summaryrefslogtreecommitdiff
path: root/xicc/cam02.c
blob: 3684a785f1f6c6833214c9d114a9543d32bf3e7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

/* 
 * cam02
 *
 * Color Appearance Model, based on
 * CIECAM02, "The CIECAM02 Color Appearance Model"
 * by Nathan Moroney, Mark D. Fairchild, Robert W.G. Hunt, Changjun Li,
 * M. Ronnier Luo and Todd Newman, IS&T/SID Tenth Color Imaging
 * Conference, with the addition of the Viewing Flare
 * model described on page 487 of "Digital Color Management",
 * by Edward Giorgianni and Thomas Madden, and the
 * Helmholtz-Kohlraush effect, using the equation from
 * the Bradford-Hunt 96C model as detailed in Mark Fairchild's
 * book "Color Appearance Models". 
 * The Slight modification to the Hunt-Pointer-Estevez matrix
 * recommended by Kuo, Zeis and Lai in IS&T/SID 14th Color Imaging
 * Conference "Robust CIECAM02 Implementation and Numerical
 * Experiment within an ICC Workflow", page 215, together with
 * their matrix formulation of inversion has been adopted.
 *
 * In addition the algorithm has unique extensions to allow
 * it to operate reasonably over an unbounded domain.
 *
 * Author:  Graeme W. Gill
 * Date:    17/1/2004
 * Version: 1.00
 *
 * This file is based on cam97s3.c by Graeme Gill.
 *
 * Copyright 2004 - 2011 Graeme W. Gill
 * Please refer to COPYRIGHT file for details.
 * This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
 * see the License.txt file for licencing details.
 */


/* Note that XYZ values are normalised to 1.0 consistent */
/* with the ICC convention (not 100.0 as assumed by the CIECAM spec.) */
/* Note that all whites are assumed to be normalised (ie. Y = 1.0) */

/*
	TTBD: Should convert to using Timo Kunkel and Erik Reinhard's simplified
	and improved version of CIECAM02 (ie. "CIECAM02-KR").

	The rgbp compression has it's problems in terms of perceptual
	uniformity. A color with one component near zero might shift
	all the components to -ve values on inverse conversion - ie.
	a 1 DE shift in Jab becomes a masive DE in XYZ/Lab/perceptual,
	with (say) a darl red becomong black because the blue
	value is small. One way around this is to re-introduce
	a flag to turn off perfect symetry by disabling
	expansion on the reverse conversion.

 */

/*
	Various additions and changes have been made to allow the CAM
	conversions to and from an unbounded range of XYZ and Jab values,
	in a (somewhat) geometrically consistent maner. This is because
	such values arise in the process of gamut mapping, and in scanning through
	the grid of PCS values needed to fill in the A2B table of an
	ICC profile. Such values have no correlation to a real color
	value, but none the less need to be handled without causing an
	exception, in a geometrically consistent and reversible
	fashion.

	The changes are:

	The Hunt-Pointer-Estevez matrix has been increased in precission by
	1 digit [Kuo, Zeise & Lai, IS&T/SID 14th Color Imaging Conference pp. 215-219]

	The sharpened cone response matrix third row has been changed from
	[0.0030, 0.0136, 0.9834] to [0.0000, 0.0000, 1.0000]
	[Susstrunk & Brill, IS&T/SID 14th Color Imaging Conference Late Breaking News sublement]

	To prevent wild Jab values as the rgb' values approach zero, a region close to each
	primary ground plane is compressed. This expands the region of reasonable
	behaviour to encompass XYZ values that are found in practice (ie. ProPhotoRGB).

	To prevent excessive curvature of hue in high saturation blue regions
	due to the non-linearity exagerating the difference between
	r & b values, a heuristic is introduced that blends the r & b
	values, reducing this effect. This degrades the agreement
	with the reference CIECAM implementation by about 1DE in this region,
	but greatly improves the behaviour in mapping and clipping from
	highly saturated blues (ie. ProPhotoRGB).

	The post-adaptation non-linearity response has had a straight
	line negative linear extension added.
	The positive region has a tangential linear extension added, so
	that the range of values is not limited.
	An adaptive threshold for the low level linear extension,
	to avoid coordinates blowing up when one of the cone responses
	is large, while the others become negative.
		
	Re-arrange ss equation into separated effects,
	k1, k2, k3, and then limit these to avoid divide by zero
	and sign change errors in fwd and bwd converson, as well
	as avoiding the blue saturation doubling back for low
	luminance levels.

	To avoid chroma and hue angle information being lost when the
	J value used to scale the chroma is 0, and to ensure
	that J = 0, a,b != 0 values have a valid mapping into
	XYZ space, the J value used to multiply Chroma, is limited
	to be equivalent to not less than A == 0.1.

	The Helmholtz-Kohlraush effect is crafted to have resonable
	effects over the range of J from 0 to 100, and have more
	moderate effects outside this range. 

*/

#include <copyright.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "icc.h"
#include "xcam.h"
#include "cam02.h"
#include "numlib.h"

#define ENABLE_COMPR		/* [Def] Enable XYZ compression  */
#undef ENABLE_DECOMPR		/* [Undef] Enable XYZ de-compression  */
#define ENABLE_BLUE_ANGLE_FIX	/* [Def] Limit maximum blue angle */
#define ENABLE_DDL			/* [Def] Enable k1,k2,k3 overall ss limit values (seems to be the best scheme) */
#undef ENABLE_SS			/* [Undef] Disable overall ss limit values (not the scheme used) */

#undef ENTRACE				/* [Undef] Enable internal value runtime tracing if s->trace != 0 */
#undef DOTRACE				/* [Undef] Trace anyway (ie. set s->trace = 1) */
#undef DIAG1				/* [Undef] Print internal value diagnostics for conditions setup */
#undef DIAG2				/* [Undef] Print internal value diagnostics for each conversion */
#undef TRACKMINMAX			/* [Undef] Track min/max DD & SS limits (run with locus cam02test) */
#undef DISABLE_MATRIX		/* Debug - disable matrix & non-lin, wire XYZ to rgba */
#undef DISABLE_SCR			/* Debug - disable Sharpened Cone Response matrix */
#undef DISABLE_HPE			/* Debug - disable just Hunt-Pointer_Estevez matrix */
#undef DISABLE_NONLIN		/* Debug - wire rgbp to rgba */
#undef DISABLE_TTD			/* Debug - disable ttd vector 'tilt' */
#undef DISABLE_HHKR			/* Debug - disable Helmholtz-Kohlraush */

#ifdef ENABLE_COMPR
# define BC_WHMINY 0.2		/* [0.2] Compression direction minimum Y value */
# define BC_RANGE_R 0.01	/* [0.02] Set comp. range as prop. of distance to neutral - red */
# define BC_RANGE_G 0.01	/* [0.02] Set comp. range as prop. of distance to neutral - green*/
# define BC_RANGE_B 0.01	/* [0.02] Set comp. range as prop. of distance to neutral - blue */
# define BC_MAXRANGE 0.13	/* [0.13] Maximum compression range */
# define BC_LIMIT 0.7		/* [0.7] Correction limit (abs. rgbp distance shift) */
#endif /* ENABLE_COMPR */

#ifdef ENABLE_BLUE_ANGLE_FIX
# define BLUE_BL_MAX 0.9	/* [0.9] Sets ultimate blue angle, higher = less angle */
# define BLUE_BL_POW 3.5	/* [3.5] Sets rate at which blue angle is limited */
#endif

#define NLDLIMIT 0.00001	/* [0.00001] Non-linearity minimum lower crossover to straight line */
#define NLDICEPT -0.18		/* [-0.18] Input intercept of straight line with 0.1 output */

#define NLULIMIT 1e5		/* Non-linearity upper crossover to straight line */

#ifdef ENABLE_SS			/* [Undef] */
# define SSLLIMIT 0.22		/* Overall ab scale lower limit */
# define SSULIMIT 580.0      /* Overall ab scale upper limit */
#endif /* ENABLE_SS */

#define SYMETRICJ			/* [Undef] Use symetric power about zero, else straigt line -ve */

#define DDLLIMIT 0.55		/* [0.55] ab component -k3:k2 ratio limit (must be < 1.0) */
//#define DDULIMIT 0.9993		/* [0.9993] ab component k3:k1 ratio limit (must be < 1.0) */
#define DDULIMIT 0.34		/* [0.34] ab component k3:k1 ratio limit (must be < 1.0) */
#define SSMINcJ 0.005		/* [0.005] ab scale cJ minimum value */
#define JLIMIT 0.005		/* [0.005] J encoding cutover point straight line (0 - 1.0 range) */
#define HKLIMIT 0.7			/* [0.7] Maximum Helmholtz-Kohlraush lift */

#ifdef TRACKMINMAX
double minss = 1e60;
double maxss = -1e60;
double minlrat = 0.0;
double maxurat = 0.0;
#define noslots 103
double slotsd[noslots];
double slotsu[noslots];
double minj = 1e38, maxj = -1e38;
#endif /* TRACKMINMAX */

#if defined(ENTRACE) || defined(DOTRACE)
#define TRACE(xxxx) if (s->trace) printf xxxx ;
#else
#define TRACE(xxxx) 
#endif

static void cam_free(cam02 *s);
static int set_view(struct _cam02 *s, ViewingCondition Ev, double Wxyz[3],
	                double La, double Yb, double Lv, double Yf, double Yg, double Gxyz[3],
					int hk);
static int XYZ_to_cam(struct _cam02 *s, double *Jab, double *xyz);
static int cam_to_XYZ(struct _cam02 *s, double *xyz, double *Jab);

static double spow(double val, double pp) {
	if (val < 0.0)
		return -pow(-val, pp);
	else
		return pow(val, pp);
}

/* Create a cam02 conversion object, with default viewing conditions */
cam02 *new_cam02(void) {
	cam02 *s;
//	double D50[3] = { 0.9642, 1.0000, 0.8249 };

	if ((s = (cam02 *)calloc(1, sizeof(cam02))) == NULL) {
		fprintf(stderr,"cam02: malloc failed allocating object\n");
		exit(-1);
	}
	
	/* Initialise methods */
	s->del      = cam_free;
	s->set_view = set_view;
	s->XYZ_to_cam = XYZ_to_cam;
	s->cam_to_XYZ = cam_to_XYZ;

	/* Set default range handling limits */
	s->nldlimit = NLDLIMIT;
	s->nldicept = NLDICEPT;
	s->nlulimit = NLULIMIT;
	s->ddllimit = DDLLIMIT;
	s->ddulimit = DDULIMIT;
	s->ssmincj = SSMINcJ;
	s->jlimit = JLIMIT;
	s->hklimit = 1.0 / HKLIMIT;

	/* Set a default viewing condition ?? */
	/* set_view(s, vc_average, D50, 33, 0.2, 0.0, 0.0, D50, 0); */

#ifdef DOTRACE
	s->trace = 1;
#endif

#ifdef TRACKMINMAX
	{
		int i;
		for (i = 0; i < noslots; i++) {
			slotsd[i] = 0.0;
			slotsu[i] = 0.0;
		}
	}
#endif /* TRACKMINMAX */

	return s;
}

static void cam_free(cam02 *s) {

#ifdef TRACKMINMAX
	{
		int i;
		for (i = 0; i < noslots; i++) {
			printf("Slot %d = %f, %f\n",i,slotsd[i], slotsu[i]);
		}
		printf("minj = %f, maxj = %f\n",minj,maxj);
	
		printf("minss = %f\n",minss);
		printf("maxss = %f\n",maxss);
		printf("minlrat = %f\n",minlrat);
		printf("maxurat = %f\n",maxurat);
	}
#endif /* TRACKMINMAX */

	if (s != NULL)
		free(s);
}

/* Return value is always 0 */
static int set_view(
cam02 *s,
ViewingCondition Ev,	/* Enumerated Viewing Condition */
double Wxyz[3],	/* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */
double La,		/* Adapting/Surround Luminance cd/m^2 */
double Yb,		/* Relative Luminance of Background to reference white (range 0.0 .. 1.0) */
double Lv,		/* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */
				/* Ignored if Ev is set to other than vc_none */
double Yf,		/* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */
double Yg,		/* Flare as a fraction of the ambient (Y range 0.0 .. 1.0) */
double Gxyz[3],	/* The Glare white coordinates (typically the Ambient color) */
				/* If <= 0 will Wxyz will be used. */
int hk			/* Flag, NZ to use Helmholtz-Kohlraush effect */
) {
	double tt, t1, t2;
	double tm[3][3];
	int i;

	if (Ev == vc_none) {
		/* Compute the internal parameters from the */
		/* ratio of La to Lv by interpolation */
		int i;
		double r, bf;
		/* Dark, dim, average, above average */
		double t_C[4]  = { 0.525, 0.59, 0.69, 1.0 }; 
		double t_Nc[4] = { 0.800, 0.95, 1.00, 1.0 }; 
		double t_F[4]  = { 0.800, 0.90, 1.00, 1.0 }; 

		if (La < 1e-10) 		/* Hmm. */
			La = 1e-10;
		r = La/Lv;
		if (r < 0.0)
			r = 0.0;
		else if (r > 1.0)
			r = 1.0;
	
		if (r < 0.1) {			/* Dark to Dim */
			i = 0;
			bf = r/0.1;
		} else if (r < 0.2) {	/* Dim to Average */
			i = 1;
			bf = (r - 0.1)/0.1;
		} else {				/* Average to above average */
			i = 2;
			bf = (r - 0.2)/0.8;
		}
		s->C  = t_C[i] * (1.0 - bf)  + t_C[i+1] * bf;
		s->Nc = t_Nc[i] * (1.0 - bf) + t_Nc[i+1] * bf;
		s->F  = t_F[i] * (1.0 - bf)  + t_F[i+1] * bf;
	} else {
		/* Compute the internal parameters by category */
		/* Fake up Lv according to category */
		switch(Ev) {
			case vc_dark:
				s->C = 0.525;
				s->Nc = 0.8;
				s->F = 0.8;
				Lv = La/0.033; 
				break;
			case vc_dim:
				s->C = 0.59;
				s->Nc = 0.95;
				s->F = 0.9;
				Lv = La/0.1; 
				break;
			case vc_average:
			default:
				s->C = 0.69;
				s->Nc = 1.0;
				s->F = 1.0;
				Lv = La/0.2; 
				break;
			case vc_cut_sheet:
				s->C = 0.41;
				s->Nc = 0.8;
				s->F = 0.8;
				Lv = La/0.02; 	// ???
				break;
		}
	}

	/* Transfer parameters to the object */
	s->Ev = Ev;
	s->Wxyz[0] = Wxyz[0];
	s->Wxyz[1] = Wxyz[1];
	s->Wxyz[2] = Wxyz[2];
	s->La = La;
	s->Yb = Yb > 0.005 ? Yb : 0.005;	/* Set minimum to avoid divide by 0.0 */
	s->Lv = Lv;
	s->Yf = Yf;
	s->Yg = Yg;
	if (Gxyz[0] > 0.0 && Gxyz[1] > 0.0 && Gxyz[2] > 0.0) {
		tt = Wxyz[1]/Gxyz[1];		/* Scale to white ref white */
		s->Gxyz[0] = tt * Gxyz[0];
		s->Gxyz[1] = tt * Gxyz[1];
		s->Gxyz[2] = tt * Gxyz[2];
	} else {
		s->Gxyz[0] = Wxyz[0];
		s->Gxyz[1] = Wxyz[1];
		s->Gxyz[2] = Wxyz[2];
	}
	s->hk = hk;

	/* The rgba vectors */
	s->Va[0] = 1.0;
	s->Va[1] = -12.0/11.0;
	s->Va[2] = 1.0/11.0;

	s->Vb[0] = 1.0/9.0;
	s->Vb[1] = 1.0/9.0;
	s->Vb[2] = -2.0/9.0;

	s->VttA[0] = 2.0;
	s->VttA[1] = 1.0;
	s->VttA[2] = 1.0/20.0;

	/* (Not used) */
	s->Vttd[0] = 1.0;
	s->Vttd[1] = 1.0;
	s->Vttd[2] = 21.0/20.0;

	/* Vttd in terms of the VttA, Va and Vb vectors */
	s->dcomp[0] = 1.0;
	s->dcomp[1] = -11.0/23.0;
	s->dcomp[2] = -108.0/23.0;

	/* Compute values that only change with viewing parameters */

	/* Figure out the Flare contribution to the flareless XYZ input */
	s->Fsxyz[0] = s->Yf * s->Wxyz[0];
	s->Fsxyz[1] = s->Yf * s->Wxyz[1];
	s->Fsxyz[2] = s->Yf * s->Wxyz[2];

	/* Add in the Glare contribution from the ambient */
	tt = s->Yg * s->La/s->Lv;
	s->Fsxyz[0] += tt * s->Gxyz[0];
	s->Fsxyz[1] += tt * s->Gxyz[1];
	s->Fsxyz[2] += tt * s->Gxyz[2];

	/* Rescale so that the sum of the flare and the input doesn't exceed white */
	s->Fsc = s->Wxyz[1]/(s->Fsxyz[1] + s->Wxyz[1]);
	s->Fsxyz[0] *= s->Fsc;
	s->Fsxyz[1] *= s->Fsc;
	s->Fsxyz[2] *= s->Fsc;
	s->Fisc = 1.0/s->Fsc;

#ifndef DISABLE_SCR
	/* Sharpened cone response white values */
	s->rgbW[0] =  0.7328 * s->Wxyz[0] + 0.4296 * s->Wxyz[1] - 0.1624 * s->Wxyz[2];
	s->rgbW[1] = -0.7036 * s->Wxyz[0] + 1.6975 * s->Wxyz[1] + 0.0061 * s->Wxyz[2];
	s->rgbW[2] =  0.0000 * s->Wxyz[0] + 0.0000 * s->Wxyz[1] + 1.0000 * s->Wxyz[2];
#else
	s->rgbW[0] = s->Wxyz[0];
	s->rgbW[1] = s->Wxyz[1];
	s->rgbW[2] = s->Wxyz[2];
#endif

	/* Degree of chromatic adaptation */
	s->D = s->F * (1.0 - exp((-s->La - 42.0)/92.0)/3.6);

	/* Precompute Chromatic transform values */
	s->Drgb[0] = s->D * (s->Wxyz[1]/s->rgbW[0]) + 1.0 - s->D;
	s->Drgb[1] = s->D * (s->Wxyz[1]/s->rgbW[1]) + 1.0 - s->D;
	s->Drgb[2] = s->D * (s->Wxyz[1]/s->rgbW[2]) + 1.0 - s->D;

	/* Chromaticaly transformed white value */
	s->rgbcW[0] = s->Drgb[0] * s->rgbW[0];
	s->rgbcW[1] = s->Drgb[1] * s->rgbW[1];
	s->rgbcW[2] = s->Drgb[2] * s->rgbW[2];
	
#ifndef DISABLE_HPE
	/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
	s->rgbpW[0] =  0.7409744840453773 * s->rgbcW[0]
	            +  0.2180245944753982 * s->rgbcW[1]
	            +  0.0410009214792244 * s->rgbcW[2];
	s->rgbpW[1] =  0.2853532916858801 * s->rgbcW[0]
	            +  0.6242015741188157 * s->rgbcW[1]
	            +  0.0904451341953042 * s->rgbcW[2];
	s->rgbpW[2] = -0.0096276087384294 * s->rgbcW[0]
	            -  0.0056980312161134 * s->rgbcW[1]
	            +  1.0153256399545427 * s->rgbcW[2];
#else
	s->rgbpW[0] = s->rgbcW[0];
	s->rgbpW[1] = s->rgbcW[1];
	s->rgbpW[2] = s->rgbcW[2];
#endif /* DISABLE_HPE */

#ifndef DISABLE_SCR
	/* Create combined cone and chromatic transform matrix: */
	/* Spectrally sharpened cone responses matrix */
	s->cc[0][0] =  0.7328; s->cc[0][1] = 0.4296; s->cc[0][2] = -0.1624;
	s->cc[1][0] = -0.7036; s->cc[1][1] = 1.6975; s->cc[1][2] =  0.0061;
	s->cc[2][0] =  0.0000; s->cc[2][1] = 0.0000; s->cc[2][2] =  1.0000;
#else
	s->cc[0][0] = 1.0; s->cc[0][1] = 0.0; s->cc[0][2] = 0.0;
	s->cc[1][0] = 0.0; s->cc[1][1] = 1.0; s->cc[1][2] = 0.0;
	s->cc[2][0] = 0.0; s->cc[2][1] = 0.0; s->cc[2][2] = 1.0;
#endif
	
	/* Chromaticaly transformed sample value */
	icmSetUnity3x3(tm);
	tm[0][0] = s->Drgb[0];
	tm[1][1] = s->Drgb[1];
	tm[2][2] = s->Drgb[2];
	icmMul3x3(s->cc, tm);
	
#ifndef DISABLE_HPE
	/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
	tm[0][0] =  0.7409744840453773;
	tm[0][1] =  0.2180245944753982;
	tm[0][2] =  0.0410009214792244;
	tm[1][0] =  0.2853532916858801;
	tm[1][1] =  0.6242015741188157;
	tm[1][2] =  0.0904451341953042;
	tm[2][0] = -0.0096276087384294;
	tm[2][1] = -0.0056980312161134;
	tm[2][2] =  1.0153256399545427;
	icmMul3x3(s->cc, tm);
#endif /* DISABLE_HPE */

	/* Create inverse combined cone and chromatic transform matrix: */
	icmInverse3x3(s->icc, s->cc);		/* Hmm. we assume it cannot fail */

#ifdef ENABLE_COMPR
	/* Compression ranges */
	s->crange[0] = BC_RANGE_R; 
	s->crange[1] = BC_RANGE_G; 
	s->crange[2] = BC_RANGE_B; 
#endif /* ENABLE_COMPR */

	/* Background induction factor */
	s->n = s->Yb/ s->Wxyz[1];
	s->nn = pow(1.64 - pow(0.29, s->n), 0.73);	/* Pre computed value */

	/* Lightness contrast factor ?? */
	{
		double k;

		k = 1.0 / (5.0 * s->La + 1.0);
		s->Fl = 0.2 * pow(k , 4.0) * 5.0 * s->La
		      + 0.1 * pow(1.0 - pow(k , 4.0) , 2.0) * pow(5.0 * s->La , 1.0/3.0);
	}

	/* Background and Chromatic brightness induction factors */
	s->Nbb   = 0.725 * pow(1.0/s->n, 0.2);
	s->Ncb   = s->Nbb;

	/* Base exponential nonlinearity */
	s->z = 1.48 + pow(s->n , 0.5);

	/* Post-adapted cone response of white */
	tt = pow(s->Fl * s->rgbpW[0], 0.42);
	s->rgbaW[0] = 400.0 * tt / (tt + 27.13) + 0.1;
	tt = pow(s->Fl * s->rgbpW[1], 0.42);
	s->rgbaW[1] = 400.0 * tt / (tt + 27.13) + 0.1;
	tt = pow(s->Fl * s->rgbpW[2], 0.42);
	s->rgbaW[2] = 400.0 * tt / (tt + 27.13) + 0.1;

	/* Achromatic response of white */
	s->Aw = (s->VttA[0] * s->rgbaW[0]
	      +  s->VttA[1] * s->rgbaW[1]
	      +  s->VttA[2] * s->rgbaW[2] - 0.305) * s->Nbb;

	/* Non-linearity lower crossover output value */
	tt = pow(s->Fl * s->nldlimit, 0.42);
	s->nldxval = 400.0 * tt / (tt + 27.13) + 0.1;

	/* Non-linearity lower crossover slope from lower crossover */
	/* to intercept with 0.1 output */
	s->nldxslope = (s->nldxval - 0.1)/(s->nldlimit - s->nldicept);

	/* Non-linearity upper crossover value */
	tt = pow(s->Fl * s->nlulimit, 0.42);
	s->nluxval = 400.0 * tt / (tt + 27.13) + 0.1;

	/* Non-linearity upper crossover slope, set to asymtope */
	t1 = s->Fl * s->nlulimit;
	t2 = pow(t1, 0.42) + 27.13;
	s->nluxslope = 0.42 * s->Fl * 400.0 * 27.13 / (pow(t1,0.58) * t2 * t2);


	/* Limited A value at J = JLIMIT */
	s->lA = pow(s->jlimit, 1.0/(s->C * s->z)) * s->Aw;

#ifdef DIAG1
	printf("Scene parameters:\n");
	printf("Viewing condition Ev = %d\n",s->Ev);
	printf("Ref white Wxyz = %f %f %f\n", s->Wxyz[0], s->Wxyz[1], s->Wxyz[2]);
	printf("Relative liminance of background Yb = %f\n", s->Yb);
	printf("Adapting liminance La = %f\n", s->La);
	printf("Flare Yf = %f\n", s->Yf);
	printf("Glare Yg = %f\n", s->Yg);
	printf("Glare color Gxyz = %f %f %f\n", s->Gxyz[0], s->Gxyz[1], s->Gxyz[2]);

	printf("Internal parameters:\n");
	printf("Surround Impact C = %f\n", s->C);
	printf("Chromatic Induction Nc = %f\n", s->Nc);
	printf("Adaptation Degree F = %f\n", s->F);

	printf("Pre-computed values\n");
	printf("Sharpened cone white rgbW = %f %f %f\n", s->rgbW[0], s->rgbW[1], s->rgbW[2]);
	printf("Degree of chromatic adaptation D = %f\n", s->D);
	printf("Chromatic transform values Drgb = %f %f %f\n", s->Drgb[0], s->Drgb[1], s->Drgb[2]);
	printf("Chromatically transformed white rgbcW = %f %f %f\n", s->rgbcW[0], s->rgbcW[1], s->rgbcW[2]);
	printf("Hunter-P-E cone response white rgbpW = %f %f %f\n", s->rgbpW[0], s->rgbpW[1], s->rgbpW[2]);
	printf("Background induction factor n = %f\n", s->n);
	printf("                            nn = %f\n", s->nn);
	printf("Lightness contrast factor Fl = %f\n", s->Fl);
	printf("Background brightness induction factor Nbb = %f\n", s->Nbb);
	printf("Chromatic brightness induction factor Ncb = %f\n", s->Ncb);
	printf("Base exponential nonlinearity z = %f\n", s->z);
	printf("Post adapted cone response white rgbaW = %f %f %f\n", s->rgbaW[0], s->rgbaW[1], s->rgbaW[2]);
	printf("Achromatic response of white Aw = %f\n", s->Aw);
	printf("\n");
#endif
	return 0;
}

/* Conversions. Return values are always 0 */
static int XYZ_to_cam(
struct _cam02 *s,
double Jab[3],
double XYZ[3]
) {
	int i;
	double xyz[3], rgbp[3], rgba[3];
	double a, b, ja, jb, J, JJ, C, h, e, A, ss;
	double ttA, rS, cJ, tt;
	double k1, k2, k3;
	int clip = 0;

#ifdef DIAG2		/* Incase in == out */
	double XYZi[3];

	XYZi[0] = XYZ[0];
	XYZi[1] = XYZ[1];
	XYZi[2] = XYZ[2];
#endif

	TRACE(("\nCIECAM02 Forward conversion:\n"))
	TRACE(("XYZ = %f %f %f\n",XYZ[0], XYZ[1], XYZ[2]))

#ifdef DISABLE_MATRIX

	rgba[0] = XYZ[0];
	rgba[1] = XYZ[1];
	rgba[2] = XYZ[2];

#else /* !DISABLE_MATRIX */

	/* Add in flare */
	xyz[0] = s->Fsc * XYZ[0] + s->Fsxyz[0];
	xyz[1] = s->Fsc * XYZ[1] + s->Fsxyz[1];
	xyz[2] = s->Fsc * XYZ[2] + s->Fsxyz[2];

	TRACE(("XYZ inc flare = %f %f %f\n",xyz[0], xyz[1], xyz[2]))

	/* Spectrally sharpened cone responses, */
	/* Chromaticaly transformed sample value, */
	/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space. */
	icmMulBy3x3(rgbp, s->cc, xyz);

	TRACE(("rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]))

#ifdef ENABLE_COMPR
	/* Try and prevent crazy out of cam02 gamut behaviour, by compressing */
	/* the rgbp so as to prevent it becoming less than zero. */
	{
		double tt;			/* Temporary */
		double wrgb[3];		/* White target */

		/* Make white target white point with same Y value */
		tt = xyz[1] > BC_WHMINY ? xyz[1] : BC_WHMINY;	/* Limit to minimum Y */
		icmScale3(wrgb, s->rgbpW, tt/s->Wxyz[1]);	/* White target at same Y */
		TRACE(("wrgb %f %f %f\n", wrgb[0], wrgb[1], wrgb[2]))

		/* Compress r,g,b in turn */
		for (i = 0; i < 3; i++) {
			double cv;		/* Compression value */
			double ctv;		/* Compression target value */
			double cd;		/* Compression displacement needed */
			double cvec[3];	/* Normalized correction vector */
			double isec[3];	/* Intersection with plane */
			double offs;	/* Offset of point from orgin*/
			double range;	/* Threshold to start compression */
			double asym;	/* Compression asymtope */

			/* Compute compression direction as vector towards white */
			/* (We did try correcting in a blend of limit plane normal and white, */
			/*  but compressing towards white seems to be the best.) */
			icmSub3(cvec, wrgb, rgbp);					/* Direction of white target */

			TRACE(("ch %d, rgbp %f %f %f\n", i, rgbp[0], rgbp[1], rgbp[2]))
			TRACE(("cvec %f %f %f\n", cvec[0], cvec[1], cvec[2]))

			if (cvec[i] < 1e-9) {		/* compression direction can't correct this coord */
				TRACE(("Intersection with limit plane failed\n"))
				continue;
			}

			/* Scale compression vector to make it move a unit in normal direction */
			icmScale3(cvec, cvec, 1.0/cvec[i]);		/* Normalized vector to white */
			TRACE(("ncvec %f %f %f\n", cvec[0], cvec[1], cvec[2]))

			/* Compute intersection of correction direction with this limit plane */
			/* (This corresponds with finding displacement of rgbp by cvec */
			/*  such that the current coord value = 0) */
			icmScale3(isec, cvec, -rgbp[i]);		/* (since cvec[i] == 1.0) */
			icmAdd3(isec, isec, rgbp);
			TRACE(("isec %f %f %f\n", isec[0], isec[1], isec[2]))

			/* Compute distance from intersection to origin */
			offs = pow(icmNorm3(isec), 0.85);

			range = s->crange[i] * offs;	/* Scale range by distance to origin */
			if (range > BC_MAXRANGE)		/* so that it tapers down as we approach it */
				range = BC_MAXRANGE;		/* and limit maximum */

			/* Aiming above plane when far from origin, */
			/* but below plane at the origin, so that black isn't affected. */
			asym = range - 0.2 * (range + (0.01 * s->crange[i]));

			ctv = cv = rgbp[i];		/* Distance above/below limit plane */

			TRACE(("ch %d, offs %f, range %f asym %f, cv %f\n",i, offs,range,asym,cv))
			if (cv < (range - 1e-12)) {		/* Need to compress */
				double aa, bb;
				aa = 1.0/(range - cv);
				bb = 1.0/(range - asym);
				ctv = range - 1.0/(aa + bb);

				cd = ctv - cv;				/* Displacement needed */
				if (cd > BC_LIMIT)
					cd = BC_LIMIT;
				TRACE(("ch %d cd = %f, scaled cd %f\n",i,cd,cd))

				/* Apply correction */
				icmScale3(cvec, cvec, cd);			/* Compression vector */
				icmAdd3(rgbp, rgbp, cvec);			/* Compress by displacement */
				TRACE(("rgbp after comp. = %f %f %f\n",rgbp[0], rgbp[1], rgbp[2]))
			}
		}
	}
#endif /* ENABLE_COMPR */

#ifdef ENABLE_BLUE_ANGLE_FIX
	ss = rgbp[0] + rgbp[1] + rgbp[2];
	if (ss < 1e-9) {
		ss = 0.0;
	} else {
		ss = (rgbp[2]/ss - 1.0/3.0) * 3.0/2.0;
		if (ss > 0.0)
			ss = BLUE_BL_MAX * pow(ss, BLUE_BL_POW);
	}
	if (ss < 0.0)
		ss = 0.0;
	else if (ss > 1.0)
		ss = 1.0;
	tt = 0.5 * (rgbp[0] + rgbp[1]);
	rgbp[0] = ss * tt + (1.0 - ss) * rgbp[0];
	rgbp[1] = ss * tt + (1.0 - ss) * rgbp[1];
	TRACE(("rgbp after blue fix ss = %f, rgbp = %f %f %f\n",ss,rgbp[0], rgbp[1], rgbp[2]))
#endif

#ifdef DISABLE_NONLIN
	for (i = 0; i < 3; i++) {
		rgba[i] = 400.0/27.13 * rgbp[i];
	}
#else	/* !DISABLE_NONLIN */
	/* Post-adapted cone response of sample. */
	/* rgba[] has a minimum value of 0.1 for XYZ[] = 0 and no flare. */
	/* We add a negative linear region, plus a linear segment at */
	/* the end of the +ve conversion to allow numerical handling of a */
	/* very wide range of values. */

	for (i = 0; i < 3; i++) {
		if (rgbp[i] < s->nldlimit) {
			rgba[i] = s->nldxval + s->nldxslope * (rgbp[i] - s->nldlimit);
		} else {
			if (rgbp[i] <= s->nlulimit) {
				tt = pow(s->Fl * rgbp[i], 0.42);
				rgba[i] = 400.0 * tt / (tt + 27.13) + 0.1;
			} else {
				rgba[i] = s->nluxval + s->nluxslope * (rgbp[i] - s->nlulimit);
			}
		}
	}
#endif	/* !DISABLE_NONLIN */

//tt = 0.5 * (rgba[0] + rgba[1]);
//rgba[0] = (rgba[0] - ss * tt)/(1.0 - ss);
//rgba[1] = (rgba[1] - ss * tt)/(1.0 - ss);

#endif /* !DISABLE_MATRIX */

	/* Note that the minimum values of rgba[] for XYZ = 0 is 0.1, */
	/* hence magic 0.305 below comes from the following weighting of rgba[], */
	/* to base A at 0.0 */
	/* Deal with the core rgb to A, S & h conversion: */

	TRACE(("rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]))

	/* Preliminary Acromatic response */
	ttA = s->VttA[0] * rgba[0] + s->VttA[1] * rgba[1] + s->VttA[2] * rgba[2];

	/* Achromatic response */
	A = (ttA - 0.305) * s->Nbb;

	/* Preliminary red-green & yellow-blue opponent dimensions */
	/* a, b & ttd form an (almost) orthogonal coordinate set. */
	/* ttA is in a different direction */
	a = s->Va[0] * rgba[0] + s->Va[1] * rgba[1] + s->Va[2] * rgba[2];
	b = s->Vb[0] * rgba[0] + s->Vb[1] * rgba[1] + s->Vb[2] * rgba[2];

	/* restricted Saturation to stop divide by zero */
	/* (The exact value isn't important because the numerator dominates as a,b aproach 0 */
	rS = sqrt(a * a + b * b);
	if (rS < DBL_EPSILON)
		rS = DBL_EPSILON;
	TRACE(("ttA = %f, a = %f, b = %f, rS = %f, A = %f\n", ttA,a,b,rS,A))

	/* Lightness J, Derived directly from Acromatic response. */
	/* Cuttover to a straight line segment when J < 0.005, */
#ifndef SYMETRICJ		/* Cut to a straight line */
	if (A >= s->lA) {
		J = pow(A/s->Aw, s->C * s->z);		/* J/100  - keep Sign */
	} else {
		J = s->jlimit/s->lA * A;			/* Straight line */
		TRACE(("limited Acromatic to straight line\n"))
	}
#else			/* Symetric */
	if (A >= 0.0) {
		J = pow(A/s->Aw, s->C * s->z);		/* J/100  - keep Sign */
	} else {
		J = -pow(-A/s->Aw, s->C * s->z);		/* J/100  - keep Sign */
		TRACE(("symetric Acromatic\n"))
	}
#endif

	/* Constraied (+ve, non-zero) J */
	if (A > 0.0) {
		cJ = pow(A/s->Aw, s->C * s->z);
		if (cJ < s->ssmincj)
			cJ = s->ssmincj;
	} else {
		cJ = s->ssmincj;
	}

	TRACE(("J = %f, cJ = %f\n",J,cJ))

	/* Final hue angle */
	h = (180.0/DBL_PI) * atan2(b,a);
	h = (h < 0.0) ? h + 360.0 : h;

	/* Eccentricity factor */
	e = (12500.0/13.0 * s->Nc * s->Ncb * (cos(h * DBL_PI/180.0 + 2.0) + 3.8));

	/* ab scale components */
	k1 = pow(s->nn, 1.0/0.9) * e * pow(cJ, 1.0/1.8)/pow(rS, 1.0/9.0);
	k2 = pow(cJ, 1.0/(s->C * s->z)) * s->Aw/s->Nbb + 0.305;
	k3 = s->dcomp[1] * a + s->dcomp[2] * b;

	TRACE(("Raw k1 = %f, k2 = %f, k3 = %f, raw ss = %f\n",k1, k2, k3, pow(k1/(k2 + k3), 0.9)))

#ifdef TRACKMINMAX
	{
		int sno;
		double lrat, urat;

		ss = pow(k1/(k2 + k3), 0.9);

		if (ss < minss)
			minss = ss;
		if (ss > maxss)
			maxss = ss;

		lrat = -k3/k2;
		urat =  k3 * pow(ss, 10.0/9.0) / k1; 
		if (lrat > minlrat)
			minlrat = lrat;
		if (urat > maxurat)
			maxurat = urat;

		/* Record distribution of ss min/max vs. J for */
		/* regions outside a,b == 0 */

		sno = (int)(J * 100.0 + 0.5);
		if (sno < 0) {
			sno = 101;
			if (J < minj)
				minj = J;
		} else if (sno > 100) {
			sno = 102;
			if (J > maxj)
				maxj = J;
		}
		if (slotsd[sno] < lrat)
			slotsd[sno] = lrat;
		if (slotsu[sno] < urat)
			slotsu[sno] = urat;
	}
#endif /* TRACKMINMAX */

#ifdef ENABLE_DDL	

	/* Limit ratio of k3 to k2 to stop zero or -ve ss */
	if (k3 < -k2 * s->ddllimit) {
		k3 = -k2 * s->ddllimit;
		TRACE(("k3 limited to %f due to k3:k2 ratio, ss = %f\n",k3,pow(k1/(k2 + k3), 0.9)))
		clip = 1;
	}

	/* See if there is going to be a problem in bwd, and limit k3 if there is */
	if (k3 > (k2 * s->ddulimit/(1.0 - s->ddulimit))) {
		k3 = (k2 * s->ddulimit/(1.0 - s->ddulimit));
		TRACE(("k3 limited to %f to allow for bk3:bk1 bwd limit\n",k3))
		clip = 1;
	}

#endif /* !ENABLE_DDL */	

#ifdef DISABLE_TTD 

	ss = pow((k1/k2), 0.9);

#else	/* !TRACKMINMAX */

	/* Compute the ab scale factor */
	ss = pow(k1/(k2 + k3), 0.9);

#endif	/* !ENABLE_DDL */

#ifdef ENABLE_SS
	if (ss < SSLLIMIT)
		ss = SSLLIMIT;
	else if (ss > SSULIMIT)
		ss = SSULIMIT;
#endif /* ENABLE_SS */

#ifdef NEVER
// -------------------------------------------
	/* Show ss components */
	if (s->retss) {
		Jab[0] = 1.0;
		if (clip)
			Jab[0] = 0.0;
		Jab[1] = (log10(ss) - +1.5)/(2.0 - +1.5);
		Jab[2] = (log10(ss) - +1.0)/(2.5 - +1.0);

		for (i = 0; i < 3; i++) {
			if (Jab[i] < 0.0)
				Jab[i] = 0.0;
			else if (Jab[i] > 1.0)
				Jab[i] = 1.0;
		}
		return 0;
	}
// -------------------------------------------
#endif /* NEVER */

	ja = a * ss;
	jb = b * ss;

	/* Chroma - always +ve, used just for HHKR */
	C = sqrt(ja * ja + jb * jb);
	
	TRACE(("ss = %f, A = %f, J = %f, C = %f, h = %f\n",ss,A,J,C,h))

	JJ = J;
#ifndef DISABLE_HHKR
 	/* Helmholtz-Kohlraush effect */
	if (s->hk && J < 1.0) {
		double kk = C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0);
		if (kk > 1e-6) 	/* Limit kk to a reasonable range */
			kk = 1.0/(s->hklimit + 1.0/kk);
		JJ = J + (1.0 - (J > 0.0 ? J : 0.0)) * kk;
		TRACE(("JJ = %f from J = %f, kk = %f\n",JJ,J,kk))
	}
#endif /* DISABLE_HHKR */

	JJ *= 100.0;	/* Scale J */

	/* Compute Jab value */
	Jab[0] = JJ;
	Jab[1] = ja;
	Jab[2] = jb;

#ifdef NEVER	/* Brightness/Colorfulness */
	{
		double M, Q;

		Q = (4.0/s->C) * sqrt(JJ/100.0) * (s->Aw + 4.0) * pow(s->Fl, 0.25);
		M = C * pow(s->Fl, 0.25);

		printf("Lightness = %f, Chroma = %f\n",J,C);
		printf("Brightness = %f, Colorfulness = %f\n",M,Q);
	}
#endif /* NEVER */

	TRACE(("Jab %f %f %f\n",Jab[0], Jab[1], Jab[2]))
	TRACE(("\n"))

#ifdef DIAG2
	printf("Processing XYZ->Jab:\n");
	printf("XYZ = %f %f %f\n", XYZi[0], XYZi[1], XYZi[2]);
	printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
	printf("Huntpace rgbpP-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
	printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
	printf("Prelim red green a = %f, b = %f\n", a, b);
	printf("Hue angle h = %f\n", h);
	printf("Eccentricity factor e = %f\n", e);
	printf("Achromatic response A = %f\n", A);
	printf("Lightness J = %f, H.K. Lightness = %f\n", J * 100, JJ);
	printf("Prelim Saturation ss = %f\n", ss);
	printf("Chroma C = %f\n", C);
	printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]);
	printf("\n");
#endif
	return 0;
}

static int cam_to_XYZ(
struct _cam02 *s,
double XYZ[3],
double Jab[3]
) {
	int i;
	double xyz[3], rgbp[3], rgba[3];
	double a, b, ja, jb, J, JJ, C, rC, h, e, A, ss;
	double tt, cJ, ttA;
	double k1, k2, k3;		/* (k1 & k3 are different to the fwd k1 & k3) */

#ifdef DIAG2		/* Incase in == out */
	double Jabi[3];

	Jabi[0] = Jab[0];
	Jabi[1] = Jab[1];
	Jabi[2] = Jab[2];

#endif

	TRACE(("\nCIECAM02 Reverse conversion:\n"))
	TRACE(("Jab %f %f %f\n",Jab[0], Jab[1], Jab[2]))

	JJ = Jab[0] * 0.01;	/* J/100 */
	ja = Jab[1];
	jb = Jab[2];

	/* Convert Jab to core A, S & h values: */

	/* Compute hue angle */
	h = (180.0/DBL_PI) * atan2(jb, ja);
	h = (h < 0.0) ? h + 360.0 : h;
	
	/* Compute chroma value */
	C = sqrt(ja * ja + jb * jb);	/* Must be Always +ve, Can be NZ even if J == 0 */

	/* Preliminary Restricted chroma, always +ve and NZ */
	/* (The exact value isn't important because the numerator dominates as a,b aproach 0) */
	rC = C;
	if (rC < DBL_EPSILON)
		rC = DBL_EPSILON;

	J = JJ;
#ifndef DISABLE_HHKR
 	/* Undo Helmholtz-Kohlraush effect */
	if (s->hk && J < 1.0) {
		double kk = C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0);
		if (kk > 1e-6) 	/* Limit kk to a reasonable range */
			kk = 1.0/(s->hklimit + 1.0/kk);
		J = (JJ - kk)/(1.0 - kk);
		if (J < 0.0)
			J = JJ - kk;
		TRACE(("J = %f from JJ = %f, kk = %f\n",J,JJ,kk))
	}
#endif /* DISABLE_HHKR */

	/* Achromatic response */
#ifndef SYMETRICJ		/* Cut to a straight line */
	if (J >= s->jlimit) {
		A = pow(J, 1.0/(s->C * s->z)) * s->Aw;
	} else {	/* In the straight line segment */
		A = s->lA/s->jlimit * J;
		TRACE(("Undo Acromatic straight line\n"))
	}
#else			/* Symetric */
	if (J >= 0.0) {
		A = pow(J, 1.0/(s->C * s->z)) * s->Aw;
	} else {	/* In the straight line segment */
		A = -pow(-J, 1.0/(s->C * s->z)) * s->Aw;
		TRACE(("Undo symetric Acromatic\n"))
	}
#endif

	/* Preliminary Acromatic response +ve */ 
	ttA = (A/s->Nbb)+0.305;

	if (A > 0.0) {
		cJ = pow(A/s->Aw, s->C * s->z);
		if (cJ < s->ssmincj)
			cJ = s->ssmincj;
	} else {
		cJ = s->ssmincj;
	}
	TRACE(("C = %f, A = %f from J = %f, cJ = %f\n",C, A,J,cJ))

	/* Eccentricity factor */
	e = (12500.0/13.0 * s->Nc * s->Ncb * (cos(h * DBL_PI/180.0 + 2.0) + 3.8));

	/* ab scale components */
	k1 = pow(s->nn, 1.0/0.9) * e * pow(cJ, 1.0/1.8)/pow(rC, 1.0/9.0);
	k2 = pow(cJ, 1.0/(s->C * s->z)) * s->Aw/s->Nbb + 0.305;
	k3 = s->dcomp[1] * ja + s->dcomp[2] * jb;

	TRACE(("Raw k1 = %f, k2 = %f, k3 = %f, raw ss = %f\n",k1, k2, k3, (k1 - k3)/k2))

#ifdef ENABLE_DDL 

	/* Limit ratio of k3 to k1 to stop zero or -ve ss */
	if (k3 > (k1 * s->ddulimit)) {
		k3 = k1 * s->ddulimit;
		TRACE(("k3 limited to %f due to k3:k1 ratio, ss = %f\n",k3,(k1 - k3)/k2))
	}

	/* See if there is going to be a problem in fwd */
	if (k3 < -k1 * s->ddllimit/(1.0 - s->ddllimit)) {
		/* Adjust ss to allow for fwd limitd computation */
		k3 = -k1 * s->ddllimit/(1.0 - s->ddllimit);
		TRACE(("k3 set to %f to allow for fk3:fk2 fwd limit\n",k3))
	}

#endif /* ENABLE_DDL */	

#ifdef DISABLE_TTD 

	ss = k1/k2;

#else /* !DISABLE_TTD */

	/* Compute the ab scale factor */
	ss = (k1 - k3)/k2;

#endif /* !DISABLE_TTD */

#ifdef ENABLE_SS
	if (ss < SSLLIMIT)
		ss = SSLLIMIT;
	else if (ss > SSULIMIT)
		ss = SSULIMIT;
#endif /* ENABLE_SS */

	/* Unscale a and b */
	a = ja / ss;
	b = jb / ss;

	TRACE(("ss = %f, ttA = %f, a = %f, b = %f\n",ss,ttA,a,b))

	/* Solve for post-adapted cone response of sample */
	/* using inverse matrix on ttA, a, b */
	rgba[0] = (20.0/61.0) * ttA
	        + ((41.0 * 11.0)/(61.0 * 23.0)) * a
	        + ((288.0 * 1.0)/(61.0 * 23.0)) * b;
	rgba[1] = (20.0/61.0) * ttA
	        - ((81.0 * 11.0)/(61.0 * 23.0)) * a
	        - ((261.0 * 1.0)/(61.0 * 23.0)) * b;
	rgba[2] = (20.0/61.0) * ttA
	        - ((20.0 * 11.0)/(61.0 * 23.0)) * a
	        - ((20.0 * 315.0)/(61.0 * 23.0)) * b;

	TRACE(("rgba %f %f %f\n",rgba[0], rgba[1], rgba[2]))
	
#ifdef DISABLE_MATRIX

	XYZ[0] = rgba[0];
	XYZ[1] = rgba[1];
	XYZ[2] = rgba[2];

#else /* !DISABLE_MATRIX */

#ifdef DISABLE_NONLIN
	rgbp[0] = 27.13/400.0 * rgba[0];
	rgbp[1] = 27.13/400.0 * rgba[1];
	rgbp[2] = 27.13/400.0 * rgba[2];
#else	/* !DISABLE_NONLIN */

	/* Hunt-Pointer_Estevez cone space */
	/* (with linear segment at the +ve end) */
	for (i = 0; i < 3; i++) {
		if (rgba[i] < s->nldxval) {
			rgbp[i] = s->nldlimit + (rgba[i] - s->nldxval)/s->nldxslope;
		} else if (rgba[i] <= s->nluxval) {
			tt = rgba[i] - 0.1;
			rgbp[i] = pow((27.13 * tt)/(400.0 - tt), 1.0/0.42)/s->Fl;
//			rgbp[i] = pow((27.13 * tt)/(400.0 - tt), 1.0/1.0)/s->Fl;
		} else {
			rgbp[i] = s->nlulimit + (rgba[i] - s->nluxval)/s->nluxslope;
		}
	}
#endif /* !DISABLE_NONLIN */

	TRACE(("rgbp %f %f %f\n",rgbp[0], rgbp[1], rgbp[2]))

#ifdef ENABLE_BLUE_ANGLE_FIX
	ss = rgbp[0] + rgbp[1] + rgbp[2];
	if (ss < 1e-9)
		ss = 0.0;
	else {
		ss = (rgbp[2]/ss - 1.0/3.0) * 3.0/2.0;
		if (ss > 0.0)
			ss = BLUE_BL_MAX * pow(ss, BLUE_BL_POW);
	}
	if (ss < 0.0)
		ss = 0.0;
	else if (ss > 1.0)
		ss = 1.0;
	tt = 0.5 * (rgbp[0] + rgbp[1]);
	rgbp[0] = (rgbp[0] - ss * tt)/(1.0 - ss);
	rgbp[1] = (rgbp[1] - ss * tt)/(1.0 - ss);

	TRACE(("rgbp after blue fix %f = %f %f %f\n",ss,rgbp[0], rgbp[1], rgbp[2]))
#endif


#ifdef ENABLE_DECOMPR
	/* Undo soft limiting */
	{
		double tt;			/* Temporary */
		double wrgb[3];		/* White target */

		/* Make white target white point with same Y value */
		tt = rgbp[0] * s->icc[1][0] + rgbp[1] * s->icc[1][1] + rgbp[2] * s->icc[1][2];
		tt = tt > BC_WHMINY ? tt : BC_WHMINY;	/* Limit to minimum Y */
		icmScale3(wrgb, s->rgbpW, tt/s->Wxyz[1]);	/* White target at same Y */
		TRACE(("wrgb %f %f %f\n", wrgb[0], wrgb[1], wrgb[2]))

		/* Un-limit b,g,r in turn */
		for (i = 2; i >= 0; i--) {
			double cv;		/* Compression value */
			double ctv;		/* Compression target value */
			double cd;		/* Compression displacement needed */
			double cvec[3];	/* Normalized correction vector */
			double isec[3];	/* Intersection with plane */
			double offs;	/* Offset of point from orgin*/
			double range;	/* Threshold to start compression */
			double asym;	/* Compression asymtope */

			/* Compute compression direction as vector towards white */
			/* (We did try correcting in a blend of limit plane normal and white, */
			/*  but compressing towards white seems to be the best.) */
			icmSub3(cvec, wrgb, rgbp);					/* Direction of white target */

			TRACE(("ch %d, rgbp %f %f %f\n", i, rgbp[0], rgbp[1], rgbp[2]))
			TRACE(("cvec %f %f %f\n", cvec[0], cvec[1], cvec[2]))

			if (cvec[i] < 1e-9) {		/* compression direction can't correct this coord */
				TRACE(("Intersection with limit plane failed\n"))
				continue;
			}

			/* Scale compression vector to make it move a unit in normal direction */
			icmScale3(cvec, cvec, 1.0/cvec[i]);		/* Normalized vector to white */
			TRACE(("cvec %f %f %f\n", cvec[0], cvec[1], cvec[2]))

			/* Compute intersection of correction direction with this limit plane */
			/* (This corresponds with finding displacement of rgbp by cvec */
			/*  such that the current coord value = 0) */
			icmScale3(isec, cvec, -rgbp[i]);		/* (since cvec[i] == 1.0) */
			icmAdd3(isec, isec, rgbp);
			TRACE(("isec %f %f %f\n", isec[0], isec[1], isec[2]))

			/* Compute distance from intersection to origin */
			offs = pow(icmNorm3(isec), 0.85);

			range = s->crange[i] * offs;	/* Scale range by distance to origin */
			if (range > BC_MAXRANGE)		/* so that it tapers down as we approach it */
				range = BC_MAXRANGE;		/* and limit maximum */

			/* Aiming above plane when far from origin, */
			/* but below plane at the origin, so that black isn't affected. */
			asym = range - 0.2 * (range + (0.01 * s->crange[i]));

			ctv = cv = rgbp[i];		/* Distance above/below limit plane */

			TRACE(("ch %d, offs %f, range %f asym %f, cv %f\n",i, offs,range,asym,cv))

			if (ctv < (range - 1e-12)) {		/* Need to expand */

				if (ctv <= asym) {
					cd = BC_LIMIT;
					TRACE(("ctv %f < asym %f\n",ctv,asym))
				} else {
					double aa, bb;
					aa = 1.0/(range - ctv);
					bb = 1.0/(range - asym);
					if (aa > (bb + 1e-12))
						cv = range - 1.0/(aa - bb);
					cd = ctv - cv;				/* Displacement needed */
				}
				if (cd > BC_LIMIT)
					cd = BC_LIMIT;
				TRACE(("ch %d cd = %f, scaled cd %f\n",i,cd,cd))

				if (cd > 1e-9) {
					icmScale3(cvec, cvec, -cd);			/* Compression vector */
					icmAdd3(rgbp, rgbp, cvec);			/* Compress by displacement */
					TRACE(("rgbp after decomp. = %f %f %f\n",rgbp[0], rgbp[1], rgbp[2]))
				}
			}
		}
	}
#endif /* ENABLE_COMPR */

	/* Chromaticaly transformed sample value */
	/* Spectrally sharpened cone responses */
	/* XYZ values */
	icmMulBy3x3(xyz, s->icc, rgbp);

	TRACE(("XYZ = %f %f %f\n",xyz[0], xyz[1], xyz[2]))

	/* Subtract flare */
	XYZ[0] = s->Fisc * (xyz[0] - s->Fsxyz[0]);
	XYZ[1] = s->Fisc * (xyz[1] - s->Fsxyz[1]);
	XYZ[2] = s->Fisc * (xyz[2] - s->Fsxyz[2]);

#endif /* !DISABLE_MATRIX */

	TRACE(("XYZ after flare = %f %f %f\n",XYZ[0], XYZ[1], XYZ[2]))
	TRACE(("\n"))

#ifdef DIAG2
	printf("Processing:\n");
	printf("Jab = %f %f %f\n", Jabi[0], Jabi[1], Jabi[2]);
	printf("Chroma C = %f\n", C);
	printf("Preliminary Saturation ss = %f\n", ss);
	printf("Lightness J = %f, H.K. Lightness = %f\n", J * 100, JJ * 100);
	printf("Achromatic response A = %f\n", A);
	printf("Eccentricity factor e = %f\n", e);
	printf("Hue angle h = %f\n", h);
	printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
	printf("Hunundeft-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
	printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
	printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]);
	printf("\n");
#endif
	return 0;
}