1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
/*
* International Color Consortium color transform expanded support
*
* Author: Graeme W. Gill
* Date: 8/9/01
* Version: 1.00
*
* Copyright 2001 Graeme W. Gill
* All rights reserved.
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
*/
/* TTBD:
*
* Should switch this over to the linearisation used in
* the current xlut.c (== xlut2.c), rather than linearise
* w.r.t. the Y value.
*/
/*
* This class handles the creation of device chanel linearisation
* curves, given a callback function that maps the device chanels
* to the value that should be linearised.
*
* This class is independent of other icc or icx classes.
*
* Its usual use is to create an Lab linerisation curve
* for native XYZ profiles.
*/
#undef DEBUG /* Plot 1d Luts */
#include <sys/types.h>
#ifdef __sun
#include <unistd.h>
#endif
#include "numlib.h"
#include "rspl.h"
#include "xdevlin.h" /* definitions for this class */
#ifdef DEBUG
#include "plot.h"
#endif
/* Free up the xdevlin */
static void xdevlin_del(struct _xdevlin *p) {
int e;
for (e = 0; e < p->di; e++) {
if (p->curves[e] != NULL)
p->curves[e]->del(p->curves[e]);
}
free (p);
}
/* Return the linearisation values given the device values */
static void xdevlin_lin(
struct _xdevlin *p, /* this */
double *out, /* di input */
double *in /* di output */
) {
co tc;
int e;
for (e = 0; e < p->di; e++) {
tc.p[0] = in[e];
p->curves[e]->interp(p->curves[e], &tc);
out[e] = tc.v[0];
}
}
#define MAX_INVSOLN 5
/* Return the inverse linearisation */
static void xdevlin_invlin(
struct _xdevlin *p, /* this */
double *out, /* di input */
double *in /* di output */
) {
int i, j;
int nsoln; /* Number of solutions found */
co pp[MAX_INVSOLN]; /* Room for all the solutions found */
double cdir;
for (i = 0; i < p->di; i++) {
pp[0].p[0] = p->clipc[i];
pp[0].v[0] = in[i];
cdir = p->clipc[i] - in[i]; /* Clip towards output range */
nsoln = p->curves[i]->rev_interp(
p->curves[i], /* this */
0, /* No flags */
MAX_INVSOLN, /* Maximum number of solutions allowed for */
NULL, /* No auxiliary input targets */
&cdir, /* Clip vector direction and length */
pp); /* Input and output values */
nsoln &= RSPL_NOSOLNS; /* Get number of solutions */
if (nsoln == 1) { /* Exactly one solution */
j = 0;
} else if (nsoln == 0) { /* Zero solutions. This is unexpected. */
error("~~~1 Unexpected failure to find reverse solution for linearisation curve");
return;
} else { /* Multiple solutions */
/* Use a simple minded resolution - choose the one closest to the center */
double bdist = 1e300;
int bsoln = 0;
/* Don't expect this - 1D luts are meant to be monotonic */
printf("~~~1 got %d reverse solutions\n",nsoln);
printf("~~~1 solution 0 = %f\n",pp[0].p[0]);
printf("~~~1 solution 1 = %f\n",pp[1].p[0]);
for (j = 0; j < nsoln; j++) {
double tt;
tt = pp[i].p[0] - p->clipc[i];
tt *= tt;
if (tt < bdist) { /* Better solution */
bdist = tt;
bsoln = j;
}
}
j = bsoln;
}
out[i] = pp[j].p[0];
}
}
/* Callback function that is used to set each chanels grid value */
static void set_curve(void *cbntx, double *out, double *in) {
xdevlin *p = (xdevlin *)cbntx;
int e, ee = p->setch;
double tin[MXDI], tout[MXDO];
double tt;
/* setup input value */
for (e = 0; e < p->di; e++)
tin[e] = p->pol ? p->max[e] : p->min[e];
tin[ee] = in[0];
p->lookup(p->lucntx, tout, tin);
tt = (tout[0] - p->lmin)/(p->lmax - p->lmin); /* Normalise from L */
out[0] = tt * (p->max[ee] - p->min[ee]) + p->min[ee]; /* Back to device range */
}
/* Create an appropriate linearisation from the callback */
/* This code is very similar to that in xlut.c when creating */
/* a device profiles linearisation curves. */
xdevlin *new_xdevlin(
int di, /* Device dimenstionality */
double *min, double *max, /* Min & max range of device values, NULL = 0.0 - 1.0 */
void *lucntx, /* Context for callback */
void (*lookup) (void *lucntx, double *lin, double *dev)
) {
int ee, e;
xdevlin *p;
/* Do the basic class initialisation */
if ((p = (xdevlin *) calloc(1,sizeof(xdevlin))) == NULL)
return NULL;
p->del = xdevlin_del;
p->lin = xdevlin_lin;
p->invlin = xdevlin_invlin;
/* And then set it up */
p->di = di;
p->lucntx = lucntx;
p->lookup = lookup;
/* Setup the clipping center */
for (e = 0; e < p->di; e++) {
p->min[e] = min[e];
p->max[e] = max[e];
p->clipc[e] = 0.5 * (min[e] + max[e]);
}
/* Determine what level to set the chanels we're not interested in */
{
double tin[MXDI], tout[MXDO];
double l00, l01, l10, l11; /* Resulting levels */
for (e = 0; e < p->di; e++)
tin[e] = min[e];
lookup(lucntx, tout, tin);
l00 = tout[0]; /* All minimum */
tin[0] = max[0];
lookup(lucntx, tout, tin);
l01 = tout[0]; /* First chanel max, rest min */
for (e = 0; e < p->di; e++)
tin[e] = max[e];
lookup(lucntx, tout, tin);
l11 = tout[0]; /* All maximum */
tin[0] = min[0];
lookup(lucntx, tout, tin);
l10 = tout[0]; /* First chanel min, rest max */
if (fabs(l11 - l10) > fabs(l00 - l01))
p->pol = 1; /* Set other chanels to max */
else
p->pol = 0; /* Set other chanels to min */
}
/* For each chanel, create an rspl */
for (ee = 0; ee < p->di; ee++) {
double tin[MXDI], tout[MXDO];
int gres = 100; // 4096
#ifdef DEBUG
#define XRES 100
double xx[XRES];
double y1[XRES];
#endif /* DEBUG */
if ((p->curves[ee] = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL) {
error("Creation of rspl failed in xdevlin");
}
p->setch = ee;
/* Figure the L min and max */
for (e = 0; e < p->di; e++)
tin[e] = p->pol ? max[e] : min[e];
tin[ee] = min[ee];
lookup(lucntx, tout, tin);
p->lmin = tout[0];
tin[ee] = max[ee];
lookup(lucntx, tout, tin);
p->lmax = tout[0];
p->curves[ee]->set_rspl(
p->curves[ee],
0,
p, /* Opaque function context */
set_curve, /* Function to set from */
min, max, /* Grid low scale, grid high scale */
&gres, /* Grid resolution */
min, max /* Data value normalsie low and high */
);
#ifdef DEBUG
{
int i;
/* Display the result curve */
for (i = 0; i < XRES; i++) {
double x;
co c;
x = i/(double)(XRES-1);
xx[i] = x;
c.p[0] = x;
p->curves[ee]->interp(p->curves[ee], &c);
y1[i] = c.v[0];
}
do_plot(xx,y1,NULL,NULL,XRES);
}
#endif /* DEBUG */
}
p->lookup = NULL; /* Not valid after function return */
return p;
}
|