1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
|
/*
* International Color Consortium color transform expanded support
* Set Lut table values and do auxiliary chanel interpolation continuity fixups.
*
* Author: Graeme W. Gill
* Date: 17/12/00
* Version: 1.00
*
* Copyright 2000 Graeme W. Gill
* All rights reserved.
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
*/
/*
* This module provides additional xicc functionality
* for CMYK lut based profiles.
*
* This is essentially a test of one approach to fixing
* auxiliary parameter induced interpolation errors.
*/
/*
* TTBD:
*
* Remove this code when the optimised separation code is working.
*
* Some of the error handling is crude. Shouldn't use
* error(), should return status.
*
*/
/* Description:
In all the clut based color systems, there are various
stages where the multi-dimenional profile functions are
resampled from one respresentation to another. As in all
sampling, aliasing may be an issue. The standard
methods for dealing with aliasing involve band limiting and
over-sampling. In dealing with color, anything other than
point sampling is often too slow to consider, meaning that
over sampling, or on-the-fly filtering is impractical.
Band limiting the function to be sampled is therefore the
most practical approach, but there are still sever tradoffs.
For accurately representing the sampled characteristics
of a device, a high resolution grid, with band limited
sample points is desirable. 3 or 4 dimension grids however,
quickly consume memory, and generaly show an exponential
decline in access and manipulation speed with grid resolution.
To maintain accuracy therefore, the minimum grid resolution,
and the minimum level of filtering is often employed.
The routines in this file are to deal with an aditional
subtlety when dealing with devices that have extra
degrees of freedom (ie. CMYK devices). In theory, the
aditional degrees of freedom can be set abitrarily, and
are often chosen to follow a "rule", designed to acheive
a goal such as minimising the amount of black used
in the highlights of bitonal devices (to minimise
"black dot" visibility), or to maximise black usage
for minimum ink costs, to resduce grey axis sensitivity
to the CMY values, to reduce the total ink loading,
or to pass through the inking values of a similar
input colorspace. In Argyll, these extra degrees of
freedom are refered to as auxiliary chanels.
Because the final representation of the color correction
transform is often a multi-dimensional interpolation lookup
table (clut), there is an aditional hidden requirement for
any auxiliary input chanels, and that is that there be
a reasonable degree of interpolation continuity between
the sampled grid points. If this continuity requirement
is not met, then the accuracy of the interpolation within
each grid cell can be wildly inacurate, even though the
accuracy of the grid points themselves is good.
For instance, if we have two grid points of a Lab->CMYK
interpolation grid:
1) 50 0 0 -> .0 .0 .0 .3 -> 50 0 0
2) 50 0 10 -> .2 .2 .4 .0 -> 50 0 10
Now if an input PCS value of 50 0 5 is used to
lookup the device values that should be used, a typical
interpolation might return:
50 0 5 -> .1 .1 .2 .15 -> 40 -5 6
This is a small change in PCS space, but bevcause the
two device points are at opposite extremes of the possible
auxliary locus for each point, the device values are
far appart in device space. The accuracy of the
device space interpolation is therefore not guaranteed
to be accurate, and might in this case, mean that
the device actually reproduces an unexpectedly inaccurate PCS value.
Even worse, at the gamut boundaries the locus shrinks to zero,
and particularly in the dark end of the gamut, there
may be a multitude of different Device values that overlap
at the gamut boundary, causing abrupt or even chaotic
device values at spacings well above the sampling spacing
of the interpolation grid being created.
An additional challenge is that the locus of valid auxiliary
values may be discontinuous, (typically bifurcated), particularly
when an ink limit is imposed - the limit often removing a segment
of the auxiliary locus from the gamut. So ideally, a contiguous
auxiliary region needs to be mapped out, and any holes
patched over or removed from the gamut in a way that
doesn't introduce discontinuities.
In Argyll, we want to maintain the freedom to set arbitrary
auxiliary rules, yet we need to avoid the gross loss of
accuracy abrupt transitions in auxiliary values can cause.
The approach I've taken here involves a number of steps. The
first step sets up the clut in the usual maner, but records
various internal values for each point. In the second step, these
grid values are examined to locate cells which are "at risk" of
auxiliary interpolation errors. In the third step, the grid points
around the "at risk" cells have their auxiliary target values
adjusted to new target values, by using a simple smoothing filter
to reduce abrupt transitions. In the fourth step, new device values
are searched for, that have the same target PCS for the grid point,
but the smoothed auxiliary value. In cases where there is no scope
for meeting the new auxiliary target, because it is already at one
extreme of its possible locus for the target PCS, a tradoff is then
made between reduced target PCS accuracy, and an improved auxiliary
accuracy. In the final step, the new grid values replace the old
in the ICC.
*/
#include "icc.h"
#include "numlib.h"
#include "xicc.h"
/* NOTE:- that we only implement support for CMYK output here !!! */
#define CHECK_FUNCS /* Sanity check the callback functions */
#define DO_STATS
#undef SAVE_TRACE /* Save the values returned by the clut callback function */
#undef USE_TRACE /* Use the trace file instead of the clut callback function */
#define TRACENAME "D:/usr/argyll/xicc/xlutfix.xxx" /* So it will work in the debugger */
#define MAX_PASSES 7
#define MAX_FILTERS 20
#define THRESH 0.55 /* Fix Threshold, ratio of mean to maximum PCS point */
#define MINTHRESH 2.0 /* Set minimum interp error threshold. Don't fix if below this */
#define AUXWHT 3.0 /* Auxiliary tradeoff weight and increment */
#undef WIDEFILTER /* Alter 4x4 neighborhood */
/* ========================================================== */
/* Return maximum difference */
static double maxdiffn(int n, double *in1, double *in2) {
double tt, rv = 0.0;
int i;
for (i = 0; i < n; i++) {
if ((tt = fabs(in1[i] - in2[i])) > rv)
rv = tt;
}
return rv;
}
/* Return absolute difference */
static double absdiffn(int n, double *in1, double *in2) {
double tt, rv = 0.0;
int i;
for (i = 0; i < n; i++) {
tt = in1[i] - in2[i];
rv += tt * tt;
}
return sqrt(rv);
}
/* ========================================================== */
/* Callback functions used by icc set_tables */
/* ========================================================== */
/* Context for set_tables callbacks */
typedef struct {
int dofix;
void *cbctx;
void (*infunc)(void *cbctx, double *out, double *in);
void (*clutfunc)(void *cbctx, double *out, double *aux, double *auxr, double *pcs, double *in);
void (*clutpcsfunc)(void *cbctx, double *out, double *auxv, double *pcs);
void (*clutipcsfunc)(void *cbctx, double *pcs, double *olimit, double *auxv, double *in);
void (*outfunc)(void *cbctx, double *out, double *in);
float *g; /* Base of grid */
int res; /* Grid resolution */
int fn; /* Number of floats in grid */
int n; /* Number of entries in grid */
int fesz; /* Entry size in floats */
int fci[MXDI]; /* float increment for each input dimension into latice */
int cmin[MXDI]; /* Fixup area bounding box minimum */
int cmax[MXDI]; /* Fixup area bounding box maximum +1 */
/* One float for flags */
int din; /* Number of input (ie. grid) dimensions */
int daux; /* Number of auxiliary dimensions */
int dout; /* Number of output dimensions */
int oauxr; /* Offset to start of aux range entries */
int oauxv; /* Offset to start of aux value entries */
int oauxvv; /* Offset to start of aux new value entries */
int opcs; /* Offset to start of PCS value entries */
int oout; /* Offset to start of output value entries */
int nhi; /* Number of corners in an input grid cube */
int *fhi; /* nhi grid cube corner offsets in floats */
/* Minimiser info */
double m_auxw; /* Auxiliary error weighting factor (ie. 5 - 100) */
double m_auxv[MAX_CHAN];/* Auxiliary target value */
double m_pcs[3]; /* PCS target value */
#if defined(SAVE_TRACE) || defined(USE_TRACE)
FILE *tf;
#endif
} xifs;
/* Macros to access flag values */
#define XLF_FLAGV(fp) (*((unsigned int *)(fp)))
#define XLF_TOFIX 0x0001 /* Grid point to be fixed flag */
#define XLF_UPDATE 0x0002 /* Grid point to be updated flag */
#define XLF_HARDER 0x0004 /* Compromise PCS to improve result */
/* Functions to pass to icc settables() to setup icc Lut */
/* Input table. input -> input' space. */
static void xif_set_input(void *cntx, double *out, double *in) {
xifs *p = (xifs *)cntx;
p->infunc(p->cbctx, out, in);
}
/* clut, input' -> output' space */
static void xif_set_clut(void *cntx, double *out, double *in) {
xifs *p = (xifs *)cntx;
if (p->dofix == 0) { /* No fixups */
p->clutfunc(p->cbctx, out, NULL, NULL, NULL, in);
} else if (p->dofix == 1) { /* First pass */
int e, f;
float *fp, *ep;
double pcs[MAX_CHAN], auxv[MAX_CHAN], auxr[MAX_CHAN * 2];
/* the icclib set_tables() supplies us the grid indexes */
/* as integer in the double locations at in[-e-1] */
#if defined(USE_TRACE)
if (fread(pcs, sizeof(double), 3, p->tf) != 3
|| fread(auxr, sizeof(double), 2 * p->daux, p->tf) != (2 * p->daux)
|| fread(auxv, sizeof(double), p->daux, p->tf) != p->daux
|| fread(out, sizeof(double), p->dout, p->tf) != p->dout) {
fprintf(stderr,"mark_cells: read of trace failed\n");
exit(-1);
}
#else /* !USE_TRACE */
p->clutfunc(p->cbctx, out, auxv, auxr, pcs, in);
#if defined(SAVE_TRACE)
if (fwrite(pcs, sizeof(double), 3, p->tf) != 3
|| fwrite(auxr, sizeof(double), 2 * p->daux, p->tf) != (2 * p->daux)
|| fwrite(auxv, sizeof(double), p->daux, p->tf) != p->daux
|| fwrite(out, sizeof(double), p->dout, p->tf) != p->dout) {
fprintf(stderr,"mark_cells: write of trace failed\n");
exit(-1);
}
#endif /* SAVE_TRACE */
#endif /* !USE_TRACE */
/* Figure grid pointer to grid entry */
for (fp = p->g, e = 0; e < p->din; e++)
fp += *((int *)&in[-e-1]) * p->fci[e];
XLF_FLAGV(fp) = 0; /* Clear flags */
ep = fp + p->opcs;
for (f = 0; f < 3; f++) /* Save PCS values */
ep[f] = (float)pcs[f];
ep = fp + p->oauxr;
for (f = 0; f < (2 * p->daux); f++) /* Save auxiliary range values */
ep[f] = (float)auxr[f];
ep = fp + p->oauxv;
for (f = 0; f < p->daux; f++) /* Save auxiliary values */
ep[f] = (float)auxv[f];
ep = fp + p->oout;
for (f = 0; f < p->dout; f++) /* Save the output values */
ep[f] = (float)out[f];
} else { /* Second pass */
int e, f;
float *fp, *ep;
/* Figure grid pointer to grid entry */
for (fp = p->g, e = 0; e < p->din; e++)
fp += *((int *)&in[-e-1]) * p->fci[e];
ep = fp + p->oout;
for (f = 0; f < p->dout; f++) /* Return the fixed output values */
out[f] = (double)ep[f];
}
}
/* output output' -> output space */
static void xif_set_output(void *cntx, double *out, double *in) {
xifs *p = (xifs *)cntx;
p->outfunc(p->cbctx, out, in);
}
static int mark_cells(xifs *p);
static int filter_grid(xifs *p, int tharder);
static void fix_grid(xifs *p, double auxw);
static int comp_pcs(xifs *p, double auxw, double *auxrv, double *auxv, double *pcs, double *dev);
/* Helper function to setup the three tables contents, and the underlying icc. */
/* Only useful if there are auxiliary device output chanels to be set, */
/* as this takes care of auxiliary interpolation continuity fixups. */
int icxLut_set_tables_auxfix(
icmLut *p, /* Pointer to icmLut object */
void *cbctx, /* Opaque callback context pointer value */
icColorSpaceSignature insig, /* Input color space */
icColorSpaceSignature outsig, /* Output color space */
void (*infunc)(void *cbctx, double *out, double *in),
/* Input transfer function, inspace->inspace' (NULL = default) */
double *inmin, double *inmax, /* Maximum range of inspace' values */
/* (NULL = default) */
void (*clutfunc)(void *cbctx, double *out, double *aux, double *auxr, double *pcs, double *in),
/* inspace' -> outspace' transfer function, also */
/* return the target PCS and the (packed) auxiliary locus range, */
/* as [min0, max0, min1, max1...], the auxiliary chosen. */
void (*clutpcsfunc)(void *cbctx, double *out, double *aux, double *pcs),
/* PCS + aux_target -> outspace' transfer function */
void (*clutipcsfunc)(void *cbctx, double *pcs, double *olimit, double *auxv, double *in),
/* outspace' -> PCS + auxv check function */
double *clutmin, double *clutmax, /* Maximum range of outspace' values */
/* (NULL = default) */
void (*outfunc)(void *cbctx, double *out, double *in)
/* Output transfer function, outspace'->outspace (NULL = deflt) */
) {
int rv, g, e, jj, kk;
double auxw; /* Auxiliary weight factor */
xifs xcs; /* Our context structure */
/* Simply pass this on to the icc set_table() */
xcs.dofix = 0; /* Assume we won't attempt fix */
xcs.cbctx = cbctx;
xcs.infunc = infunc;
xcs.clutfunc = clutfunc;
xcs.clutpcsfunc = clutpcsfunc;
xcs.clutipcsfunc = clutipcsfunc;
xcs.outfunc = outfunc;
if (outsig != icSigCmykData) { /* Don'y know how/if to fix this */
rv = p->set_tables(p,
ICM_CLUT_SET_APXLS,
(void *)&xcs,
insig, outsig,
xif_set_input,
inmin, inmax,
xif_set_clut,
clutmin, clutmax,
xif_set_output);
return rv;
}
#ifdef CHECK_FUNCS
if (insig == icSigLabData) {
double in[3], out[MAX_CHAN];
double aux[1], auxr[2], pcs[3];
double out_check[MAX_CHAN];
double apcs[3], pcs_check[3];
/* Pick a sample input value */
in[0] = 50.0; in[1] = 0.0; in[2] = 0.0;
/* Test the in->out function */
clutfunc(cbctx, out, aux, auxr, pcs, in);
printf("~1 %f %f %f -> pcs %f %f %f,\n auxr %f - %f, auxv %f, dev %f %f %f %f\n",
in[0], in[1], in[2], pcs[0], pcs[1], pcs[2], auxr[0], auxr[1], aux[0],
out[0], out[1], out[2], out[3]);
/* Check that we get the same result for the pcs function */
clutpcsfunc(cbctx, out_check, aux, pcs);
if (maxdiffn(p->outputChan, out, out_check) > 1e-6) {
fprintf(stderr,"set_tables_auxfix: pcsfunc check failed\n");
printf("~1 is %f %f %f %f, should be %f %f %f %f\n",
out_check[0], out_check[1], out_check[2], out_check[3],
out[0], out[1], out[2], out[3]);
}
printf("~1 PCS version gives %f %f %f %f\n",
out_check[0], out_check[1], out_check[2], out_check[3]);
/* Checkout the reverse function */
clutipcsfunc(cbctx, apcs, NULL, NULL, out); /* Device -> clipped PCS */
printf("~1 clipped PCS = %f %f %f\n", apcs[0], apcs[1], apcs[2]);
clutpcsfunc(cbctx, out_check, aux, apcs); /* clipped PCS -> Device */
clutipcsfunc(cbctx, pcs_check, NULL, NULL, out_check); /* Device -> PCS */
printf("~1 check PCS = %f %f %f\n", pcs_check[0], pcs_check[1], pcs_check[2]);
if (maxdiffn(3, apcs, pcs_check) > 1e-5) {
fprintf(stderr,"set_tables_auxfix: ipcsfunc check failed\n");
printf("~1 is %f %f %f, should be %f %f %f\n",
pcs_check[0], pcs_check[1], pcs_check[2],
pcs[0], pcs[1], pcs[2]);
}
} else {
fprintf(stderr,"Sanity check of %s not implemented!\n",
icm2str(icmColorSpaceSignature,insig));
}
#endif /* CHECK_FUNCS */
/* Allocate an array to hold all the results */
xcs.res = p->clutPoints;
xcs.din = p->inputChan;
xcs.dout = p->outputChan;
xcs.daux = xcs.dout - 3; /* Number of auxiliary values */
xcs.fesz = 1 + 3 + xcs.dout + 4 * xcs.daux; /* Entry size in floats */
/* Compute total number of entries, and offsets in each dimension */
xcs.n = xcs.res;
xcs.fci[0] = xcs.fesz;
for (e = 1; e < xcs.din; e++) {
xcs.n *= xcs.res;
xcs.fci[e] = xcs.fci[e-1] * xcs.res;
}
xcs.fn = xcs.n * xcs.fesz;
printf("~1 fci = %d %d %d\n",
xcs.fci[0], xcs.fci[1], xcs.fci[2]);
/* Setup offset list to grid cube corners */
xcs.nhi = 1 << xcs.din;
if ((xcs.fhi = (int *)malloc(sizeof(int) * xcs.nhi)) == NULL) {
sprintf(p->icp->err,"icxLut_set_tables: malloc() failed");
return p->icp->errc = 2;
}
for (g = 0; g < xcs.nhi; g++) {
xcs.fhi[g] = 0;
for (e = 0; e < xcs.din; e++) {
if (g & (1 << e))
xcs.fhi[g] += xcs.fci[e];
}
}
printf("~1 nhi = %dd\n",xcs.nhi);
/* Offsets into each entry */
xcs.opcs = 1; /* Allow 1 flag float */
xcs.oout = xcs.opcs + 3; /* dpcs floats */
xcs.oauxr = xcs.oout + xcs.dout; /* dout floats */
xcs.oauxv = xcs.oauxr + xcs.daux * 2; /* 2 daux floats */
xcs.oauxvv = xcs.oauxv + xcs.daux; /* daux floats */
/* daux floats */
printf("~1 res %d, entry size = %d floats, total floats needed = %d\n",xcs.res,xcs.fesz,xcs.fn);
printf("~1 opcs = %d, oout = %d, oauxr = %d, oauxv = %d\n",
xcs.opcs, xcs.oout, xcs.oauxr, xcs.oauxv);
/* Allocate the grid */
if ((xcs.g = (float *)malloc(sizeof(float) * xcs.fn)) == NULL) {
sprintf(p->icp->err,"icxLut_set_tables: malloc() failed");
return p->icp->errc = 2;
}
#if defined(SAVE_TRACE) || defined(USE_TRACE)
{
char *tname = TRACENAME;
#if defined(SAVE_TRACE)
if ((xcs.tf = fopen(tname,"w")) == NULL) {
#else
if ((xcs.tf = fopen(tname,"r")) == NULL) {
#endif
fprintf(stderr,"mark_cells: Can't open file '%s'\n",tname);
exit(-1);
}
#if defined(O_BINARY)
#if defined(SAVE_TRACE)
xcs.tf = freopen(tname,"wb",xcs.tf);
#else
xcs.tf = freopen(tname,"rb",xcs.tf);
#endif
#endif
}
#endif /* SAVE_TRACE || USE_TRACE */
#ifdef NEVER
// ~9 check function
{
int rv;
double auxv[1], rauxv[1];
double pcs[3], rpcs[3];
double dev[4];
auxv[0] = 0.5;
pcs[0] = 60.0;
pcs[1] = 0.0;
pcs[2] = 0.0;
dev[0] = 0.5;
dev[1] = 0.1;
dev[2] = 0.1;
dev[3] = 0.1;
rv = comp_pcs(&xcs, 20.0, NULL, auxv, pcs, dev);
printf("~9 comp_pcs returned %d, device %f %f %f %f\n",rv, dev[0], dev[1], dev[2], dev[3]);
xcs.clutipcsfunc(xcs.cbctx, rpcs, NULL, rauxv, dev);
printf("~9 comp_pcs pcs %f %f %f, aux %f\n", rpcs[0], rpcs[1], rpcs[2], rauxv[0]);
return 0;
}
#endif
printf("~1 doing the first pass\n");
/* First pass */
xcs.dofix = 1;
rv = p->set_tables(p,
ICM_CLUT_SET_APXLS,
(void *)&xcs,
insig, outsig,
xif_set_input,
inmin, inmax,
xif_set_clut,
clutmin, clutmax,
xif_set_output);
#if defined(SAVE_TRACE) || defined(USE_TRACE)
fclose(xcs.tf);
#endif /* SAVE_TRACE || USE_TRACE */
if (rv != 0) {
free(xcs.fhi);
free(xcs.g);
return rv;
}
printf("~1 doing the fixups\n");
/* Try three passes */
for(jj = 0, auxw = AUXWHT; jj < MAX_PASSES; jj++, auxw += AUXWHT) {
int lrv;
/* Figure out which cells need fixing */
rv = mark_cells(&xcs);
printf("~1 cells that need fixing = %d\n", rv);
if (rv == 0)
break;
/* Filter the grid values that need fixing */
printf("~1 about to filter grid points\n");
for (kk = 0, lrv = 0, rv = 1; kk < MAX_FILTERS && rv > 0 && rv != lrv; kk++) {
lrv = rv;
rv = filter_grid(&xcs, 1);
}
if (rv == 0)
break;
/* Lookup device values for grid points with changed auxiliary targets */
printf("~1 about to fix grid points\n");
fix_grid(&xcs, auxw);
};
rv = mark_cells(&xcs);
printf("~1 faulty cells remaining = %d\n", rv);
printf("~1 updatding the icc\n");
/* Second pass */
xcs.dofix = 2;
rv = p->set_tables(p,
ICM_CLUT_SET_APXLS,
(void *)&xcs,
insig, outsig,
xif_set_input,
inmin, inmax,
xif_set_clut,
clutmin, clutmax,
xif_set_output);
free(xcs.fhi);
free(xcs.g);
printf("~1 done\n");
return rv;
}
/* ----------------------------------------- */
/* Mark cells that need fixing */
/* Return number of cells that need fixing */
static int mark_cells(xifs *p) {
int e, f;
int coa[MAX_CHAN], ce; /* grid counter */
int tcount = 0;
#ifdef DO_STATS
double aerr = 0.0;
double merr = 0.0;
double ccount = 0.0;
#endif
/* Get ready to track fixup area bounding box */
for (e = 0; e < p->din; e++) {
p->cmin[e] = 99999;
p->cmax[e] = -1;
}
/* Init the grid counter */
for (ce = 0; ce < p->din; ce++)
coa[ce] = 0;
ce = 0;
/* Itterate throught the PCS clut grid cells */
while (ce < p->din) {
int j, m;
float *gp; /* Grid pointer */
float *ep, *fp; /* Temporary grid pointers */
double wpcsd; /* Worst case PCS distance */
double apcs[3]; /* Average PCS value */
double aout[MAX_CHAN]; /* Average output value */
double check[3]; /* Check PCS */
double ier; /* Interpolation error */
int markcell = 0; /* Mark the cell */
/* Compute base of cell pointer */
gp = p->g; /* Grid pointer */
for (e = 0; e < p->din; e++)
gp += coa[e] * p->fci[e];
/* - - - - - - - - - - - - - - - - - */
/* Full surrounding Cell calculation */
/* Init averaging accumulators */
for (j = 0; j < 3; j++)
apcs[j] = 0.0;
for (f = 0; f < p->dout; f++)
aout[f] = 0.0;
/* For each corner of the PCS grid based at the current point, */
/* average the PCS and Device values */
for (m = 0; m < p->nhi; m++) {
double pcs[3];
double dev[MAX_CHAN];
fp = gp + p->fhi[m];
//ep = fp + p->opcs;
//printf("Input PCS %f %f %f\n", ep[0], ep[1], ep[2]);
ep = fp + p->oout; /* base of device values */
for (f = 0; f < p->dout; f++) {
double v = (double)ep[f];
dev[f] = v;
aout[f] += v;
}
/* Device to clipped PCS */
p->clutipcsfunc(p->cbctx, pcs, NULL, NULL, dev);
for (j = 0; j < 3; j++)
apcs[j] += pcs[j];
//printf("Corner PCS %f %f %f -> ", pcs[0], pcs[1], pcs[2]);
//printf("%f %f %f %f\n", dev[0], dev[1], dev[2], dev[3]);
}
for (j = 0; j < 3; j++)
apcs[j] /= (double)p->nhi;
for (f = 0; f < p->dout; f++)
aout[f] /= (double)p->nhi;
/* Compute worst case distance of PCS corners to average PCS */
wpcsd = 0.0;
for (m = 0; m < p->nhi; m++) {
double ss;
fp = gp + p->fhi[m] + p->opcs;
for (ss = 0.0, j = 0; j < 3; j++) {
double tt = (double)fp[j] - apcs[j];
ss += tt * tt;
}
ss = sqrt(ss);
if (ss > wpcsd)
wpcsd = ss;
}
wpcsd *= THRESH; /* Set threshold as proportion of most distant corner */
if (wpcsd < MINTHRESH) /* Set a minimum threshold */
wpcsd = MINTHRESH;
//printf("Average PCS %f %f %f, Average Device %f %f %f %f\n",
//apcs[0], apcs[1], apcs[2], aout[0], aout[1], aout[2], aout[3]);
/* Average Device to PCS */
p->clutipcsfunc(p->cbctx, check, NULL, NULL, aout);
//printf("Check PCS %f %f %f\n",
//check[0], check[1], check[2]);
/* Compute error in PCS vs. Device interpolation */
ier = absdiffn(3, apcs, check);
//printf("Average PCS %f %f %f, Check PCS %f %f %f, error %f\n",
//apcs[0], apcs[1], apcs[2], check[0], check[1], check[2], ier);
#ifdef DO_STATS
aerr += ier;
ccount++;
if (ier > merr)
merr = ier;
#endif /* STATS */
if (ier > wpcsd) {
markcell = 1;
printf("~1 ier = %f, wpcsd = %f, Dev = %f %f %f %f\n", ier, wpcsd, aout[0], aout[1], aout[2], aout[3]);
}
/* - - - - - - - - - - - - - */
/* Point pair calculations */
if (markcell == 0) { /* Don't bother testing if already marked */
/* Get the base point values */
ep = gp + p->oout; /* base of device values (assumes fhi[0] == 0) */
for (f = 0; f < p->dout; f++)
aout[f] = (double)ep[f];
p->clutipcsfunc(p->cbctx, apcs, NULL, NULL, aout);
/* For each other corner of the PCS grid based at the */
/* current point, compute the interpolation error */
for (m = 1; m < p->nhi; m++) {
double pcs[3]; /* Average PCS */
double dpcs[3]; /* PCS of averaged device */
double dev[MAX_CHAN];
fp = gp + p->fhi[m]; /* Other point point */
ep = fp + p->oout; /* base of device values */
for (f = 0; f < p->dout; f++)
dev[f] = (double)ep[f];
/* Device to clipped PCS */
p->clutipcsfunc(p->cbctx, pcs, NULL, NULL, dev);
for (j = 0; j < 3; j++)
pcs[j] = 0.5 * (pcs[j] + apcs[j]); /* PCS averaged value */
for (f = 0; f < p->dout; f++)
dev[f] = 0.5 * (aout[f] + dev[f]); /* Average device */
/* Average Device to PCS */
p->clutipcsfunc(p->cbctx, dpcs, NULL, NULL, dev);
wpcsd = THRESH * absdiffn(3, pcs, apcs); /* Threshold value */
if (wpcsd < MINTHRESH) /* Set a minimum threshold */
wpcsd = MINTHRESH;
/* Compute error in PCS vs. Device interpolation */
ier = absdiffn(3, pcs, dpcs);
#ifdef DO_STATS
aerr += ier;
ccount++;
if (ier > merr)
merr = ier;
#endif /* STATS */
if (ier > wpcsd) { /* Over threshold */
markcell = 1;
printf("~1 ier = %f, wpcsd = %f, Dev = %f %f %f %f\n", ier, wpcsd, aout[0], aout[1], aout[2], aout[3]);
}
}
}
if (markcell) {
#ifndef WIDEFILTER
/* Mark the whole cube around this base point */
tcount++;
/* Grid points that make up cell */
for (m = 0; m < p->nhi; m++) {
float *fp = gp + p->fhi[m];
XLF_FLAGV(fp) |= XLF_TOFIX;
}
for (e = 0; e < p->din; e++) {
if (coa[e] < p->cmin[e])
p->cmin[e] = coa[e];
if ((coa[e]+2) > p->cmax[e])
p->cmax[e] = coa[e] + 2;
}
#else
int fo[MAX_CHAN], fe; /* region counter */
/* Mark the whole cube around this base point */
tcount++;
/* Grid points one row beyond cell */
for (fe = 0; fe < p->din; fe++)
fo[fe] = -1; /* Init the neighborhood counter */
fe = 0;
/* For each corner of the filter region */
while (fe < p->din) {
float *fp = gp;
for (e = 0; e < p->din; e++) {
int oo = fo[e] + coa[e];
if (oo < 0 || oo >= p->res)
break;
if (oo < p->cmin[e])
p->cmin[e] = oo;
if ((oo+1) > p->cmax[e])
p->cmax[e] = oo + 1;
fp += fo[e] * p->fci[e];
}
if (e >= p->din) { /* Within the grid */
XLF_FLAGV(fp) |= XLF_TOFIX;
}
/* Increment the counter */
for (fe = 0; fe < p->din; fe++) {
if (++fo[fe] < 3)
break; /* No carry */
fo[fe] = -1;
}
}
#endif /* WIDEFILTER */
}
/* - - - - - - - - - - - - - - */
/* Increment the main grid counter */
for (ce = 0; ce < p->din; ce++) {
if (++coa[ce] < (p->res-1))
break; /* No carry */
coa[ce] = 0;
}
}
#ifdef DO_STATS
aerr /= ccount;
printf("~1Average interpolation error %f, maximum %f\n",aerr, merr);
printf("~1Number outside corner radius = %f%%\n",(double)tcount * 100.0/ccount);
printf("~1Bounding box is %d - %d, %d - %d, %d - %d\n",
p->cmin[0], p->cmax[0], p->cmin[1], p->cmax[1], p->cmin[2], p->cmax[2]);
#endif /* STATS */
return tcount;
}
/* ----------------------------------------- */
/* Do one filter pass of grid aux values that need fixing */
/* If tharder is set, don't clamp new aux targets, but signal trading PCS for aux. */
/* Return the number of grid points that have a new aux target */
static int filter_grid(xifs *p, int tharder) {
int e, f;
int coa[MAX_CHAN], ce; /* grid counter */
int tcount = 0;
/* Init the grid counter */
for (ce = 0; ce < p->din; ce++)
coa[ce] = p->cmin[ce];
ce = 0;
/* Itterate throught the PCS clut grid cells, */
/* computing new auxiliary values */
while (ce < p->din) {
float *gp, *fp; /* Grid pointer */
int fo[MAX_CHAN], fe; /* filter counter */
double faux[MAX_CHAN]; /* Filtered auxiliary value */
double nfv; /* Number of values in filter value */
/* Compute base of cell pointer */
gp = p->g; /* Grid pointer */
for (e = 0; e < p->din; e++)
gp += coa[e] * p->fci[e];
if ((XLF_FLAGV(gp) & XLF_TOFIX) != 0) {
for (f = 0; f < p->daux; f++)
faux[f] = 0.0;
nfv = 0.0;
/* Init the neighborhood counter */
for (fe = 0; fe < p->din; fe++)
fo[fe] = -1;
fe = 0;
/* For each corner of the filter region, */
/* compute a filter kernel value */
while (fe < p->din) {
fp = gp + p->oauxv;
for (e = 0; e < p->din; e++) {
int oo = coa[e] + fo[e];
if (oo < 0 || oo >= p->res)
break;
fp += fo[e] * p->fci[e];
}
if (e >= p->din) { /* Add this neighborhood value */
for (f = 0; f < p->daux; f++)
faux[f] += fp[f];
nfv++;
}
/* Increment the counter */
for (fe = 0; fe < p->din; fe++) {
if (++fo[fe] < 2)
break; /* No carry */
fo[fe] = -1;
}
}
/* Compute average value, and save it */
fp = gp + p->oauxvv;
for (f = 0; f < p->daux; f++)
fp[f] = (float)(faux[f] / nfv);
}
/* Increment the counter */
for (ce = 0; ce < p->din; ce++) {
if (++coa[ce] < p->cmax[ce])
break; /* No carry */
coa[ce] = p->cmin[ce];
}
}
/* Clip the new values to the valid range, and put them into place */
/* Init the grid counter */
for (ce = 0; ce < p->din; ce++)
coa[ce] = p->cmin[ce];
ce = 0;
/* Itterate throught the PCS clut grid cells, */
/* computing new auxiliary values */
while (ce < p->din) {
float *gp, *dp, *sp, *rp; /* Grid pointer */
/* Compute base of cell pointer */
gp = p->g; /* Grid pointer */
for (e = 0; e < p->din; e++)
gp += coa[e] * p->fci[e];
if ((XLF_FLAGV(gp) & XLF_TOFIX) != 0) {
int ud = 0; /* Update point flag */
int th = 0; /* Try harder flag */
sp = gp + p->oauxvv; /* Source */
dp = gp + p->oauxv; /* Destination */
rp = gp + p->oauxr; /* Range */
for (f = 0; f < p->daux; f++) {
double v, ov;
v = sp[f];
if (v < rp[2 * f]) { /* Limit new aux to valid locus range */
if (tharder)
th = 1;
else
v = rp[2 * f];
}
if (v > rp[2 * f + 1]) {
if (tharder)
th = 1;
else
v = rp[2 * f + 1];
}
ov = dp[f]; /* Old aux value */
if (fabs(ov - v) > 0.001) {
dp[f] = (float)v;
ud = 1; /* Worth updating it */
}
}
if (ud != 0) {
XLF_FLAGV(gp) |= XLF_UPDATE;
if (th != 0)
XLF_FLAGV(gp) |= XLF_HARDER;
}
if (XLF_FLAGV(gp) & XLF_UPDATE)
tcount++;
}
/* Increment the counter */
for (ce = 0; ce < p->din; ce++) {
if (++coa[ce] < p->cmax[ce])
break; /* No carry */
coa[ce] = p->cmin[ce];
}
}
#ifdef DO_STATS
printf("~1 totol no. cells that will change = %d\n",tcount);
#endif
return tcount;
}
/* ----------------------------------------- */
/* Update the grid values given the new auxiliary targets. */
/* Reset the TOFIX flags. */
static void fix_grid(
xifs *p,
double auxw /* Compromise PCS factor */
) {
int e, f;
int coa[MAX_CHAN], ce; /* grid counter */
/* Init the grid counter */
for (ce = 0; ce < p->din; ce++)
coa[ce] = p->cmin[ce];
ce = 0;
/* Itterate throught the PCS clut grid cells, */
/* computing new auxiliary values */
while (ce < p->din) {
float *gp, *ep; /* Grid pointer */
/* Compute base of cell pointer */
gp = p->g; /* Grid pointer */
for (e = 0; e < p->din; e++)
gp += coa[e] * p->fci[e];
if ((XLF_FLAGV(gp) & XLF_TOFIX) != 0) {
if ((XLF_FLAGV(gp) & XLF_UPDATE) != 0) {
double out[MAX_CHAN], auxv[MAX_CHAN], pcs[MAX_CHAN];
double auxrv[MAX_CHAN];
ep = gp + p->opcs;
for (f = 0; f < 3; f++) /* Get PCS values */
pcs[f] = (double)ep[f];
ep = gp + p->oauxv;
for (f = 0; f < p->daux; f++) /* Get auxiliary values */
auxv[f] = (double)ep[f];
ep = gp + p->oout;
if ((XLF_FLAGV(gp) & XLF_HARDER) != 0) {
/* Use "try harder" PCS->devicve lookup */
/* Set starting value */
for (f = 0; f < p->dout; f++)
out[f] = (double)ep[f];
if (comp_pcs(p, auxw, auxrv, auxv, pcs, out) == 0) {
for (f = 0; f < p->dout; f++) /* Save the new output values */
ep[f] = (float)out[f];
}
#ifndef NEVER
else {
printf("~9 comp_pcs failed!\n");
}
#endif
/* Save actual auxiliary values */
ep = gp + p->oauxv;
for (f = 0; f < p->daux; f++)
ep[f] = (float)auxrv[f];
} else {
/* Lookup output value with different auxiliary target */
p->clutpcsfunc(p->cbctx, out, auxv, pcs);
for (f = 0; f < p->dout; f++) /* Save the new output values */
ep[f] = (float)out[f];
/* assume auxiliary target will have been met */
}
}
XLF_FLAGV(gp) &= ~(XLF_TOFIX | XLF_UPDATE | XLF_HARDER);
}
/* Increment the counter */
for (ce = 0; ce < p->din; ce++) {
if (++coa[ce] < p->cmax[ce])
break; /* No carry */
coa[ce] = p->cmin[ce];
}
}
}
/* ----------------------------------------- */
/* minimizer callback function */
static double minfunc( /* Return function value */
void *fdata, /* Opaque data pointer */
double *tp /* Device input value */
) {
xifs *p = (xifs *)fdata;
double pcs[3];
double auxv[MAX_CHAN];
double olimit;
double fval;
double tval;
int e, f;
#define GWHT 1000.0
/* Check if the device input values are outside (assumed) device range 0.0 - 1.0 */
for (tval = 0.0, f = 0; f < p->dout; f++) {
if (tp[f] < 0.0) {
if (tp[0] > tval)
tval = tp[0];
tp[f] = 0.0;
} else if (tp[f] > 1.0) {
if ((tp[0] - 1.0) > tval)
tval = (tp[0] - 1.0);
tp[f] = 1.0;
}
}
/* Figure PCS, auxiliary error, and amount over ink limit */
p->clutipcsfunc(p->cbctx, pcs, &olimit, auxv, tp);
if (olimit > tval)
tval = olimit;
fval = GWHT * tval; /* Largest value that exceeds device/ink range */
/* Figure auxiliary error */
for (tval = 0.0, e = 0; e < p->daux; e++) {
double tt;
tt = auxv[e] - p->m_auxv[e];
tval += tt * tt;
}
fval += p->m_auxw * sqrt(tval);
/* Figure PCS error */
for (tval = 0.0, e = 0; e < 3; e++) {
double tt;
tt = pcs[e] - p->m_pcs[e];
tval += tt * tt;
}
fval += sqrt(tval);
//printf("~9 minfunc returning error %f on %f %f %f %f\n", fval, tp[0], tp[1], tp[2], tp[3]);
return fval;
}
/* Given a PCS target, and auxiliary target, and a current */
/* device value, return a device value that is a better */
/* tradeoff between the PCS target and the auxiliary target. */
/* return non-zero on error */
static int comp_pcs(
xifs *p, /* Aux fix structure */
double auxw, /* Auxiliary error weighting factor (ie. 5 - 100) */
double *auxrv, /* If not NULL, return actual auxiliary acheived */
double *auxv, /* Auxiliary target value */
double *pcs, /* PCS target value */
double *dev /* Device starting value, return value */
) {
int i;
double rv;
double ss[MAX_CHAN];
double check[3]; /* Check PCS */
#ifdef NEVER /* Diagnostic info */
double start[3]; /* Starting PCS */
double auxst[1]; /* Starting aux */
double auxch[1]; /* Auxiliary check value */
p->clutipcsfunc(p->cbctx, start, NULL, auxst, dev);
#endif
p->m_auxw = auxw;
for (i = 0; i < p->daux; i++)
p->m_auxv[i] = auxv[i];
for (i = 0; i < 3; i++)
p->m_pcs[i] = pcs[i];
/* Set initial search size */
for (i = 0; i < p->dout; i++)
ss[i] = 0.3;
if (powell(&rv, p->dout, dev, ss, 0.001, 1000, minfunc, p, NULL, NULL) != 0) {
return 1;
}
/* Sanitise device values */
for (i = 0; i < p->dout; i++) {
double v = dev[i];
if (v < 0.0)
v = 0.0;
else if (v > 1.0)
v = 1.0;
dev[i] = v;
}
if (auxrv != NULL) { /* Return actual auxiliary */
p->clutipcsfunc(p->cbctx, check, NULL, auxrv, dev);
}
#ifdef NEVER /* Diagnostic info */
p->clutipcsfunc(p->cbctx, check, NULL, auxch, dev);
printf("~9 comp_pcs target aux %f PCS %f %f %f\n", auxv[0], pcs[0], pcs[1], pcs[2]);
printf("~9 returning error %f on %f %f %f %f\n", rv, dev[0], dev[1], dev[2], dev[3]);
printf("~9 PCS start = %f %f %f (%f)\n",start[0], start[1], start[2],
absdiffn(3, start, pcs));
printf("~9 PCS finish = %f %f %f (%f)\n",check[0], check[1], check[2],
absdiffn(3, check, pcs));
printf("~9 PCS delta = %f, aux delta = %f\n", absdiffn(3, start, check),
fabs(auxst[0] - auxch[0]));
#endif /* NEVER */
return 0;
}
|