* Then against all the other points */
for (k = i+1; k < s->np; k++) {
double dd;
if (s->nodes[k].vald == 0)
continue;
/* Compute distance */
dd = 0.0;
for (j = 0; j < di; j++) {
double tt = s->nodes[i].v[j] - s->nodes[k].v[j];
dd += tt * tt;
}
dd = 0.01 * sqrt(dd);
if (dd < s->tol) {
s->nodes[i].vald = 0; /* Ignore this point */
//printf("~1 point %d matches other point %d\n",i, k);
break;
}
}
if (s->nodes[i].vald != 0)
s->nvp++; /* Found a valid one */
}
#ifdef DUMP_PLOT
/* Dump plot */
dump_image(s, PERC_PLOT);
#endif /* DUMP_PLOT */
printf("~1 got %d valid out of %d total\n",s->nvp, s->np);
np = s->nvp;
/* If we have a new best */
if (s->nvp <= s->inp && (s->inp - s->nvp) < (s->inp - s->bnvp)) {
sptnode *tnodes;
int tnp_a;
tnodes = s->bnodes; /* Swap them */
tnp_a = s->bnp_a;
s->bnp = s->np;
s->bnvp = s->nvp;
s->bnodes = s->nodes;
s->bnp_a = s->np_a;
s->bdia = s->dia;
s->nodes = tnodes;
s->np_a = tnp_a;
s->np = s->nvp = 0; /* Zero current */
}
return np;
}
/* Destroy ourselves */
static void
simplat_del(simplat *s) {
if (s->nodes != NULL)
free(s->nodes);
if (s->bnodes != NULL)
free(s->bnodes);
free (s);
}
/* Constructor */
simplat *new_simplat(
int di, /* Dimensionality of device space */
double ilimit, /* Ink limit (sum of device coords max) */
int inp, /* Number of points to generate */
fxpos *fxlist, /* List of existing fixed points (may be NULL) */
int fxno, /* Number of existing fixes points */
double angle, /* Angle to orient grid at (0.0 - 0.5 typical) */
void (*percept)(void *od, double *out, double *in), /* Perceptual lookup func. */
void *od /* context for Perceptual function */
) {
int i;
double ctol;
double hdia, ldia, dia;
int hnp, lnp, np;
simplat *s;
#ifdef DEBUG
printf("new_simplat called with di %d, inp %d\n",di,inp);
#endif
if ((s = (simplat *)calloc(sizeof(simplat), 1)) == NULL)
error ("simplat: simplat malloc failed");
#if defined(__IBMC__)
_control87(EM_UNDERFLOW, EM_UNDERFLOW);
_control87(EM_OVERFLOW, EM_OVERFLOW);
#endif
s->reset = simplat_reset;
s->read = simplat_read;
s->del = simplat_del;
/* If no perceptual function given, use default */
if (percept == NULL) {
s->percept = default_simplat_to_percept;
s->od = s;
} else {
s->percept = percept;
s->od = od;
}
s->ilimit = ilimit;
s->inp = inp - fxno; /* Intended number of points */
s->angle = angle; /* desired grid angle */
s->tol = SNAP_TOL;
ctol = 0.6/pow((double)s->inp, 1.0/di);
if (ctol < s->tol) {
s->tol = ctol;
}
printf("~1 tol = %f\n",s->tol);
s->fxlist = fxlist; /* remember fixed points */
s->fxno = fxno;
/* Compute perceptual values in fixed list */
for (i = 0; i < s->fxno; i++)
s->percept(s->od, s->fxlist[i].v, s->fxlist[i].p);
if (di > MXTD)
error ("simplat: Can't handle di %d",di);
s->di = di;
/* We need to do a binary search to establish the desired */
/* latice spacing. */
/* Do an initial stab */
dia = 50.0;
np = do_pass(s, dia);
if (np == 0)
error("simplat: First pass gave 0 points!");
printf("~1 first cut dia %f gave %d points, target = %d\n",dia, np, s->inp);
if (np < s->inp) { /* Low count */
ldia = dia;
lnp = np;
for(;;) {
dia = pow(np/(1.5 * s->inp), 1.0/di) * dia;
//printf("~1 next try dia %f in hope of %f\n",dia, 1.5 * s->inp);
np = do_pass(s, dia);
printf("~1 second cut dia %f gave %d points, target = %d\n",dia, np,s->inp);
if (np >= s->inp)
break;
ldia = dia; /* New low count */
lnp = np;
}
hdia = dia;
hnp = np;
} else {
hdia = dia; /* High count */
hnp = np;
for(;;) {
dia = pow(np/(0.6 * s->inp), 1.0/di) * dia;
//printf("~1 next try dia %f in hope of %f\n",dia, 0.6 * s->inp);
np = do_pass(s, dia);
printf("~1 second cut dia %f gave %d points, target = %d\n",dia, np,s->inp);
if (np <= s->inp)
break;
hdia = dia; /* new high count */
hnp = np;
}
ldia = dia;
lnp = np;
}
/* Now zoom into correct number, with linear interp. binary search. */
for (i = 0; s->bnvp != s->inp && i < MAX_TRIES; i++) {
double ratio;
/* Bail out early if we're close enough */
if ((3 * i) > MAX_TRIES) {
if (((double)s->bnvp/(double)s->inp) > 0.99)
break;
}
ratio = ((double)s->inp - lnp)/(hnp - lnp); /* Distance between low and high */
dia = ratio * (hdia - ldia) + ldia;
np = do_pass(s, dia);
printf("~1 try %d, cut dia %f gave %d points, target = %d\n",i, dia, np,s->inp);
if (np > s->inp) {
hdia = dia;
hnp = np;
} else {
ldia = dia;
lnp = np;
}
}
simplat_reset(s);
printf("~1 total of %d patches\n",s->bnvp);
return s;
}
/* =================================================== */
#ifdef STANDALONE_TEST
#define ANGLE 0.0
icxColorantLu *clu;
#ifdef NEVER
static void sa_percept(void *od, double *out, double *in) {
double lab[3];
clu->dev_to_rLab(clu, lab, in);
out[0] = lab[0];
// out[1] = (lab[1]+100.0)/2.0;
out[1] = (lab[2]+100.0)/2.0;
}
#else
static void sa_percept(void *od, double *p, double *d) {
int e, di = 2;
#ifndef NEVER
/* Default Do nothing - copy device to perceptual. */
for (e = 0; e < di; e++) {
double tt = d[e];
if (e == 0)
tt = pow(tt, 2.0);
else
tt = pow(tt, 0.5);
p[e] = tt * 100.0;
}
#else
for (e = 0; e < di; e++) {
double tt = d[e];
/* Two slopes with a sharp turnover in X */
if (e == 0) {
if (tt < 0.5)
tt = tt * 0.3/0.5;
else
tt = 0.3 + ((tt-0.5) * 0.7/0.5);
}
p[e] = tt * 100.0;
}
#endif
}
#endif
int
main(argc,argv)
int argc;
char *argv[];
{
int npoints = 50;
simplat *s;
int mask = ICX_BLACK | ICX_GREEN;
error_program = argv[0];
if (argc > 1)
npoints = atoi(argv[1]);
if ((clu = new_icxColorantLu(mask)) == NULL)
error ("Creation of xcolorant lu object failed");
/* Create the required points */
s = new_simplat(2, 1.5, npoints, NULL, 0, ANGLE, sa_percept, (void *)NULL);
#ifdef DUMP_PLOT
printf("Perceptual plot:\n");
dump_image_final(s, 1);
printf("Device plot:\n");
dump_image_final(s, 0);
#endif /* DUMP_PLOT */
s->del(s);
return 0;
}
#endif /* STANDALONE_TEST */
#if defined(DEBUG) || defined(DUMP_PLOT)
/* Dump the current point positions to a plot window file */
static void
dump_image(simplat *s, int pcp) {
double minx, miny, maxx, maxy;
double *x1a = NULL;
double *y1a = NULL;
double *x2a = NULL;
double *y2a = NULL;
double *x3a = NULL;
double *y3a = NULL;
int i, nu;
sptnode *p;
if (s->nvp == 0)
return;
if (pcp) { /* Perceptual range */
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 100.0;
maxy = 100.0;
} else {
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 1.0;
maxy = 1.0;
}
if ((x1a = (double *)malloc(s->nvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed %d",s->nvp);
if ((y1a = (double *)malloc(s->nvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed %d",s->nvp);
if ((x2a = (double *)malloc(s->nvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed %d",s->nvp);
if ((y2a = (double *)malloc(s->nvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed %d",s->nvp);
for (nu = i = 0; i < s->np; i++) {
p = &s->nodes[i];
if (p->vald == 0)
continue;
if (pcp) {
x1a[nu] = p->v[0];
y1a[nu] = p->v[1];
x2a[nu] = p->v[0];
y2a[nu] = p->v[1];
} else {
x1a[nu] = p->p[0];
y1a[nu] = p->p[1];
x2a[nu] = p->p[0];
y2a[nu] = p->p[1];
}
nu++;
}
/* Plot the vectors */
do_plot_vec(minx, maxx, miny, maxy,
x1a, y1a, x2a, y2a, nu, DO_WAIT, x3a, y3a, 0);
free(x1a);
free(y1a);
free(x2a);
free(y2a);
}
/* Dump the final point positions to a plot window file */
static void
dump_image_final(simplat *s, int pcp) {
double minx, miny, maxx, maxy;
double *x1a = NULL;
double *y1a = NULL;
double *x2a = NULL;
double *y2a = NULL;
double *x3a = NULL;
double *y3a = NULL;
int i, nu;
sptnode *p;
if (pcp) { /* Perceptual range */
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 100.0;
maxy = 100.0;
} else {
minx = 0.0; /* Assume */
miny = 0.0;
maxx = 1.0;
maxy = 1.0;
}
if ((x1a = (double *)malloc(s->bnvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed");
if ((y1a = (double *)malloc(s->bnvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed");
if ((x2a = (double *)malloc(s->bnvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed");
if ((y2a = (double *)malloc(s->bnvp * sizeof(double))) == NULL)
error ("simplat: plot malloc failed");
for (nu = i = 0; i < s->bnp; i++) {
p = &s->bnodes[i];
if (p->vald == 0)
continue;
if (pcp) {
x1a[nu] = p->v[0];
y1a[nu] = p->v[1];
x2a[nu] = p->v[0];
y2a[nu] = p->v[1];
} else {
x1a[nu] = p->p[0];
y1a[nu] = p->p[1];
x2a[nu] = p->p[0];
y2a[nu] = p->p[1];
}
nu++;
}
/* Plot the vectors */
do_plot_vec(minx, maxx, miny, maxy,
x1a, y1a, x2a, y2a, nu, DO_WAIT, x3a, y3a, 0);
free(x1a);
free(y1a);
free(x2a);
free(y2a);
}
#endif /* DEBUG */
|