1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
/*
* cam02, unoptimised, untweaked reference version for testing.
* with optional trace/range error flags.
*
* Color Appearance Model.
*
* Author: Graeme W. Gill
* Date: 17/1/2004
* Version: 1.00
*
* This file is based on cam97s3.c by Graeme Gill.
*
* Copyright 2004, 2007 Graeme W. Gill
* Please refer to COPYRIGHT file for details.
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*/
/* Note that XYZ values are normalised to 1.0 consistent */
/* with the ICC convention (not 100.0 as assumed by the CIECAM spec.) */
/* Note that all whites are assumed to be normalised (ie. Y = 1.0) */
#define HHKR_MUL 0.25
#undef DIAG /* Print internal value diagnostics for each conversion */
/* ---------------------------------- */
#ifdef NEVER
struct _cam02ref {
/* Public: */
void (*del)(struct _cam02ref *s); /* We're done with it */
int (*set_view)(
struct _cam02ref *s,
ViewingCondition Ev, /* Enumerated Viewing Condition */
double Wxyz[3], /* Reference/Adapted White XYZ (Y scale 1.0) */
double La, /* Adapting/Surround Luminance cd/m^2 */
double Yb, /* Luminance of Background relative to reference white (range 0.0 .. 1.0) */
double Lv, /* Luminance of white in the Viewing/Scene/Image field (cd/m^2) */
/* Ignored if Ev is set */
double Yf, /* Flare as a fraction of the reference white (range 0.0 .. 1.0) */
double Yg, /* Glare as a fraction of the adapting/surround (range 0.0 .. 1.0) */
double Gxyz[3], /* The Glare white coordinates (typically the Ambient color) */
int hk /* Flag, NZ to use Helmholtz-Kohlraush effect */
);
/* Conversions */
int (*XYZ_to_cam)(struct _cam02ref *s, double *out, double *in);
/* Private: */
/* Scene parameters */
ViewingCondition Ev; /* Enumerated Viewing Condition */
double Lv; /* Luminance of white in the Viewing/Image cd/m^2 */
double La; /* Adapting/Surround Luminance cd/m^2 */
double Wxyz[3]; /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */
double Yb; /* Relative Luminance of Background to reference white (Y range 0.0 .. 1.0) */
double Yf; /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */
double Fxyz[3]; /* The Flare white coordinates (typically the Ambient color) */
/* Internal parameters */
double C; /* Surround Impact */
double Nc; /* Chromatic Induction */
double F; /* Adaptation Degree */
/* Pre-computed values */
double Fsc; /* Flare scale */
double Fisc; /* Inverse flare scale */
double Fsxyz[3]; /* Scaled Flare color coordinates */
double rgbW[3]; /* Sharpened cone response white values */
double D; /* Degree of chromatic adaption */
double Drgb[3]; /* Chromatic transformation value */
double rgbcW[3]; /* Chromatically transformed white value */
double rgbpW[3]; /* Hunt-Pointer-Estevez cone response space white */
double n; /* Background induction factor */
double nn; /* Precomuted function of n */
double Fl; /* Lightness contrast factor ?? */
double Nbb; /* Background brightness induction factors */
double Ncb; /* Chromatic brightness induction factors */
double z; /* Base exponential nonlinearity */
double rgbaW[3]; /* Post-adapted cone response of white */
double Aw; /* Achromatic response of white */
/* Option flags */
int hk; /* Use Helmholtz-Kohlraush effect */
int trace; /* Trace internal values */
double range; /* Return error if there is a range error */
double nldlimit; /* range error if nlinear is less than this */
double jlimit; /* range error if J is less than this */
}; typedef struct _cam02ref cam02ref;
#else
typedef struct _cam02 cam02ref;
#endif
/* ---------------------------------- */
/* Utility function */
/* Return a viewing condition enumeration from the given Ambient and */
/* Adapting/Surround Luminance. */
static ViewingCondition cam02ref_Ambient2VC(
double La, /* Ambient Luminence (cd/m^2) */
double Lv /* Luminence of white in the Viewing/Scene/Image field (cd/m^2) */
) {
double r;
if (fabs(La) < 1e-10) /* Hmm. */
r = 1.0;
else
r = La/Lv;
if (r < 0.01)
return vc_dark;
if (r < 0.2)
return vc_dim;
return vc_average;
}
static void cam02ref_free(cam02ref *s);
static int cam02ref_set_view(cam02ref *s, ViewingCondition Ev, double Wxyz[3],
double Yb, double La, double Lv, double Yf, double Yg, double Gxyz[3],
int hk, double hkscale);
static int cam02ref_XYZ_to_cam(cam02ref *s, double *Jab, double *xyz);
static int cam02ref_cam_to_XYZ(cam02ref *s, double XYZ[3], double Jab[3]);
/* Create a cam02 conversion object, with default viewing conditions */
cam02ref *new_cam02ref(void) {
cam02ref *s;
if ((s = (cam02ref *)malloc(sizeof(cam02ref))) == NULL) {
fprintf(stderr,"cam02: malloc failed allocating object\n");
exit(-1);
}
/* Initialise methods */
s->del = cam02ref_free;
s->set_view = cam02ref_set_view;
s->XYZ_to_cam = cam02ref_XYZ_to_cam;
s->cam_to_XYZ = cam02ref_cam_to_XYZ;
return s;
}
static void cam02ref_free(cam02ref *s) {
if (s != NULL)
free(s);
}
static int cam02ref_set_view(
cam02ref *s,
ViewingCondition Ev, /* Enumerated Viewing Condition */
double Wxyz[3], /* Reference/Adapted White XYZ (Y range 0.0 .. 1.0) */
double La, /* Adapting/Surround Luminance cd/m^2 */
double Yb, /* Relative Luminence of Background to reference white */
double Lv, /* Luminence of white in the Viewing/Scene/Image field (cd/m^2) */
/* Ignored if Ev is set to other than vc_none */
double Yf, /* Flare as a fraction of the reference white (Y range 0.0 .. 1.0) */
double Yg, /* Glare as a fraction of the adapting/surround (Y range 0.0 .. 1.0) */
double Gxyz[3], /* The Glare white coordinates (typically the Ambient color) */
int hk, /* Flag, NZ to use Helmholtz-Kohlraush effect */
double hkscale /* HK effect scaling factor */
) {
double tt;
if (Ev == vc_none) /* Compute enumerated viewing condition */
Ev = cam02ref_Ambient2VC(La, Lv);
/* Transfer parameters to the object */
s->Ev = Ev;
s->Wxyz[0] = Wxyz[0];
s->Wxyz[1] = Wxyz[1];
s->Wxyz[2] = Wxyz[2];
s->Yb = Yb > 0.005 ? Yb : 0.005; /* Set minimum to avoid divide by 0.0 */
s->La = La;
s->Yf = Yf;
if (Gxyz[0] > 0.0 && Gxyz[1] > 0.0 && Gxyz[2] > 0.0) {
tt = Wxyz[1]/Gxyz[1]; /* Scale to white ref white */
s->Gxyz[0] = tt * Gxyz[0];
s->Gxyz[1] = tt * Gxyz[1];
s->Gxyz[2] = tt * Gxyz[2];
} else {
s->Gxyz[0] = Wxyz[0];
s->Gxyz[1] = Wxyz[1];
s->Gxyz[2] = Wxyz[2];
}
s->hk = hk;
s->hkscale = hkscale;
/* Compute the internal parameters by category */
switch(s->Ev) {
case vc_dark:
s->C = 0.525;
s->Nc = 0.8;
s->F = 0.8;
Lv = La/0.033;
break;
case vc_dim:
s->C = 0.59;
s->Nc = 0.95;
s->F = 0.9;
Lv = La/0.1;
break;
case vc_average:
default: /* average */
s->C = 0.69;
s->Nc = 1.0;
s->F = 1.0;
Lv = La/0.2;
break;
case vc_cut_sheet:
s->C = 0.41;
s->Nc = 0.8;
s->F = 0.8;
Lv = La/0.02; // ???
break;
}
s->Lv = Lv;
/* Compute values that only change with viewing parameters */
/* Figure out the Flare contribution to the flareless XYZ input */
s->Fsxyz[0] = s->Yf * s->Wxyz[0];
s->Fsxyz[1] = s->Yf * s->Wxyz[1];
s->Fsxyz[2] = s->Yf * s->Wxyz[2];
/* Add in the Glare contribution from the adapting/surround */
tt = s->Yg * s->La/s->Lv;
s->Fsxyz[0] += tt * s->Gxyz[0];
s->Fsxyz[1] += tt * s->Gxyz[1];
s->Fsxyz[2] += tt * s->Gxyz[2];
/* Sharpened cone response white values */
s->rgbW[0] = 0.7328 * s->Wxyz[0] + 0.4296 * s->Wxyz[1] - 0.1624 * s->Wxyz[2];
s->rgbW[1] = -0.7036 * s->Wxyz[0] + 1.6975 * s->Wxyz[1] + 0.0061 * s->Wxyz[2];
s->rgbW[2] = 0.0000 * s->Wxyz[0] + 0.0000 * s->Wxyz[1] + 1.0000 * s->Wxyz[2];
/* Degree of chromatic adaption */
s->D = s->F * (1.0 - exp((-s->La - 42.0)/92.0)/3.6);
/* Precompute Chromatic transform values */
s->Drgb[0] = s->D * (s->Wxyz[1]/s->rgbW[0]) + 1.0 - s->D;
s->Drgb[1] = s->D * (s->Wxyz[1]/s->rgbW[1]) + 1.0 - s->D;
s->Drgb[2] = s->D * (s->Wxyz[1]/s->rgbW[2]) + 1.0 - s->D;
/* Chromaticaly transformed white value */
s->rgbcW[0] = s->Drgb[0] * s->rgbW[0];
s->rgbcW[1] = s->Drgb[1] * s->rgbW[1];
s->rgbcW[2] = s->Drgb[2] * s->rgbW[2];
/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
s->rgbpW[0] = 0.7409744840453773 * s->rgbcW[0]
+ 0.2180245944753982 * s->rgbcW[1]
+ 0.0410009214792244 * s->rgbcW[2];
s->rgbpW[1] = 0.2853532916858801 * s->rgbcW[0]
+ 0.6242015741188157 * s->rgbcW[1]
+ 0.0904451341953042 * s->rgbcW[2];
s->rgbpW[2] = -0.0096276087384294 * s->rgbcW[0]
- 0.0056980312161134 * s->rgbcW[1]
+ 1.0153256399545427 * s->rgbcW[2];
/* Background induction factor */
s->n = s->Yb/ s->Wxyz[1];
s->nn = pow(1.64 - pow(0.29, s->n), 0.73); /* Pre computed value */
/* Lightness contrast factor ?? */
{
double k;
k = 1.0 / (5.0 * s->La + 1.0);
s->Fl = 0.2 * pow(k , 4.0) * 5.0 * s->La
+ 0.1 * pow(1.0 - pow(k , 4.0) , 2.0) * pow(5.0 * s->La , 1.0/3.0);
}
/* Background and Chromatic brightness induction factors */
s->Nbb = 0.725 * pow(1.0/s->n, 0.2);
s->Ncb = s->Nbb;
/* Base exponential nonlinearity */
s->z = 1.48 + pow(s->n , 0.5);
/* Post-adapted cone response of white */
tt = pow(s->Fl * s->rgbpW[0], 0.42);
s->rgbaW[0] = (400.1 * tt + 2.713) / (tt + 27.13);
tt = pow(s->Fl * s->rgbpW[1], 0.42);
s->rgbaW[1] = (400.1 * tt + 2.713) / (tt + 27.13);
tt = pow(s->Fl * s->rgbpW[2], 0.42);
s->rgbaW[2] = (400.1 * tt + 2.713) / (tt + 27.13);
/* Achromatic response of white */
s->Aw = (2.0 * s->rgbaW[0] + s->rgbaW[1] + (1.0/20.0) * s->rgbaW[2] - 0.305) * s->Nbb;
#ifdef DIAG
printf("Ref. Scene parameters:\n");
printf("Viewing condition Ev = %d\n",s->Ev);
printf("Ref white Wxyz = %f %f %f\n", s->Wxyz[0], s->Wxyz[1], s->Wxyz[2]);
printf("Relative liminance of background Yb = %f\n", s->Yb);
printf("Adapting liminance La = %f\n", s->La);
printf("Flare Yf = %f\n", s->Yf);
printf("Flare color Fxyz = %f %f %f\n", s->Fxyz[0], s->Fxyz[1], s->Fxyz[2]);
printf("Internal parameters:\n");
printf("Surround Impact C = %f\n", s->C);
printf("Chromatic Induction Nc = %f\n", s->Nc);
printf("Adaption Degree F = %f\n", s->F);
printf("Pre-computed values\n");
printf("Sharpened cone white rgbW = %f %f %f\n", s->rgbW[0], s->rgbW[1], s->rgbW[2]);
printf("Degree of chromatic adaption D = %f\n", s->D);
printf("Chromatic transform values Drgb = %f %f %f\n", s->Drgb[0], s->Drgb[1], s->Drgb[2]);
printf("Chromatically transformed white rgbcW = %f %f %f\n", s->rgbcW[0], s->rgbcW[1], s->rgbcW[2]);
printf("Hunter-P-E cone response white rgbpW = %f %f %f\n", s->rgbpW[0], s->rgbpW[1], s->rgbpW[2]);
printf("Background induction factor n = %f\n", s->n);
printf("Lightness contrast factor Fl = %f\n", s->Fl);
printf("Background brightness induction factor Nbb = %f\n", s->Nbb);
printf("Chromatic brightness induction factor Ncb = %f\n", s->Ncb);
printf("Base exponential nonlinearity z = %f\n", s->z);
printf("Post adapted cone response white rgbaW = %f %f %f\n", s->rgbaW[0], s->rgbaW[1], s->rgbaW[2]);
printf("Achromatic response of white Aw = %f\n", s->Aw);
printf("\n");
#endif
return 0;
}
/* A version of the pow() function that preserves the */
/* sign of its first argument. */
static double spow(double x, double y) {
return x < 0.0 ? -pow(-x,y) : pow(x,y);
}
#define REFTRACE(xxxx) if (s->trace) printf xxxx ;
/* Conversion. Returns NZ and -1, -1, -1 if input is out of range */
static int cam02ref_XYZ_to_cam(
cam02ref *s,
double Jab[3],
double XYZ[3]
) {
int i;
double xyz[3], rgb[3], rgbp[3], rgba[3], rgbaW[3], rgbc[3], rgbcW[3];
double a, b, rS, J, C, h, e, A, ss;
double ttd, tt;
REFTRACE(("\nReference forward conversion:\n"))
REFTRACE(("XYZ %f %f %f\n",XYZ[0], XYZ[1], XYZ[2]))
/* Add in flare */
xyz[0] = s->Fsc * XYZ[0] + s->Fsxyz[0];
xyz[1] = s->Fsc * XYZ[1] + s->Fsxyz[1];
xyz[2] = s->Fsc * XYZ[2] + s->Fsxyz[2];
REFTRACE(("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]))
/* Spectrally sharpened cone responses */
rgb[0] = 0.7328 * xyz[0] + 0.4296 * xyz[1] - 0.1624 * xyz[2];
rgb[1] = -0.7036 * xyz[0] + 1.6975 * xyz[1] + 0.0061 * xyz[2];
rgb[2] = 0.0000 * xyz[0] + 0.0000 * xyz[1] + 1.0000 * xyz[2];
REFTRACE(("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]))
/* Chromaticaly transformed sample value */
rgbc[0] = s->Drgb[0] * rgb[0];
rgbc[1] = s->Drgb[1] * rgb[1];
rgbc[2] = s->Drgb[2] * rgb[2];
REFTRACE(("Chromatically transformed sample value rgbc = %f %f %f\n", rgb[0], rgb[1], rgb[2]))
/* Transform from spectrally sharpened, to Hunt-Pointer_Estevez cone space */
rgbp[0] = 0.7409744840453773 * rgbc[0]
+ 0.2180245944753982 * rgbc[1]
+ 0.0410009214792244 * rgbc[2];
rgbp[1] = 0.2853532916858801 * rgbc[0]
+ 0.6242015741188157 * rgbc[1]
+ 0.0904451341953042 * rgbc[2];
rgbp[2] = -0.0096276087384294 * rgbc[0]
- 0.0056980312161134 * rgbc[1]
+ 1.0153256399545427 * rgbc[2];
REFTRACE(("rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]))
/* Post-adapted cone response of sample. */
/* rgba[] has a minimum value of 0.1 for XYZ[] = 0 and no flare. */
/* We add a symetric negative compression region */
for (i = 0; i < 3; i++) {
if (s->range && (rgbp[i] < 0.0 || rgbp[i] < s->nldlimit)) {
Jab[0] = Jab[1] = Jab[2] = -1.0;
return 1;
}
if (rgbp[i] < 0.0) {
tt = pow(s->Fl * -rgbp[i], 0.42);
rgba[i] = (2.713 - 397.387 * tt) / (tt + 27.13);
} else {
tt = pow(s->Fl * rgbp[i], 0.42);
rgba[i] = (400.1 * tt + 2.713) / (tt + 27.13);
}
}
REFTRACE(("rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]))
/* Preliminary red-green & yellow-blue opponent dimensions */
a = rgba[0] - 12.0 * rgba[1]/11.0 + rgba[2]/11.0;
b = (1.0/9.0) * (rgba[0] + rgba[1] - 2.0 * rgba[2]);
rS = sqrt(a * a + b * b); /* Normalised a, b */
/* Preliminary Saturation */
/* Note that the minimum values for rgba[] for XYZ = 0 is 0.1 */
/* Hence magic 0.305 below comes from the following weighting of rgba[] */
ttd = rgba[0] + rgba[1] + (21.0/20.0) * rgba[2];
/* Achromatic response */
/* Note that the minimum values of rgba[] for XYZ = 0 is 0.1, */
/* hence magic 0.305 below comes from the following weighting of rgba[], */
/* to base A at 0.0 */
A = (2.0 * rgba[0] + rgba[1] + (1.0/20.0) * rgba[2] - 0.305) * s->Nbb;
REFTRACE(("a = %f, b = %f, ttd = %f, rS = %f, A = %f\n", a, b, ttd, rS, A))
/* Lightness */
J = pow(A/s->Aw, s->C * s->z); /* J/100 - keep Sign */
/* Hue angle */
h = (180.0/DBL_PI) * atan2(b,a);
h = (h < 0.0) ? h + 360.0 : h;
/* Eccentricity factor */
e = (cos(h * DBL_PI/180.0 + 2.0) + 3.8);
if (s->range && (J < DBL_EPSILON || J < s->jlimit || ttd < DBL_EPSILON)) {
REFTRACE(("J = %f, ttd = %f, exit with error\n", J, ttd))
Jab[0] = Jab[1] = Jab[2] = -1.0;
return 1;
}
ss = (12500.0/13.0 * s->Nc * s->Ncb * rS * e) / ttd;
/* Chroma */
C = pow(ss, 0.9) * sqrt(J) * s->nn;
REFTRACE(("ss = %f, C = %f\n", ss, C))
/* Helmholtz-Kohlraush effect */
if (s->hk && J < 1.0) {
double JJ, kk = s->hkscale * HHKR_MUL * C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0);
if (kk > 0.9) /* Limit kk to a reasonable range */
kk = 0.9;
JJ = J + (1.0 - J) * kk;
REFTRACE(("JJ = %f from J = %f, kk = %f\n",JJ,J,kk))
J = JJ;
}
J *= 100.0; /* Scale J */
/* Compute Jab value */
Jab[0] = J;
if (rS >= DBL_EPSILON) {
Jab[1] = C * a/rS;
Jab[2] = C * b/rS;
} else {
Jab[1] = 0.0;
Jab[2] = 0.0;
}
REFTRACE(("Returning Jab %f %f %f\n", Jab[0],Jab[1],Jab[2]))
#ifdef DIAG
printf("Processing:\n");
printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]);
printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]);
printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]);
printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
printf("Prelim red green a = %f, b = %f\n", a, b);
printf("Hue angle h = %f\n", h);
printf("Eccentricity factor e = %f\n", e);
printf("Achromatic response A = %f\n", A);
printf("Lightness J = %f\n", J);
printf("Prelim Saturation ss = %f\n", ss);
printf("Chroma C = %f\n", C);
printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]);
printf("\n");
#endif
return 0;
}
static int cam02ref_cam_to_XYZ(
cam02ref *s,
double XYZ[3],
double Jab[3]
) {
int i;
double xyz[3], rgb[3], rgbp[3], rgba[3], rgbaW[3], rgbc[3], rgbcW[3];
double ja, jb, aa, ab, a, b, J, C, h, e, A, ss;
double tt, ttA, tte;
J = Jab[0] * 0.01; /* J/100 */
ja = Jab[1];
jb = Jab[2];
/* Compute hue angle */
h = (180.0/DBL_PI) * atan2(jb, ja);
h = (h < 0.0) ? h + 360.0 : h;
/* Compute chroma value */
C = sqrt(ja * ja + jb * jb); /* Must be Always +ve */
/* Helmholtz-Kohlraush effect */
if (s->hk && J < 1.0) {
double kk = s->hkscale * HHKR_MUL * C/300.0 * sin(DBL_PI * fabs(0.5 * (h - 90.0))/180.0);
if (kk > 0.9) /* Limit kk to a reasonable range */
kk = 0.9;
J = (J - kk)/(1.0 - kk);
}
/* Eccentricity factor */
e = (cos(h * DBL_PI/180.0 + 2.0) + 3.8);
/* Achromatic response */
A = spow(J, 1.0/(s->C * s->z)) * s->Aw; /* Keep sign of J */
/* Preliminary Saturation - keep +ve */
tt = fabs(J);
ss = pow(C/(sqrt(tt) * s->nn), 1.0/0.9); /* keep +ve */
/* Compute a & b, taking care of numerical problems */
aa = fabs(ja);
ab = fabs(jb);
ttA = (A/s->Nbb)+0.305; /* Common factor */
tte = 12500.0/13.0 * e * s->Nc * s->Ncb; /* Common factor */
if (aa < 1e-10 && ab < 1e-10) {
a = ja;
b = jb;
} else if (aa > ab) {
double tanh = jb/ja;
double sign = (h > 90.0 && h <= 270.0) ? -1.0 : 1.0;
if (ttA < 0.0)
sign = -sign;
a = (ss * ttA)
/ (sign * sqrt(1.0 + tanh * tanh) * tte + (ss * (11.0/23.0 + (108.0/23.0) * tanh)));
b = a * tanh;
} else { /* ab > aa */
double itanh = ja/jb;
double sign = (h > 180.0 && h <= 360.0) ? -1.0 : 1.0;
if (ttA < 0.0)
sign = -sign;
b = (ss * ttA)
/ (sign * sqrt(1.0 + itanh * itanh) * tte + (ss * (108.0/23.0 + (11.0/23.0) * itanh)));
a = b * itanh;
}
/* Post-adapted cone response of sample */
rgba[0] = (20.0/61.0) * ttA
+ ((41.0 * 11.0)/(61.0 * 23.0)) * a
+ ((288.0 * 1.0)/(61.0 * 23.0)) * b;
rgba[1] = (20.0/61.0) * ttA
- ((81.0 * 11.0)/(61.0 * 23.0)) * a
- ((261.0 * 1.0)/(61.0 * 23.0)) * b;
rgba[2] = (20.0/61.0) * ttA
- ((20.0 * 11.0)/(61.0 * 23.0)) * a
- ((20.0 * 315.0)/(61.0 * 23.0)) * b;
/* Hunt-Pointer_Estevez cone space */
tt = 1.0/s->Fl;
for (i = 0; i < 3; i++) {
if (rgba[i] < 0.1) {
double ta = rgba[i] > -396.387 ? rgba[i] : -396.387;
rgbp[i] = -tt * pow((2.713 - 27.13 * rgba[i] )/(397.387 + ta), 1.0/0.42);
} else {
double ta = rgba[i] < 399.1 ? rgba[i] : 399.1;
rgbp[i] = tt * pow((27.13 * rgba[i] -2.713)/(400.1 - ta), 1.0/0.42);
}
}
/* Chromaticaly transformed sample value */
rgbc[0] = 1.5591523979049677 * rgbp[0]
- 0.5447226796590880 * rgbp[1]
- 0.0144453097698588 * rgbp[2];
rgbc[1] = -0.7143267176368630 * rgbp[0]
+ 1.8503099728895096 * rgbp[1]
- 0.1359761119854705 * rgbp[2];
rgbc[2] = 0.0107755117023383 * rgbp[0]
+ 0.0052187662221759 * rgbp[1]
+ 0.9840056143203700 * rgbp[2];
/* Spectrally sharpened cone responses */
rgb[0] = rgbc[0]/s->Drgb[0];
rgb[1] = rgbc[1]/s->Drgb[1];
rgb[2] = rgbc[2]/s->Drgb[2];
/* XYZ values */
xyz[0] = 1.0961238208355140 * rgb[0]
- 0.2788690002182872 * rgb[1]
+ 0.1827451793827730 * rgb[2];
xyz[1] = 0.4543690419753590 * rgb[0]
+ 0.4735331543074120 * rgb[1]
+ 0.0720978037172291 * rgb[2];
xyz[2] = -0.0096276087384294 * rgb[0]
- 0.0056980312161134 * rgb[1]
+ 1.0153256399545427 * rgb[2];
/* Subtract flare */
XYZ[0] = s->Fisc * (xyz[0] - s->Fsxyz[0]);
XYZ[1] = s->Fisc * (xyz[1] - s->Fsxyz[1]);
XYZ[2] = s->Fisc * (xyz[2] - s->Fsxyz[2]);
#ifdef DIAG
printf("Processing:\n");
printf("Jab = %f %f %f\n", Jab[0], Jab[1], Jab[2]);
printf("Chroma C = %f\n", C);
printf("Preliminary Saturation ss = %f\n", ss);
printf("Lightness J = %f\n", J * 100.0);
printf("Achromatic response A = %f\n", A);
printf("Eccentricity factor e = %f\n", e);
printf("Hue angle h = %f\n", h);
printf("Prelim red green a = %f, b = %f\n", a, b);
printf("Post adapted cone response rgba = %f %f %f\n", rgba[0], rgba[1], rgba[2]);
printf("Hunt-P-E cone space rgbp = %f %f %f\n", rgbp[0], rgbp[1], rgbp[2]);
printf("Chromatically transformed sample value rgbc = %f %f %f\n", rgbc[0], rgbc[1], rgbc[2]);
printf("Sharpened cone sample rgb = %f %f %f\n", rgb[0], rgb[1], rgb[2]);
printf("Including flare XYZ = %f %f %f\n", xyz[0], xyz[1], xyz[2]);
printf("XYZ = %f %f %f\n", XYZ[0], XYZ[1], XYZ[2]);
printf("\n");
#endif
return 0;
}
|