1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
|
/*
* International Color Consortium color transform expanded support
*
* Author: Graeme W. Gill
* Date: 2/7/00
* Version: 1.00
*
* Copyright 2000, 2003 Graeme W. Gill
* All rights reserved.
* This material is licenced under the GNU AFFERO GENERAL PUBLIC LICENSE Version 3 :-
* see the License.txt file for licencing details.
*
* Based on the old iccXfm class.
*/
/*
* This module provides the expands icclib functionality
* for matrix profiles.
* This file is #included in xicc.c, to keep its functions private.
*/
/*
* TTBD:
*
* Some of the error handling is crude. Shouldn't use
* error(), should return status.
*
* Should allow for offset in curves - this will greatly improve
* profile quality on non-calibrated displays. See spectro/dispcal.c
* spectro/moncurve.c. Use conjgrad() instead of powell() to speed things up.
* Note that if curves have scale, the scale will have to be
* normalized back to zero by scaling the matrix before storing
* the result in the ICC profile.
*
*/
#define USE_CIE94_DE /* Use CIE94 delta E measure when creating fit */
/* Weights in shaper parameters, to minimise unconstrained "wiggles" */
#define MXNORDERS 30 /* Maximum shaper harmonic orders to use */
#define XSHAPE_MAG 1.0 /* Overall shaper parameter magnitide */
#define XSHAPE_OFFG 0.1 /* Input offset weights when ord 0 is gamma */
#define XSHAPE_OFFS 1.0 /* Input offset weights when ord 0 is shaper */
#define XSHAPE_HW01 0.01 /* 0 & 1 harmonic weights */
#define XSHAPE_HBREAK 3 /* Harmonic that has HWBR */
#define XSHAPE_HWBR 0.5 /* Base weight of harmonics HBREAK up */
#define XSHAPE_HWINC 0.5 /* Increase in weight for each harmonic above HWBR */
#define XSHAPE_GAMTHR 0.01 /* Input threshold for linear slope below gamma power */
#undef DEBUG /* Extra printfs */
#undef DEBUG_PLOT /* Plot curves */
/* ========================================================= */
/* Forward and Backward Matrix type conversion */
/* Return 0 on success, 1 if clipping occured, 2 on other error */
/* Individual components of Fwd conversion: */
static int
icxLuMatrixFwd_curve (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
return ((icmLuMatrix *)p->plu)->fwd_curve((icmLuMatrix *)p->plu, out, in);
}
static int
icxLuMatrixFwd_matrix (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
return ((icmLuMatrix *)p->plu)->fwd_matrix((icmLuMatrix *)p->plu, out, in);
}
static int
icxLuMatrixFwd_abs (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
int rv = 0;
rv |= ((icmLuMatrix *)p->plu)->fwd_abs((icmLuMatrix *)p->plu, out, in);
if (p->pcs == icxSigJabData) {
p->cam->XYZ_to_cam(p->cam, out, out);
}
return rv;
}
/* Overall Fwd conversion */
static int
icxLuMatrixFwd_lookup (
icxLuBase *pp, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
int rv = 0;
icxLuMatrix *p = (icxLuMatrix *)pp;
rv |= icxLuMatrixFwd_curve(p, out, in);
rv |= icxLuMatrixFwd_matrix(p, out, out);
rv |= icxLuMatrixFwd_abs(p, out, out);
return rv;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Given a relative XYZ or Lab PCS value, convert in the fwd direction into */
/* the nominated output PCS (ie. Absolute, Jab etc.) */
/* (This is used in generating gamut compression in B2A tables) */
void icxLuMatrix_fwd_relpcs_outpcs(
icxLuBase *pp,
icColorSpaceSignature is, /* Input space, XYZ or Lab */
double *out, double *in) {
icxLuMatrix *p = (icxLuMatrix *)pp;
if (is == icSigLabData && p->natpcs == icSigXYZData) {
icmLab2XYZ(&icmD50, out, in);
icxLuMatrixFwd_abs(p, out, out);
} else if (is == icSigXYZData && p->natpcs == icSigLabData) {
icmXYZ2Lab(&icmD50, out, in);
icxLuMatrixFwd_abs(p, out, out);
} else {
icxLuMatrixFwd_abs(p, out, in);
}
}
/* - - - - - - - - - - - - - - - - - - - - - */
/* Individual components of Bwd conversion: */
static int
icxLuMatrixBwd_abs (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
int rv = 0;
if (p->pcs == icxSigJabData) {
p->cam->cam_to_XYZ(p->cam, out, in);
/* Hack to prevent CAM02 weirdness being amplified by */
/* any later per channel clipping. */
/* Limit -Y to non-stupid values by scaling */
if (out[1] < -0.1) {
out[0] *= -0.1/out[1];
out[2] *= -0.1/out[1];
out[1] = -0.1;
}
rv |= ((icmLuMatrix *)p->plu)->bwd_abs((icmLuMatrix *)p->plu, out, out);
} else {
rv |= ((icmLuMatrix *)p->plu)->bwd_abs((icmLuMatrix *)p->plu, out, in);
}
return rv;
}
static int
icxLuMatrixBwd_matrix (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
return ((icmLuMatrix *)p->plu)->bwd_matrix((icmLuMatrix *)p->plu, out, in);
}
static int
icxLuMatrixBwd_curve (
icxLuMatrix *p, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
return ((icmLuMatrix *)p->plu)->bwd_curve((icmLuMatrix *)p->plu, out, in);
}
/* Overall Bwd conversion */
static int
icxLuMatrixBwd_lookup (
icxLuBase *pp, /* This */
double *out, /* Vector of output values */
double *in /* Vector of input values */
) {
int rv = 0;
icxLuMatrix *p = (icxLuMatrix *)pp;
rv |= icxLuMatrixBwd_abs(p, out, in);
rv |= icxLuMatrixBwd_matrix(p, out, out);
rv |= icxLuMatrixBwd_curve(p, out, out);
return rv;
}
static void
icxLuMatrix_free(
icxLuBase *p
) {
p->plu->del(p->plu);
if (p->cam != NULL)
p->cam->del(p->cam);
free(p);
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* Given a nominated output PCS (ie. Absolute, Jab etc.), convert it in the bwd */
/* direction into a relative XYZ or Lab PCS value */
/* (This is used in generating gamut compression in B2A tables) */
void icxLuMatrix_bwd_outpcs_relpcs(
icxLuBase *pp,
icColorSpaceSignature os, /* Output space, XYZ or Lab */
double *out, double *in) {
icxLuMatrix *p = (icxLuMatrix *)pp;
icxLuMatrixFwd_abs(p, out, in);
if (os == icSigXYZData && p->natpcs == icSigLabData) {
icmLab2XYZ(&icmD50, out, out);
} else if (os == icSigXYZData && p->natpcs == icSigLabData) {
icmXYZ2Lab(&icmD50, out, out);
}
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
static gamut *icxLuMatrixGamut(icxLuBase *plu, double detail);
/* Do the basic icxLuMatrix creation and initialisation */
static icxLuMatrix *
alloc_icxLuMatrix(
xicc *xicp,
icmLuBase *plu, /* Pointer to Lu we are expanding (ours) */
int dir, /* 0 = fwd, 1 = bwd */
int flags /* clip, merge flags */
) {
icxLuMatrix *p;
if ((p = (icxLuMatrix *) calloc(1,sizeof(icxLuMatrix))) == NULL)
return NULL;
p->pp = xicp;
p->plu = plu;
p->del = icxLuMatrix_free;
p->lutspaces = icxLutSpaces;
p->spaces = icxLuSpaces;
p->get_native_ranges = icxLu_get_native_ranges;
p->get_ranges = icxLu_get_ranges;
p->efv_wh_bk_points = icxLuEfv_wh_bk_points;
p->get_gamut = icxLuMatrixGamut;
p->fwd_relpcs_outpcs = icxLuMatrix_fwd_relpcs_outpcs;
p->bwd_outpcs_relpcs = icxLuMatrix_bwd_outpcs_relpcs;
p->nearclip = 0; /* Set flag defaults */
p->mergeclut = 0;
p->noisluts = 0;
p->noipluts = 0;
p->nooluts = 0;
p->intsep = 0;
p->fwd_lookup = icxLuMatrixFwd_lookup;
p->fwd_curve = icxLuMatrixFwd_curve;
p->fwd_matrix = icxLuMatrixFwd_matrix;
p->fwd_abs = icxLuMatrixFwd_abs;
p->bwd_lookup = icxLuMatrixBwd_lookup;
p->bwd_abs = icxLuMatrixBwd_abs;
p->bwd_matrix = icxLuMatrixBwd_matrix;
p->bwd_curve = icxLuMatrixBwd_curve;
if (dir) { /* Bwd */
p->lookup = icxLuMatrixBwd_lookup;
p->inv_lookup = icxLuMatrixFwd_lookup;
} else {
p->lookup = icxLuMatrixFwd_lookup;
p->inv_lookup = icxLuMatrixBwd_lookup;
}
/* There are no matrix specific flags */
p->flags = flags;
/* Get details of internal, native color space */
p->plu->lutspaces(p->plu, &p->natis, NULL, &p->natos, NULL, &p->natpcs);
/* Get other details of conversion */
p->plu->spaces(p->plu, NULL, &p->inputChan, NULL, &p->outputChan, NULL, NULL, NULL, NULL, NULL);
return p;
}
/* We setup valid fwd and bwd component conversions, */
/* but setup only the asked for overal conversion. */
static icxLuBase *
new_icxLuMatrix(
xicc *xicp,
int flags, /* clip, merge flags */
icmLuBase *plu, /* Pointer to Lu we are expanding */
icmLookupFunc func, /* Functionality requested */
icRenderingIntent intent, /* Rendering intent */
icColorSpaceSignature pcsor, /* PCS override (0 = def) */
icxViewCond *vc, /* Viewing Condition (NULL if pcsor is not CIECAM) */
int dir /* 0 = fwd, 1 = bwd */
) {
icxLuMatrix *p;
/* Do basic creation and initialisation */
if ((p = alloc_icxLuMatrix(xicp, plu, dir, flags)) == NULL)
return NULL;
p->func = func;
/* Init the CAM model */
if (pcsor == icxSigJabData) {
if (vc != NULL) /* One has been provided */
p->vc = *vc; /* Copy the structure */
else
xicc_enum_viewcond(xicp, &p->vc, -1, NULL, 0, NULL); /* Use a default */
p->cam = new_icxcam(cam_default);
p->cam->set_view(p->cam, p->vc.Ev, p->vc.Wxyz, p->vc.La, p->vc.Yb, p->vc.Lv,
p->vc.Yf, p->vc.Yg, p->vc.Gxyz, XICC_USE_HK);
} else {
p->cam = NULL;
}
/* Remember the effective intent */
p->intent = intent;
/* Get the effective spaces */
plu->spaces(plu, &p->ins, NULL, &p->outs, NULL, NULL, NULL, NULL, &p->pcs, NULL);
/* Override with pcsor */
if (pcsor == icxSigJabData) {
p->pcs = pcsor;
if (func == icmBwd || func == icmGamut || func == icmPreview)
p->ins = pcsor;
if (func == icmFwd || func == icmPreview)
p->outs = pcsor;
}
/* In general the native and effective ranges of the icx will be the same as the */
/* underlying icm lookup object. */
p->plu->get_lutranges(p->plu, p->ninmin, p->ninmax, p->noutmin, p->noutmax);
p->plu->get_ranges(p->plu, p->inmin, p->inmax, p->outmin, p->outmax);
/* If we have a Jab PCS override, reflect this in the effective icx range. */
/* Note that the ab ranges are nominal. They will exceed this range */
/* for colors representable in L*a*b* PCS */
if (p->ins == icxSigJabData) {
p->inmin[0] = 0.0; p->inmax[0] = 100.0;
p->inmin[1] = -128.0; p->inmax[1] = 128.0;
p->inmin[2] = -128.0; p->inmax[2] = 128.0;
} else if (p->outs == icxSigJabData) {
p->outmin[0] = 0.0; p->outmax[0] = 100.0;
p->outmin[1] = -128.0; p->outmax[1] = 128.0;
p->outmin[2] = -128.0; p->outmax[2] = 128.0;
}
return (icxLuBase *)p;
}
/* ========================================================== */
/* xicc creation code */
/* ========================================================== */
/* Context for figuring input curves */
typedef struct {
rspl *r; /* Device -> PCS rspl */
int linear; /* Flag */
double nmin, nmax; /* PCS End points to linearise */
double min, max; /* device End points to linearise */
} mxinctx;
#define NPARMS (9 + 6 + 3 * MXNORDERS)
/* Context for optimising matrix */
typedef struct {
int verb; /* Verbose */
int optdim; /* Optimisation dimensions */
int isLinear; /* NZ if no curves, fixed Gamma = 1.0 */
int isGamma; /* NZ if gamma + matrix, else shaper */
int isShTRC; /* NZ if shared TRC */
int shape0gam; /* NZ if zero'th order shaper should be gamma function */
int norders; /* Number of shaper orders */
int clipbw; /* Prevent white > 1 and -ve black */
int clipprims; /* Prevent primaries going -ve */
double smooth; /* Shaper smoothing factor (nominal = 1.0) */
double dscale; /* Scale device values */
double v[NPARMS]; /* Holder for parameters */
double sa[NPARMS]; /* Initial search area */
/* Rest are matrix : */
/* 0 1 2 R X */
/* 3 4 5 * G = Y */
/* 6 7 8 B Z */
/* For Gamma: */
/* 9, 10, 11 are gamma */
/* Else for shaper only: */
/* 9, 10, 11 are Input Offset */
/* 12, 13, 14 are Output Offset */
/* 15, 16, 17 are Gamma or 0th harmonics */
/* 18, 19, 20 are 1st harmonics */
/* 21, 22, 23 are 2nd harmonics */
/* 24, 25, 26 etc. */
/* For isShTRC there is only one set of offsets & harmonics */
icmXYZNumber wp; /* Assumed white point for Lab conversion */
cow *points; /* List of test points as dev->Lab */
int nodp; /* Number of data points */
} mxopt;
/* Per chanel function being optimised */
static void mxmfunc1(mxopt *p, int j, double *v, double *out, double *in) {
double vv, g;
int ps = 3; /* Parameter spacing */
vv = *in * p->dscale;
if (p->isShTRC) {
j = 0;
ps = 1; /* Only one channel */
}
if (p->isLinear) { /* No per channel curve */
*out = vv;
return;
}
if (p->isGamma) { /* Pure Gamma */
/* Apply gamma */
g = v[9 + j];
if (g <= 0.0)
vv = 1.0;
else {
if (vv >= 0.0) {
vv = pow(vv, g);
} else {
vv = -pow(-vv, g);
}
}
} else { /* Add extra shaper parameters */
int ord;
if (p->shape0gam) {
/* Apply input offset */
g = v[9 + j]; /* Offset value */
if (g >= 1.0) {
vv = 1.0;
} else {
vv = g + ((1.0 - g) * vv);
}
/* Apply gamma as order 0 */
g = v[9 + 2 * ps + j];
if (g <= 0.0)
vv = 1.0;
else {
/* Power with straight line at small values */
if (vv >= XSHAPE_GAMTHR) {
vv = pow(vv, g);
} else {
double slope, oth;
oth = pow(XSHAPE_GAMTHR, g); /* Output at input threshold */
slope = g * pow(XSHAPE_GAMTHR, g - 1.0); /* Slope at input threshold */
vv = oth + (vv - XSHAPE_GAMTHR) * slope; /* Straight line */
}
}
}
/* Process all the shaper orders from high to low. */
/* [These shapers were inspired by a Graphics Gem idea */
/* (Gems IV, VI.3, "Fast Alternatives to Perlin's Bias and */
/* Gain Functions, pp 401). */
/* They have the nice properties that they are smooth, and */
/* can't be non-monotonic. The control parameter has been */
/* altered to have a range from -oo to +oo rather than 0.0 to 1.0 */
/* so that the search space is less non-linear. ] */
if (p->shape0gam)
ord = 1;
else
ord = 0;
for (; ord < p->norders; ord++)
{
int nsec; /* Number of sections */
double sec; /* Section */
g = v[9 + 2 * ps + ord * ps + j]; /* Parameter */
nsec = ord + 1; /* Increase sections for each order */
vv *= (double)nsec;
sec = floor(vv);
if (((int)sec) & 1)
g = -g; /* Alternate action in each section */
vv -= sec;
if (g >= 0.0) {
vv = vv/(g - g * vv + 1.0);
} else {
vv = (vv - g * vv)/(1.0 - g * vv);
}
vv += sec;
vv /= (double)nsec;
}
/* (For extrapolation it helps to pin 0 & 1) */
if (p->shape0gam) {
/* Apply output offset */
g = v[9 + 1 * ps + j]; /* Offset value */
if (g >= 1.0) {
vv = 1.0;
} else if (g > 0.0) {
vv = g + ((1.0 - g) * vv);
}
}
}
*out = vv;
}
/* Function being optimised */
static void mxmfunc(mxopt *p, double *v, double *xyz, double *in) {
int j;
double rgb[3];
/* Apply per channel processing */
for (j = 0; j < 3; j++)
mxmfunc1(p, j, v, &rgb[j], &in[j]);
/* Apply matrix */
xyz[0] = v[0] * rgb[0] + v[1] * rgb[1] + v[2] * rgb[2];
xyz[1] = v[3] * rgb[0] + v[4] * rgb[1] + v[5] * rgb[2];
xyz[2] = v[6] * rgb[0] + v[7] * rgb[1] + v[8] * rgb[2];
}
/* return the sum of the squares of the current shaper parameters */
static double xshapmag(
mxopt *p, /* Base of optimisation structure */
double *v /* Pointer to parameters */
) {
double tt, w, tparam = 0.0;
int f, g;
if (p->isGamma) { /* Pure Gamma only */
return 0.0;
}
if (p->isShTRC) {
/* Input offset value */
if (p->shape0gam)
w = XSHAPE_OFFG;
else
w = XSHAPE_OFFS;
tt = v[9];
tt *= tt;
tparam += w * tt;
/* Output offset value */
tt = v[10];
tt *= tt;
tparam += w * tt;
/* Shaper values */
for (f = 0; f < p->norders; f++) {
tt = v[11 + f];
if (f == 0 && p->shape0gam)
tt -= 1.0; /* default is linear */
/* Weigh to suppress ripples */
if (f <= 1) { /* Use XSHAPE_HW01 */
w = XSHAPE_HW01;
} else if (f <= XSHAPE_HBREAK) { /* Blend from XSHAPE_HW01 to XSHAPE_HWBR * smooth */
double bl = (f - 1.0)/(XSHAPE_HBREAK - 1.0);
w = (1.0 - bl) * XSHAPE_HW01 + bl * XSHAPE_HWBR * p->smooth;
} else { /* Use XSHAPE_HWBR * smooth */
w = XSHAPE_HWBR + (f-XSHAPE_HBREAK) * XSHAPE_HWINC * p->smooth;
}
tt *= tt;
tparam += w * tt;
}
return XSHAPE_MAG * tparam;
}
/* Input offset value */
if (p->shape0gam)
w = XSHAPE_OFFG;
else
w = XSHAPE_OFFS;
for (g = 0; g < 3; g++) {
tt = v[9 + g];
tt *= tt;
tparam += w * tt;
}
/* Output ffset value */
for (g = 0; g < 3; g++) {
tt = v[12 + g];
tt *= tt;
tparam += w * tt;
}
/* Shaper values */
for (f = 0; f < p->norders; f++) {
/* Weigh to suppress ripples */
if (f <= 1) {
w = XSHAPE_HW01;
} else if (f <= XSHAPE_HBREAK) {
double bl = (f - 1.0)/(XSHAPE_HBREAK - 1.0);
w = (1.0 - bl) * XSHAPE_HW01 + bl * XSHAPE_HWBR * p->smooth;
} else {
w = XSHAPE_HWBR + (f-XSHAPE_HBREAK) * XSHAPE_HWINC * p->smooth;
}
for (g = 0; g < 3; g++) {
tt = v[15 + 3 * f + g];
if (f == 0 && p->shape0gam)
tt -= 1.0; /* default is linear */
tt *= tt;
tparam += w * tt;
}
}
return XSHAPE_MAG * tparam/3.0;
}
/* Matrix optimisation function handed to powell() */
static double mxoptfunc(void *edata, double *v) {
mxopt *p = (mxopt *)edata;
double err = 0.0, rv = 0.0, smv;
double xyz[3], lab[3];
int i;
for (i = 0; i < p->nodp; i++) {
/* Apply our function */
//printf("%f %f %f -> %f %f %f\n", p->points[i].p[0], p->points[i].p[1], p->points[i].p[2], xyz[0], xyz[1], xyz[2]);
mxmfunc(p, v, xyz, p->points[i].p);
/* Convert to Lab */
icmXYZ2Lab(&p->wp, lab, xyz);
//printf("%f %f %f -> %f %f %f, target %f %f %f\n", p->points[i].p[0], p->points[i].p[1], p->points[i].p[2], lab[0], lab[1], lab[2], p->points[i].v[0], p->points[i].v[1], p->points[i].v[2]);
/* Accumulate total delta E squared */
#ifdef USE_CIE94_DE
rv += p->points[i].w * icmCIE94sq(lab, p->points[i].v);
#else
rv += p->points[i].w * icmLabDEsq(lab, p->points[i].v);
#endif
}
/* Normalise error to be an average delta E squared */
rv /= (double)p->nodp;
/* Sum with shaper parameters squared, to */
/* minimise unsconstrained "wiggles" */
smv = xshapmag(p, v);
rv += smv;
/* Penalize if we have white > 1 or -ve black */
if (p->clipbw) {
double tp[3];
tp[0] = tp[1] = tp[2] = 1.0;
mxmfunc(p, v, xyz, tp);
if ((xyz[1] - 1.0) > err)
err = xyz[1] - 1.0;
tp[0] = tp[1] = tp[2] = 0.0;
mxmfunc(p, v, xyz, tp);
for (i = 0; i < 3; i++) {
if (-xyz[i] > err)
err = -v[i];
}
}
/* Penalize if we have -ve primaries */
if (p->clipprims) {
for (i = 0; i < 9; i++) {
if (-v[i] > err)
err = -v[i];
}
}
rv += err * 1000.0;
#ifdef DEBUG
printf("~9(%f)mxoptfunc returning %f\n",smv,rv);
#endif
return rv;
}
/* Matrix progress function handed to powell() */
static void mxprogfunc(void *pdata, int perc) {
mxopt *p = (mxopt *)pdata;
if (p->verb) {
printf("%c% 3d%%",cr_char,perc);
if (perc == 100)
printf("\n");
fflush(stdout);
}
}
/* Given a correction matrix, transform the matrix values */
static void mxtransform(mxopt *os, double mat[3][3]) {
double vec[3];
vec[0] = os->v[0]; vec[1] = os->v[3]; vec[2] = os->v[6];
icmMulBy3x3(vec, mat, vec);
os->v[0] = vec[0]; os->v[3] = vec[1]; os->v[6] = vec[2];
vec[0] = os->v[1]; vec[1] = os->v[4]; vec[2] = os->v[7];
icmMulBy3x3(vec, mat, vec);
os->v[1] = vec[0]; os->v[4] = vec[1]; os->v[7] = vec[2];
vec[0] = os->v[2]; vec[1] = os->v[5]; vec[2] = os->v[8];
icmMulBy3x3(vec, mat, vec);
os->v[2] = vec[0]; os->v[5] = vec[1]; os->v[8] = vec[2];
}
/* Setup and then return the optimized matrix fit in the mxopt structure. */
/* Return 0 on sucess, error code on failure. */
static int
createMatrix(
char *err, /* Return error message */
mxopt *os, /* Optimisation information */
int verb, /* NZ if verbose */
int nodp, /* Number of points */
cow *ipoints, /* Array of input points in XYZ space */
int isLab, /* nz if data points are Lab */
int quality, /* Quality metric, 0..3 (-1 == 2 orders only) */
int isLinear, /* NZ if pure linear, gamma = 1.0 */
int isGamma, /* NZ if gamma rather than shaper */
int isShTRC, /* NZ if shared TRCs */
int shape0gam, /* NZ if zero'th order shaper should be gamma function */
int clipbw, /* Prevent white > 1 and -ve black */
int clipprims, /* Prevent primaries going -ve */
double smooth, /* Smoothing factor (nominal 1.0) */
double scale /* Scale device values */
) {
double nweight = 1.0; /* Amount to weight neutral patches (make a parameter ?) */
int inputChan = 3; /* Must be RGB like */
int outputChan = 3; /* Must be the PCS */
int rsplflags = 0; /* Flags for scattered data rspl */
int e, f, i, j;
int maxits = 200; /* Optimisation stop params */
double stopon = 0.01; /* Absolute delta E change to stop on */
cow *points; /* Lab copy of ipoints */
double rerr;
#ifdef DEBUG_PLOT
#define XRES 100
double xx[XRES];
double y1[XRES];
#endif /* DEBUG_PLOT */
if (verb)
rsplflags |= RSPL_VERBOSE;
/* Allocate the array passed to fit_rspl() */
if ((points = (cow *)malloc(sizeof(cow) * nodp)) == NULL) {
if (err != NULL)
sprintf(err,"Allocation of scattered coordinate array failed");
return 2;
}
/* Setup for optimising run */
if (verb != 0)
os->verb = verb;
else
os->verb = 0;
os->points = points;
os->nodp = nodp;
os->isShTRC = 0;
os->shape0gam = shape0gam;
os->smooth = smooth;
os->clipbw = clipbw;
os->clipprims = clipprims;
os->dscale = scale;
/* Set quality/effort factors */
if (quality >= 3) { /* Ultra high */
os->norders = 20;
maxits = 10000;
stopon = 5e-7;
} else if (quality == 2) { /* High */
os->norders = 12;
maxits = 5000;
stopon = 5e-6;
} else if (quality == 1) { /* Medium */
os->norders = 8;
maxits = 2000;
stopon = 5e-5;
} else if (quality == 0) { /* Low */
os->norders = 4;
maxits = 1000;
stopon = 5e-4;
} else { /* Ultra Low */
os->norders = 2;
maxits = 1000;
stopon = 5e-4;
}
if (os->norders > MXNORDERS)
os->norders = MXNORDERS;
/* Setup points ready for optimisation and do an initial Lab conversion */
for (i = 0; i < nodp; i++) {
for (e = 0; e < inputChan; e++)
points[i].p[e] = ipoints[i].p[e];
for (f = 0; f < outputChan; f++)
points[i].v[f] = ipoints[i].v[f];
points[i].w = ipoints[i].w;
}
/* Pick a white point for the real Lab conversion */
{
double wp[3];
double wpy = -1e60;
int wix = -1;
/* We assume that the input target is well behaved, */
/* and that it includes a white point patch, */
/* and that it has an extreme L value */
for (i = 0; i < nodp; i++) {
double yv;
/* Tilt things towards D50 neutral white patches */
yv = points[i].v[0] - 0.3 * sqrt(points[i].v[1] * points[i].v[1]
+ points[i].v[2] * points[i].v[2]);
if (yv > wpy) {
wpy = yv;
wix = i;
}
}
//printf("~1 picked point %d as white\n",wix);
icmLab2XYZ(&icmD50, wp, points[wix].v);
wp[0] /= wp[1];
wp[2] /= wp[1];
wp[1] = 1.0;
icmAry2XYZ(os->wp, wp);
/* We'll use this wp for delta E calculation when creating the matrix */
// if (os->verb) printf("Switching to L*a*b* white point %f %f %f\n",os->wp.X,os->wp.Y,os->wp.Z);
if (nweight < 1.0) /* Sanity */
nweight = 1.0;
for (i = 0; i < nodp; i++) {
double lch[3];
if (isLab)
icmLab2XYZ(&icmD50, points[i].v, points[i].v);
icmXYZ2Lab(&os->wp, points[i].v, points[i].v);
icmLab2LCh(lch, points[i].v);
/* Apply any neutral weighting */
if (lch[1] < 10.0) {
double w = nweight;
if (lch[1] > 5.0)
w = 1.0 + (nweight - 1.0) * (10.0 - lch[1])/(10.0 - 5.0);
points[i].w = w;
}
//printf("~1 patch %d = Lab %f %f %f, C = %f w = %f\n",i,points[i].v[0], points[i].v[1], points[i].v[2], lch[1],points[i].w);
}
}
/* Set initial matrix optimisation values */
os->v[0] = 0.4; os->v[1] = 0.4; os->v[2] = 0.2; /* Matrix */
os->v[3] = 0.2; os->v[4] = 0.8; os->v[5] = 0.1;
os->v[6] = 0.02; os->v[7] = 0.15; os->v[8] = 1.3;
/* We try and take a homomorphic approach here, in an attempt */
/* to avoid getting trapped at a local minimum when a full */
/* set of shaper parameters are in play. */
/* Do a first pass just setting the matrix values */
os->isLinear = 1;
os->isGamma = 1;
os->optdim = 9;
os->v[9] = os->v[10] = os->v[11] = 1.0; /* Linear */
/* Set search area to starting values */
for (j = 0; j < os->optdim; j++)
os->sa[j] = 0.2; /* Matrix, Gamma, Offsets, harmonics */
if (os->verb)
printf("Creating matrix...\n");
if (powell(&rerr, os->optdim, os->v, os->sa, stopon, maxits,
mxoptfunc, (void *)os, mxprogfunc, (void *)os) != 0)
warning("Powell failed to converge, residual error = %f",rerr);
#ifndef NEVER
if (os->verb) {
printf("Matrix = %f %f %f\n",os->v[0], os->v[1], os->v[2]);
printf(" %f %f %f\n",os->v[3], os->v[4], os->v[5]);
printf(" %f %f %f\n",os->v[6], os->v[7], os->v[8]);
}
#endif /* NEVER */
/* Now optimize again with shaper or gamma curves */
if (!isLinear) {
double scgamma;
/* Start from linear, which is what was assumed for the matrix fit, */
/* and fit with a single shared gamma curve. */
os->isShTRC = 1;
os->isLinear = 0;
os->isGamma = 1;
os->optdim = 10;
os->v[9] = 1.0; /* Linear */
/* Set search area to starting values */
for (j = 0; j < os->optdim; j++)
os->sa[j] = 0.2; /* Matrix, Gamma, Offsets, harmonics */
if (os->verb)
printf("Creating matrix and single gamma curve...\n");
if (powell(&rerr, os->optdim, os->v, os->sa, stopon, maxits,
mxoptfunc, (void *)os, mxprogfunc, (void *)os) != 0)
warning("Powell failed to converge, residual error = %f",rerr);
scgamma = os->v[9];
if (isShTRC && !isGamma) {
#ifndef NEVER
if (os->verb) {
printf("Matrix = %f %f %f\n",os->v[0], os->v[1], os->v[2]);
printf(" %f %f %f\n",os->v[3], os->v[4], os->v[5]);
printf(" %f %f %f\n",os->v[6], os->v[7], os->v[8]);
printf("Gamma = %f\n",os->v[9]);
}
#endif /* NEVER */
/* Do final optimisation using full curve capability */
/* and fit first with a single shared curve. */
os->isShTRC = 1;
os->isLinear = 0;
os->isGamma = 0;
os->optdim = 9 + 2 + os->norders; /* Matrix, offset + orders */
os->v[9] = 0.0; /* Input offset */
os->v[10] = 0.0; /* Output offset */
if (shape0gam)
os->v[11] = 1.0; /* Gamma */
else
os->v[11] = 0.0; /* 0th Harmonic */
for (i = 12; i < os->optdim; i++)
os->v[i] = 0.0; /* Higher orders */
/* Set search area to starting values */
for (j = 0; j < os->optdim; j++)
os->sa[j] = 0.2; /* Matrix, Gamma, Offsets, harmonics */
if (os->verb)
printf("Creating matrix and single shaper curve...\n");
if (powell(&rerr, os->optdim, os->v, os->sa, stopon, maxits,
mxoptfunc, (void *)os, mxprogfunc, (void *)os) != 0)
warning("Powell failed to converge, residual error = %f",rerr);
scgamma = os->v[9];
}
/* For multiple curves, continue fitting */
if (!isShTRC) {
double mcgamma[3];
#ifndef NEVER
if (os->verb) {
printf("Matrix = %f %f %f\n",os->v[0], os->v[1], os->v[2]);
printf(" %f %f %f\n",os->v[3], os->v[4], os->v[5]);
printf(" %f %f %f\n",os->v[6], os->v[7], os->v[8]);
printf("Gamma = %f\n",os->v[9]);
}
#endif /* NEVER */
/* Fit matrix + multi gamma curves */
os->isShTRC = 0;
os->isLinear = 0;
os->isGamma = 1;
os->optdim = 12;
os->v[9] = os->v[10] = os->v[11] = scgamma; /* Single curve value */
/* Set search area to starting values */
for (j = 0; j < os->optdim; j++)
os->sa[j] = 0.2; /* Matrix, Gamma, Offsets, harmonics */
if (os->verb)
printf("Creating matrix and gamma curves...\n");
if (powell(&rerr, os->optdim, os->v, os->sa, stopon, maxits,
mxoptfunc, (void *)os, mxprogfunc, (void *)os) != 0)
warning("Powell failed to converge, residual error = %f",rerr);
mcgamma[0] = os->v[9];
mcgamma[1] = os->v[10];
mcgamma[2] = os->v[11];
if (!isGamma) {
#ifndef NEVER
if (os->verb) {
printf("Matrix = %f %f %f\n",os->v[0], os->v[1], os->v[2]);
printf(" %f %f %f\n",os->v[3], os->v[4], os->v[5]);
printf(" %f %f %f\n",os->v[6], os->v[7], os->v[8]);
printf("Gamma = %f %f %f\n",os->v[9], os->v[10], os->v[11]);
}
#endif /* NEVER */
/* Do final curves */
os->isShTRC = 0;
os->isLinear = 0;
os->isGamma = 0;
os->optdim = 9 + 6 + 3 * os->norders; /* Matrix, offset + orders */
os->v[9] = os->v[10] = os->v[11] = 0.0; /* Input offset */
os->v[12] = os->v[13] = os->v[14] = 0.0; /* Output offset */
if (shape0gam) {
os->v[15] = mcgamma[0];
os->v[16] = mcgamma[1];
os->v[17] = mcgamma[2];
} else
os->v[15] = os->v[16] = os->v[17] = 0.0; /* 0th Harmonic */
for (i = 18; i < os->optdim; i++)
os->v[i] = 0.0; /* Higher orders */
/* Set search area to starting values */
for (j = 0; j < os->optdim; j++)
os->sa[j] = 0.1; /* Matrix, Gamma, Offsets, harmonics */
if (os->verb)
printf("Creating matrix and curves...\n");
if (powell(&rerr, os->optdim, os->v, os->sa, stopon, maxits,
mxoptfunc, (void *)os, mxprogfunc, (void *)os) != 0)
warning("Powell failed to converge, residual error = %f",rerr);
}
}
}
if (os->clipprims) { /* Clip -ve primaries */
for (i = 0; i < 9; i++) {
if (os->v[i] < 0.0)
os->v[i] = 0.0;
}
}
#ifndef NEVER
if (os->verb) {
printf("Matrix = %f %f %f\n",os->v[0], os->v[1], os->v[2]);
printf(" %f %f %f\n",os->v[3], os->v[4], os->v[5]);
printf(" %f %f %f\n",os->v[6], os->v[7], os->v[8]);
if (!isLinear) { /* Creating input curves */
if (os->isGamma) { /* Creating input curves */
if (isShTRC)
printf("Gamma = %f\n",os->v[9]);
else
printf("Gamma = %f %f %f\n",os->v[9], os->v[10], os->v[11]);
} else { /* Creating input curves */
if (isShTRC) {
printf("Input offset = %f\n",os->v[9]);
printf("Output offset = %f\n",os->v[10]);
} else {
printf("Input offset = %f %f %f\n",os->v[9], os->v[10], os->v[11]);
printf("Output offset = %f %f %f\n",os->v[12], os->v[13], os->v[14]);
}
for (j = 0; j < os->norders; j++) {
if (isShTRC) {
if (shape0gam && j == 0)
printf("gamma = %f\n", os->v[11 + j]);
else
printf("%d harmonics = %f\n",j, os->v[11 + j]);
} else {
if (shape0gam && j == 0)
printf("%d gamma = %f %f %f\n",j, os->v[15 + j * 3],
os->v[16 + j * 3], os->v[17 + j * 3]);
else
printf("%d harmonics = %f %f %f\n",j, os->v[15 + j * 3],
os->v[16 + j * 3], os->v[17 + j * 3]);
}
}
}
}
}
#endif /* NEVER */
#ifdef NEVER /* Check DE of fit */
{
double xyz[3], txyz[3];
for (i = 0; i < nodp; i++) {
mxmfunc(os, os->v, xyz, ipoints[i].p);
if (isLab)
icmLab2XYZ(&icmD50, txyz, ipoints[i].v);
else
icmCpy3(txyz, ipoints[i].v);
printf("~1 point %d DE %f\n", i, icmXYZLabDE(&icmD50, txyz, xyz));
}
}
#endif
/* Free the coordinate lists */
free(points);
return 0;
}
/* Apply a chromatic transform to the matrix to force the given */
/* xyz value (typically white) to be exact */
static void icxMM_force_exact(icxMatrixModel *p, double *targ, double *rgb) {
mxopt *os = (mxopt *)p->imp;
double txyz[3], axyz[3]; /* Target & actual xyz */
icmXYZNumber _tp, _ap;
double cmat[3][3]; /* Model transform matrix */
if (p->isLab)
icmLab2XYZ(&icmD50, txyz, targ);
else
icmCpy3(txyz, targ);
mxmfunc(os, os->v, axyz, rgb);
icmAry2XYZ(_ap, axyz);
icmAry2XYZ(_tp, txyz);
icmChromAdaptMatrix(ICM_CAM_BRADFORD, _tp, _ap, cmat);
/* Apply correction to fine tune matrix. */
mxtransform(os, cmat);
}
static void icxMM_lookup(icxMatrixModel *p, double *out, double *in) {
mxopt *os = (mxopt *)p->imp;
mxmfunc(os, os->v, out, in);
if (p->isLab)
icmXYZ2Lab(&icmD50, out, out);
}
static void icxMM_del(icxMatrixModel *p) {
free(p->imp);
free(p);
}
/* Create a matrix model of a set of points, and return an object to lookup */
/* points from the model. Return NULL on error. */
icxMatrixModel *new_MatrixModel(
int verb, /* NZ if verbose */
int nodp, /* Number of points */
cow *ipoints, /* Array of input points in XYZ space */
int isLab, /* nz if data points are Lab */
int quality, /* Quality metric, 0..3 (-1 == 2 orders only) */
int isLinear, /* NZ if pure linear, gamma = 1.0 */
int isGamma, /* NZ if gamma rather than shaper */
int isShTRC, /* NZ if shared TRCs */
int shape0gam, /* NZ if zero'th order shaper should be gamma function */
int clipbw, /* Prevent white > 1 and -ve black */
int clipprims, /* Prevent primaries going -ve */
double smooth, /* Smoothing factor (nominal 1.0) */
double scale /* Scale device values */
) {
icxMatrixModel *p;
if ((p = (icxMatrixModel *) calloc(1,sizeof(icxMatrixModel))) == NULL)
return NULL;
p->force = icxMM_force_exact;
p->lookup = icxMM_lookup;
p->del = icxMM_del;
if ((p->imp = (void *) calloc(1,sizeof(mxopt))) == NULL) {
free(p);
return NULL;
}
if (createMatrix(NULL, (mxopt *)p->imp, verb, nodp, ipoints, isLab, quality,
isLinear, isGamma, isShTRC, shape0gam,
clipbw, clipprims, smooth, scale) != 0) {
free(p->imp);
free(p);
return NULL;
}
p->isLab = isLab;
return p;
}
/* Create icxLuMatrix and undelying tone reproduction curves and */
/* colorant tags, initialised from the icc, and then overwritten */
/* by a conversion created from the supplied scattered data points. */
/* The scattered data is assumed to map Device -> native PCS (ie. dir = Fwd) */
/* NOTE:- in theory once this icxLuMatrix is setup, it can be */
/* called to translate color values. In practice I suspect */
/* that the icxLuMatrix hasn't been setup completely enough to allows this. */
/* Might be easier to close it and re-open it ? */
static icxLuBase *
set_icxLuMatrix(
xicc *xicp,
icmLuBase *plu, /* Pointer to Lu we are expanding (ours) */
int flags, /* white/black point flags */
int nodp, /* Number of points */
int nodpbw, /* Number of points to look for white & black patches in */
cow *ipoints, /* Array of input points in XYZ space */
icxMatrixModel *skm, /* Optional skeleton model (not used here) */
double dispLuminance, /* > 0.0 if display luminance value and is known */
double wpscale, /* > 0.0 if input white point is to be scaled */
int quality, /* Quality metric, 0..3 */
double smooth /* Curve smoothing, nominally 1.0 */
) {
icxLuMatrix *p; /* Object being created */
icc *icco = xicp->pp; /* Underlying icc object */
icmLuMatrix *pmlu = (icmLuMatrix *)plu; /* icc matrix lookup object */
int luflags = 0; /* icxLuMatrix alloc clip, merge flags */
int isLinear = 0; /* NZ if pure linear, gamma = 1.0 */
int isGamma = 0; /* NZ if gamma rather than shaper */
int isShTRC = 0; /* NZ if shared TRCs */
int inputChan = 3; /* Must be RGB like */
int outputChan = 3; /* Must be the PCS */
icmHeader *h = icco->header; /* Pointer to icc header */
int rsplflags = 0; /* Flags for scattered data rspl */
int e, f, i, j;
int maxits = 200; /* Optimisation stop params */
double stopon = 0.01; /* Absolute delta E change to stop on */
mxopt os; /* Optimisation information */
double rerr;
/* If ICX_SET_WHITE | ICX_SET_BLACK: */
double wp[3]; /* Absolute White point in XYZ */
double bp[3]; /* Absolute Black point in XYZ */
double dw[MXDI]; /* Device white value to adjust to be D50 */
double db[MXDI]; /* Device balck value */
double dgw[3]; /* Device space gamut boundary white for ICX_SET_WHITE_US */
double fromAbs[3][3]; /* From abs to relative */
double toAbs[3][3]; /* To abs from relative */
cow *rpoints = NULL; /* Aprox. relative in->output values */
#ifdef DEBUG_PLOT
#define XRES 100
double xx[XRES];
double y1[XRES];
#endif /* DEBUG_PLOT */
if (flags & ICX_VERBOSE)
rsplflags |= RSPL_VERBOSE;
luflags = flags; /* Transfer straight though ? */
/* Check out some things about the profile */
{
icmCurve *wor, *wog, *wob;
wor = pmlu->redCurve;
wog = pmlu->greenCurve;
wob = pmlu->blueCurve;
if (wor == wog) {
if (wog != wob) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_matrix: TRC sharing is inconsistent");
return NULL;
}
isShTRC = 1;
}
if (wor->flag != wog->flag || wog->flag != wob->flag) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_matrix: TRC type is inconsistent");
return NULL;
}
if (wor->flag == icmCurveGamma) {
isGamma = 1;
}
if (flags & ICX_NO_IN_SHP_LUTS) {
isLinear = 1;
}
}
/* Do basic icxLu creation and initialisation */
if ((p = alloc_icxLuMatrix(xicp, plu, 0, luflags)) == NULL) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_matrix: malloc failed");
return NULL;
}
p->func = icmFwd; /* Assumed by caller */
/* Get the effective spaces of underlying icm, and set icx the same */
plu->spaces(plu, &p->ins, NULL, &p->outs, NULL, NULL, &p->intent, NULL, &p->pcs, NULL);
/* For set_icx the effective pcs has to be the same as the native pcs */
/* Sanity check for matrix */
if (p->pcs != icSigXYZData) {
p->pp->errc = 1;
sprintf(p->pp->err,"Can't create matrix profile with PCS of Lab !");
p->del((icxLuBase *)p);
return NULL;
}
/* In general the native and effective ranges of the icx will be the same as the */
/* underlying icm lookup object. */
p->plu->get_lutranges(p->plu, p->ninmin, p->ninmax, p->noutmin, p->noutmax);
p->plu->get_ranges(p->plu, p->inmin, p->inmax, p->outmin, p->outmax);
/* If we have a Jab PCS override, reflect this in the effective icx range. */
/* Note that the ab ranges are nominal. They will exceed this range */
/* for colors representable in L*a*b* PCS */
if (p->ins == icxSigJabData) {
p->inmin[0] = 0.0; p->inmax[0] = 100.0;
p->inmin[1] = -128.0; p->inmax[1] = 128.0;
p->inmin[2] = -128.0; p->inmax[2] = 128.0;
} else if (p->outs == icxSigJabData) {
p->outmin[0] = 0.0; p->outmax[0] = 100.0;
p->outmin[1] = -128.0; p->outmax[1] = 128.0;
p->outmin[2] = -128.0; p->outmax[2] = 128.0;
}
/* ------------------------------- */
/* Choose a white and black point */
if (flags & (ICX_SET_WHITE | ICX_SET_BLACK)) {
if (flags & ICX_VERBOSE)
printf("Find white & black points\n");
/* Compute device white and black points as if */
/* we are doing an Output or Display device */
{
switch (h->colorSpace) {
case icSigCmyData:
for (e = 0; e < p->inputChan; e++) {
dw[e] = 0.0;
db[e] = 1.0;
}
break;
case icSigRgbData:
for (e = 0; e < p->inputChan; e++) {
dw[e] = 1.0;
db[e] = 0.0;
}
break;
default: {
xicp->errc = 1;
sprintf(xicp->err,"set_icxLuMatrix: can't handle color space %s",
icm2str(icmColorSpaceSignature, h->colorSpace));
p->del((icxLuBase *)p);
return NULL;
break;
}
}
}
/* dw is what we want for dgw[], used for XFIT_OUT_WP_REL_US */
for (e = 0; e < p->inputChan; e++)
dgw[e] = dw[e];
/* If this is actuall an input device, lookup wp & bp */
/* and override dwhite & dblack */
if (h->deviceClass == icSigInputClass) {
double wpy = -1e60, bpy = 1e60;
int wix = -1, bix = -1;
/* We assume that the input target is well behaved, */
/* and that it includes a white and black point patch, */
/* and that they have the extreme L/Y values */
/*
NOTE that this may not be the best approach !
It may be better to average the chromaticity
of all the neutral seeming patches, since
the whitest patch may have (for instance)
a blue tint.
*/
/* Discover the white and black patches */
for (i = 0; i < nodpbw; i++) {
double labv[3], yv;
/* Create D50 Lab to allow some chromatic sensitivity */
/* in picking the white point */
icmXYZ2Lab(&icmD50, labv, ipoints[i].v);
#ifdef NEVER
/* Choose Y */
if (ipoints[i].v[1] > wpy) {
wp[0] = ipoints[i].v[0];
wp[1] = ipoints[i].v[1];
wp[2] = ipoints[i].v[2];
for (e = 0; e < p->inputChan; e++)
dw[e] = ipoints[i].p[e];
wpy = ipoints[i].v[1];
wix = i;
}
#else
/* Tilt things towards D50 neutral white patches */
yv = labv[0] - 0.3 * sqrt(labv[1] * labv[1] + labv[2] * labv[2]);
if (yv > wpy) {
wp[0] = ipoints[i].v[0];
wp[1] = ipoints[i].v[1];
wp[2] = ipoints[i].v[2];
for (e = 0; e < p->inputChan; e++)
dw[e] = ipoints[i].p[e];
wpy = yv;
wix = i;
}
#endif
if (ipoints[i].v[1] < bpy) {
bp[0] = ipoints[i].v[0];
bp[1] = ipoints[i].v[1];
bp[2] = ipoints[i].v[2];
for (e = 0; e < p->inputChan; e++)
db[e] = ipoints[i].p[e];
bpy = ipoints[i].v[1];
bix = i;
}
}
if (flags & ICX_VERBOSE) {
printf("Picked white patch %d with dev = %s\n XYZ = %s, Lab = %s\n",
wix+1, icmPdv(p->inputChan, dw), icmPdv(3, wp), icmPLab(wp));
printf("Picked black patch %d with dev = %s\n XYZ = %s, Lab = %s\n",
bix+1, icmPdv(p->inputChan, db), icmPdv(3, bp), icmPLab(bp));
}
} else {
/* We assume that the display target is well behaved, */
/* and that it includes a white point patch. */
int nw = 0;
wp[0] = wp[1] = wp[2] = 0.0;
switch (h->colorSpace) {
case icSigCmyData:
for (i = 0; i < nodpbw; i++) {
if (ipoints[i].p[0] < 0.001
&& ipoints[i].p[1] < 0.001
&& ipoints[i].p[2] < 0.001) {
wp[0] += ipoints[i].v[0];
wp[1] += ipoints[i].v[1];
wp[2] += ipoints[i].v[2];
nw++;
}
}
break;
case icSigRgbData:
for (i = 0; i < nodpbw; i++) {
if (ipoints[i].p[0] > 0.999
&& ipoints[i].p[1] > 0.999
&& ipoints[i].p[2] > 0.999) {
wp[0] += ipoints[i].v[0];
wp[1] += ipoints[i].v[1];
wp[2] += ipoints[i].v[2];
nw++;
}
}
break;
default:
xicp->errc = 1;
sprintf(xicp->err,"set_icxLuMatrix: can't handle color space %s",
icm2str(icmColorSpaceSignature, h->colorSpace));
p->del((icxLuBase *)p);
return NULL;
break;
}
if (nw == 0) {
xicp->errc = 1;
sprintf(xicp->err,"set_icxLuMatrix: can't handle test points without a white patch");
p->del((icxLuBase *)p);
return NULL;
}
wp[0] /= (double)nw;
wp[1] /= (double)nw;
wp[2] /= (double)nw;
if (flags & ICX_VERBOSE) {
printf("Initial white point = %f %f %f\n",wp[0],wp[1],wp[2]);
}
/* Need to lookup bp[] before we set the tag */
}
/* Create some abs<->rel chromatic conversions */
{
icmXYZNumber _wp;
icmAry2XYZ(_wp, wp);
/* Absolute->Aprox. Relative Adaptation matrix */
icmChromAdaptMatrix(ICM_CAM_BRADFORD, icmD50, _wp, fromAbs);
/* Aproximate relative to absolute conversion matrix */
icmChromAdaptMatrix(ICM_CAM_BRADFORD, _wp, icmD50, toAbs);
}
} else {
icmSetUnity3x3(fromAbs);
icmSetUnity3x3(toAbs);
}
/* Create copy of input points with output converted to white relative */
if ((rpoints = (cow *)malloc(nodp * sizeof(cow))) == NULL) {
xicp->errc = 1;
sprintf(xicp->err,"set_icxLuMatrix: malloc failed");
p->del((icxLuBase *)p);
return NULL;
}
for (i = 0; i < nodp; i++) {
rpoints[i].w = ipoints[i].w;
for (e = 0; e < inputChan; e++)
rpoints[i].p[e] = ipoints[i].p[e];
for (f = 0; f < outputChan; f++)
rpoints[i].v[f] = ipoints[i].v[f];
/* abs out -> aprox. rel out */
icmMulBy3x3(rpoints[i].v, fromAbs, rpoints[i].v);
}
/* ------------------------------- */
/* (Use a gamma curve as 0th order shape) */
if ((p->pp->errc = createMatrix(p->pp->err, &os, flags & ICX_VERBOSE ? 1 : 0,
nodp, rpoints, 0, quality,
isLinear, isGamma, isShTRC, 1,
flags & ICX_CLIP_WB ? 1 : 0,
flags & ICX_CLIP_PRIMS ? 1 : 0,
smooth, 1.0)) != 0) {
free(rpoints);
p->del((icxLuBase *)p);
return NULL;
}
free(rpoints); rpoints = NULL;
/* The overall device to absolute conversion is now what we want */
/* (as dictated by the points, weighting and best fit), */
/* but we need to adjust the device to relative conversion */
/* to make device white map exactly to D50, without touching */
/* the overall absolute behaviour. */
if (p->flags & ICX_SET_WHITE) {
double aw[3]; /* aprox rel. white */
icmXYZNumber _wp; /* Uncorrected dw maps to _wp */
double cmat[3][3]; /* Model correction matrix */
if (flags & ICX_VERBOSE)
printf("Doing White point fine tune:\n");
/* See what the aprox. relative white point has turned out to be, */
/* by looking up the device white in the current conversion */
mxmfunc(&os, os.v, aw, dw);
if (flags & ICX_VERBOSE) {
printf("Before fine tune, rel WP = XYZ %s, Lab %s\n", icmPdv(3,aw), icmPLab(aw));
}
/* Matrix needed to correct aprox white to target D50 */
icmAry2XYZ(_wp, aw); /* Aprox relative target white point */
icmChromAdaptMatrix(ICM_CAM_BRADFORD, icmD50, _wp, cmat); /* Correction */
/* Compute the current absolute white point */
icmMulBy3x3(wp, toAbs, aw);
/* Apply correction to fine tune matrix. */
mxtransform(&os, cmat);
/* Fix relative conversions to leave absolute response unchanged. */
icmAry2XYZ(_wp, wp); /* Actual white point */
icmChromAdaptMatrix(ICM_CAM_BRADFORD, icmD50, _wp, fromAbs);
icmChromAdaptMatrix(ICM_CAM_BRADFORD, _wp, icmD50, toAbs);
if (flags & ICX_VERBOSE) {
double tw[3];
mxmfunc(&os, os.v, tw, dw); /* Lookup white again */
printf("After fine tune, rel WP = XYZ %s, Lab %s\n", icmPdv(3, tw), icmPLab(tw));
printf(" abs WP = XYZ %s, Lab %s\n", icmPdv(3, wp), icmPLab(wp));
}
}
/* Create default wpscale */
if (wpscale < 0.0) {
wpscale = 1.0;
} else {
if (flags & ICX_VERBOSE) {
printf("White manual point scale %f\n", wpscale);
}
}
/* If we are going to auto scale the WP to avoid clipping */
/* values above the WP: (not so important for matrix profiles ?) */
if ((p->flags & ICX_SET_WHITE_US) == ICX_SET_WHITE_US) {
double tw[3], bw[3];
icmXYZNumber _wp;
double uswpscale = 1.0;
double mxd, mxY;
double ndw[3];
/* See what device space gamut boundary white (ie. 1,1,1) maps to */
mxmfunc(&os, os.v, tw, dgw);
icmMulBy3x3(tw, toAbs, tw); /* Convert to absolute */
mxY = tw[1];
icmCpy3(bw, tw);
//printf("~1 1,1,1 Y = %f\n",tw[1]);
/* See what the device white point value scaled to 1 produces */
mxd = -1.0;
for (e = 0; e < inputChan; e++) {
if (dw[e] > mxd)
mxd = dw[e];
}
for (e = 0; e < inputChan; e++)
ndw[e] = dw[e]/mxd;
mxmfunc(&os, os.v, tw, ndw);
icmMulBy3x3(tw, toAbs, tw); /* Convert to absolute */
//printf("~1 ndw = %f %f %f Y = %f\n",ndw[0],ndw[1],ndw[2],tw[1]);
if (tw[1] > mxY) {
mxY = tw[1];
icmCpy3(bw, tw);
}
/* Compute WP scale factor needed to fit mxY */
if (mxY > wp[1]) {
uswpscale = mxY/wp[1];
wpscale *= uswpscale;
if (flags & ICX_VERBOSE) {
printf("Dev boundary white XYZ %s, scale WP by %f, total WP scale %f\n",
icmPdv(3, bw), uswpscale, wpscale);
}
}
}
/* If the scaled WP would have Y > 1.0, clip it to 1.0 */
if (p->flags & ICX_CLIP_WB) {
if ((wp[1] * wpscale) > 1.0) {
wpscale = 1.0/wp[1]; /* Make wp Y = 1.0 */
if (flags & ICX_VERBOSE) {
printf("WP Y would ve > 1.0. scale by %f to clip it\n",wpscale);
}
}
}
/* Apply our total wp scale factor */
if (wpscale != 1.0) {
icmXYZNumber _wp;
double cmat[3][3]; /* Model correction matrix */
/* Create inverse scaling matrix for relative rspl data */
icmSetUnity3x3(cmat);
icmScale3x3(cmat, cmat, 1.0/wpscale);
/* Inverse scale the matrix */
mxtransform(&os, cmat);
/* Scale the WP */
icmScale3(wp, wp, wpscale);
/* Fix absolute conversions to leave absolute response unchanged. */
icmAry2XYZ(_wp, wp); /* Actual white point */
icmChromAdaptMatrix(ICM_CAM_BRADFORD, icmD50, _wp, fromAbs);
icmChromAdaptMatrix(ICM_CAM_BRADFORD, _wp, icmD50, toAbs);
}
/* Look up the actual black point */
if (p->flags & ICX_SET_BLACK) {
/* Look black point up in dev->rel model */
mxmfunc(&os, os.v, bp, db);
/* Convert from relative to Absolute colorimetric */
icmMulBy3x3(bp, toAbs, bp);
/* Got XYZ black point in bp[] */
if (flags & ICX_VERBOSE) {
printf("Black point XYZ = %s, Lab = %s\n", icmPdv(3,bp),icmPLab(bp));
}
if (flags & ICX_CLIP_WB) {
if (bp[0] < 0.0 || bp[1] < 0.0 || bp[1] < 0.0) {
if (bp[0] < 0.0)
bp[0] = 0.0;
if (bp[1] < 0.0)
bp[1] = 0.0;
if (bp[2] < 0.0)
bp[2] = 0.0;
if (flags & ICX_VERBOSE)
printf("Black point clipped to XYZ = %s, Lab = %s\n",icmPdv(3,bp),icmPLab(bp));
}
}
}
if (flags & (ICX_SET_WHITE | ICX_SET_BLACK)) {
/* If this is a display, adjust the absolute white point to be */
/* exactly Y = 1.0, and compensate the matrix, dispLuminance */
/* and black point accordingly. */
if (h->deviceClass == icSigDisplayClass) {
double cmat[3][3]; /* Model correction matrix */
double scale = 1.0/wp[1];
if (flags & ICX_VERBOSE)
printf("Scaling White Point by %f to make Y = 1.0\n", scale);
/* Scale the WP & BP*/
icmScale3(wp, wp, scale);
icmScale3(bp, bp, scale);
/* Inverse scale the luminance */
dispLuminance /= scale;
}
/* Absolute luminance tag */
if (flags & ICX_WRITE_WBL
&& h->deviceClass == icSigDisplayClass
&& dispLuminance > 0.0) {
icmXYZArray *wo;
if ((wo = (icmXYZArray *)icco->read_tag(
icco, icSigLuminanceTag)) == NULL) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_luminance: couldn't find luminance tag");
p->del((icxLuBase *)p);
return NULL;
}
if (wo->ttype != icSigXYZArrayType) {
xicp->errc = 1;
sprintf(xicp->err,"luminance: tag has wrong type");
p->del((icxLuBase *)p);
return NULL;
}
wo->size = 1;
wo->allocate((icmBase *)wo); /* Allocate space */
wo->data[0].X = 0.0;
wo->data[0].Y = dispLuminance;
wo->data[0].Z = 0.0;
if (flags & ICX_VERBOSE)
printf("Display Luminance = %f\n", wo->data[0].Y);
}
/* Write white and black tags */
if ((flags & ICX_WRITE_WBL)
&& (flags & ICX_SET_WHITE)) { /* White Point Tag: */
icmXYZArray *wo;
if ((wo = (icmXYZArray *)icco->read_tag(
icco, icSigMediaWhitePointTag)) == NULL) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_white_black: couldn't find white tag");
p->del((icxLuBase *)p);
return NULL;
}
if (wo->ttype != icSigXYZArrayType) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_white_black: white tag has wrong type");
p->del((icxLuBase *)p);
return NULL;
}
wo->size = 1;
wo->allocate((icmBase *)wo); /* Allocate space */
wo->data[0].X = wp[0];
wo->data[0].Y = wp[1];
wo->data[0].Z = wp[2];
if (flags & ICX_VERBOSE)
printf("White point XYZ = %f %f %f\n",wp[0],wp[1],wp[2]);
}
if ((flags & ICX_WRITE_WBL)
&& (flags & ICX_SET_BLACK)) { /* Black Point Tag: */
icmXYZArray *wo;
if ((wo = (icmXYZArray *)icco->read_tag(
icco, icSigMediaBlackPointTag)) == NULL) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_white_black: couldn't find black tag");
p->del((icxLuBase *)p);
return NULL;
}
if (wo->ttype != icSigXYZArrayType) {
xicp->errc = 1;
sprintf(xicp->err,"icx_set_white_black: black tag has wrong type");
p->del((icxLuBase *)p);
return NULL;
}
wo->size = 1;
wo->allocate((icmBase *)wo); /* Allocate space */
wo->data[0].X = bp[0];
wo->data[0].Y = bp[1];
wo->data[0].Z = bp[2];
if (flags & ICX_VERBOSE)
printf("Black point XYZ = %f %f %f\n",bp[0],bp[1],bp[2]);
}
// ~~99
if (flags & ICX_CLIP_PRIMS) {
for (i = 0; i < 9; i++) {
if (os.v[i] < 0.0)
os.v[i] = 0.0;
}
}
}
if (flags & ICX_VERBOSE)
printf("Done gamma/shaper and matrix creation\n");
/* Write the gamma/shaper and matrix to the icc memory structures */
if (!isGamma) { /* Creating input curves */
unsigned int ui;
icmCurve *wor, *wog, *wob;
wor = pmlu->redCurve;
wog = pmlu->greenCurve;
wob = pmlu->blueCurve;
for (ui = 0; ui < wor->size; ui++) {
double in, rgb[3];
for (j = 0; j < 3; j++) {
in = (double)ui / (wor->size - 1.0);
mxmfunc1(&os, j, os.v, &rgb[j], &in);
if (rgb[j] < 0.0)
rgb[j] = 0.0;
else if (rgb[j] > 1.0)
rgb[j] = 1.0;
}
wor->data[ui] = rgb[0]; /* Curve values 0.0 - 1.0 */
if (!isShTRC) {
wog->data[ui] = rgb[1];
wob->data[ui] = rgb[2];
}
}
#ifdef DEBUG_PLOT
/* Display the result fit */
for (j = 0; j < 3; j++) {
for (i = 0; i < XRES; i++) {
double x, y;
xx[i] = x = i/(double)(XRES-1);
mxmfunc1(&os, j, os.v, &y, &x);
if (y < 0.0)
y = 0.0;
else if (y > 1.0)
y = 1.0;
y1[i] = y;
}
do_plot(xx,y1,NULL,NULL,XRES);
}
#endif /* DEBUG_PLOT */
} else { /* Gamma */
icmCurve *wor, *wog, *wob;
wor = pmlu->redCurve;
wog = pmlu->greenCurve;
wob = pmlu->blueCurve;
wor->data[0] = os.v[9]; /* Gamma values */
if (!isShTRC) {
wog->data[0] = os.v[10];
wob->data[0] = os.v[11];
}
}
/* Matrix values */
{
icmXYZArray *wor, *wog, *wob;
double mat[3][3];
wor = pmlu->redColrnt;
wog = pmlu->greenColrnt;
wob = pmlu->blueColrnt;
/* Copy to mat[RGB][XYZ] */
mat[0][0] = os.v[0];
mat[0][1] = os.v[3];
mat[0][2] = os.v[6];
mat[1][0] = os.v[1];
mat[1][1] = os.v[4];
mat[1][2] = os.v[7];
mat[2][0] = os.v[2];
mat[2][1] = os.v[5];
mat[2][2] = os.v[8];
/* Make sure rounding doesn't wreck white point */
quantizeRGBprimsS15Fixed16(mat);
wor->data[0].X = mat[0][0]; wor->data[0].Y = mat[0][1]; wor->data[0].Z = mat[0][2];
wog->data[0].X = mat[1][0]; wog->data[0].Y = mat[1][1]; wog->data[0].Z = mat[1][2];
wob->data[0].X = mat[2][0]; wob->data[0].Y = mat[2][1]; wob->data[0].Z = mat[2][2];
/* Load into pmlu matrix and inverse ??? */
}
if (flags & ICX_VERBOSE)
printf("Profile done\n");
return (icxLuBase *)p;
}
/* ========================================================= */
/* Given an xicc lookup object, returm a gamut object. */
/* Note that the PCS must be Lab or Jab */
/* Return NULL on error, check errc+err for reason */
static gamut *icxLuMatrixGamut(
icxLuBase *plu, /* this */
double detail /* gamut detail level, 0.0 = def */
) {
xicc *p = plu->pp; /* parent xicc */
icxLuMatrix *lumat = (icxLuMatrix *)plu; /* Lookup xMatrix type object */
icColorSpaceSignature pcs;
icmLookupFunc func;
double white[3], black[3], kblack[3];
gamut *gam;
int res; /* Sample point resolution */
int i, e;
if (detail == 0.0)
detail = 10.0;
/* get some details */
plu->spaces(plu, NULL, NULL, NULL, NULL, NULL, NULL, &func, &pcs);
if (func != icmFwd && func != icmBwd) {
p->errc = 1;
sprintf(p->err,"Creating Gamut surface for anything other than Device <-> PCS is not supported.");
return NULL;
}
if (pcs != icSigLabData && pcs != icxSigJabData) {
p->errc = 1;
sprintf(p->err,"Creating Gamut surface PCS of other than Lab or Jab is not supported.");
return NULL;
}
gam = new_gamut(detail, pcs == icxSigJabData, 0);
/* Explore the gamut by itterating through */
/* it with sample points in device space. */
res = (int)(600.0/detail); /* Establish an appropriate sampling density */
if (res < 40)
res = 40;
/* Since matrix profiles can't be non-monotonic, */
/* just itterate through the surface colors. */
for (i = 0; i < 3; i++) {
int co[3];
int ep[3];
int co_e = 0;
for (e = 0; e < 3; e++) {
co[e] = 0;
ep[e] = res;
}
ep[i] = 2;
while (co_e < 3) {
double in[3];
double out[3];
for (e = 0; e < 3; e++) /* Convert count to input value */
in[e] = co[e]/(ep[e]-1.0);
/* Always use the device->PCS conversion */
if (lumat->fwd_lookup((icxLuBase *)lumat, out, in) > 1)
error ("%d, %s",p->errc,p->err);
gam->expand(gam, out);
/* Increment the counter */
for (co_e = 0; co_e < 3; co_e++) {
co[co_e]++;
if (co[co_e] < ep[co_e])
break; /* No carry */
co[co_e] = 0;
}
}
}
#ifdef NEVER
/* Try it twice */
for (i = 0; i < 3; i++) {
int co[3];
int ep[3];
int co_e = 0;
for (e = 0; e < 3; e++) {
co[e] = 0;
ep[e] = res;
}
ep[i] = 2;
while (co_e < 3) {
double in[3];
double out[3];
for (e = 0; e < 3; e++) /* Convert count to input value */
in[e] = co[e]/(ep[e]-1.0);
/* Always use the device->PCS conversion */
if (lumat->fwd_lookup((icxLuBase *)lumat, out, in) > 1)
error ("%d, %s",p->errc,p->err);
gam->expand(gam, out);
/* Increment the counter */
for (co_e = 0; co_e < 3; co_e++) {
co[co_e]++;
if (co[co_e] < ep[co_e])
break; /* No carry */
co[co_e] = 0;
}
}
}
#endif
#ifdef NEVER // (doesn't seem to make much difference)
/* run along the primary ridges in more detail too */
/* just itterate through the surface colors. */
for (i = 0; i < 3; i++) {
int j;
double in[3];
double out[3];
res *= 4;
for (j = 0; j < res; j++) {
double vv = i/(res-1.0);
in[0] = in[1] = in[2] = vv;
in[i] = 0.0;
if (lumat->fwd_lookup((icxLuBase *)lumat, out, in) > 1)
error ("%d, %s",p->errc,p->err);
gam->expand(gam, out);
in[0] = in[1] = in[2] = 0.0;
in[i] = vv;
if (lumat->fwd_lookup((icxLuBase *)lumat, out, in) > 1)
error ("%d, %s",p->errc,p->err);
gam->expand(gam, out);
}
}
#endif
/* Put the white and black points in the gamut */
plu->efv_wh_bk_points(plu, white, black, kblack);
gam->setwb(gam, white, black, kblack);
/* set the cusp points by itterating through the 0 & 100% colorant combinations */
{
DCOUNT(co, 3, 3, 0, 0, 2);
gam->setcusps(gam, 0, NULL);
DC_INIT(co);
while(!DC_DONE(co)) {
int e;
double in[3];
double out[3];
if (!(co[0] == 0 && co[1] == 0 && co[2] == 0)
&& !(co[0] == 1 && co[1] == 1 && co[2] == 1)) { /* Skip white and black */
for (e = 0; e < 3; e++)
in[e] = (double)co[e];
/* Always use the device->PCS conversion */
if (lumat->fwd_lookup((icxLuBase *)lumat, out, in) > 1)
error ("%d, %s",p->errc,p->err);
gam->setcusps(gam, 3, out);
}
DC_INC(co);
}
gam->setcusps(gam, 2, NULL);
}
#ifdef NEVER /* Not sure if this is a good idea ?? */
gam->getwb(gam, NULL, NULL, white, black); /* Get the actual gamut white and black points */
gam->setwb(gam, white, black); /* Put it back as colorspace one */
#endif
return gam;
}
#ifdef DEBUG
#undef DEBUG
#endif
|