
libHX 3.23
Documentation

August 28, 2018

Contents
1 Introduction 3

2 Overview 3

3 Resources 4

4 Installation 4

5 Portability notice 4

6 History 5

I General 6

7 Initialization 6

8 Type-checking casts 6

9 Macros 9

10 Miscellaneous functions 11

11 Time functions 11

12 Bitmaps 13

II Data structures 14

13 Maps 14

14 Doubly-linked list 22

15 Inline doubly-linked list 25

16 Counted inline doubly-linked list 29

1

III Strings and memory 30

17 String operations 30

18 Memory containers 37

19 Format templates 40

IV Filesystem operations 44

20 Dentry operations 44

21 Directory traversal 44

22 Directory operations 45

23 File operations 45

V Options and Configuration Files 47

24 Option parsing 47

25 Shell-style configuration file parser 56

VI Systems-related components 58

26 Random numbers 58

27 Process management 59

28 Helper headers 61

VII Appendix 63

2

1 Introduction
libHX collects many useful day-to-day functions, intended to reduce the amount of otherwise
repeatedly open-coded instructions.

2 Overview
• Maps (key-value pairs) (section 13)

Originally created to provide a data structure like Perl’s associative arrays. Different map
types and characteristics are available, such as hash-based or the traditional rbtree.

• Deques (section 14)
Double-ended queues, implemented as a doubly-linked list with sentinels, are suitable for
both providing stack and queue functionality.

• Inline doubly-linked list, uncounted and counted (sections 15 and 16)
Light-weight linked lists as used in the Linux kernel.

• Common string operations (section 17)
basename, chomp, dirname, getl(ine), split, strlcat/strlcpy, strlower/-upper, str*trim,
strsep, etc.

• Memory containers, auto-sizing string operations (section 18)
Scripting-like invocation for string handling — automatically doing (re)allocations as
needed.

• String formatter (section 19)
HXfmt is a small template system for by-name variable expansion. It can be used to
substitute placeholders in format strings supplied by the user by appropriate expanded
values defined by the program.

• Directory creation, traversal, removal, and file copying (sections 21, 22 and 23)

• Option parsing (section 24)
Table-/callback-based option parser that works similar to Perl’s Getopt::Long — no
open-coding but a single “atomic” invocation.

• Shell-style config parser (section 25)
Configuration file reader for Shell-style “configuration” files with key-value pairs, as usu-
ally foudn in /etc/sysconfig.

• Random number gathering (section 26)
Convenient wrapper that uses kernel-provided RNG devices when available.

• External process invocation (section 27)
Setting up pipes for the standard file descriptors for sending/capturing data to/from a
program.

• a bit more beyond that ... Miscellaneous

3

3 Resources
As of this writing, the repository is located at

• git://libhx.git.sf.net/gitroot/libhx/libhx — clone URL

• http://libhx.git.sf.net/ — gitweb interface

• http://libhx.sf.net/ — home page (and link to tarballs)

• http://freecode.com/projects/libhx/ — Freecode page (useful for automatic notifi-
cation of new releases)

4 Installation
libHX uses GNU autotools as a build environment, which means that all you have to run as
a end-user is the configure with any options that you need, plus the usual make and make
install as desired.

Pay attention to multi-lib Linux distributions where you most likely need to specify a
different libdir instead of using the default “lib”. In case of the Debian-style multi-arch/multi-
lib proposal (http://wiki.debian.org/Multiarch):

$./configure --libdir=’${prefix}/lib/x86_64-linux-gnu’

and the classic-style 32-64 2-lib distributions:

$./configure --libdir=’${prefix}/lib64’

4.1 Requirements
• GNU C Compiler 3.3.5 or newer. Other compilers (non-GCC) have not been tested in

months — use at your own risk.

• approximately 80–160 KB of disk space on Linux for the shared library (depends on
platform) and header files.

A C++ compiler is only needed if you want to build the C++ test programs that come with
libHX. By default, if there is no C++ compiler present, these will not be built.

• No external libraries are needed for compilation of libHX. Helper files, like libxml_-
helper.h, may reference their include files, but they are not used during compilation.

5 Portability notice
libHX runs on contemporary versions of Linux, Solaris and the three BSD distributions. It
might even work on Microsoft Windows, but this is not tested very often, if at all. Overly
old systems, especially Unices, are not within focus. While AIX 5.3 might still classify as
contemporary, strangelets like “Ultrix” or “Dynix” you can find in the autotools-related file
config.guess are some that are definitely not.

Furthermore, a compiler that understands the C99 or GNU89 standard is required. The
integer type “int” should at best have 32 bits at least. There is no ultra-portable version as of
this writing, but feel free to start one akin to the “p” variants of OpenBSD software such as
OpenSSH.

4

git://libhx.git.sf.net/gitroot/libhx/libhx
http://libhx.git.sf.net/
http://libhx.sf.net/
http://freecode.com/projects/libhx/
http://wiki.debian.org/Multiarch

6 History
The origins of libHX trace back, even crossing a language boundary, to when the author started
on using Perl in 1999. Some tasks were just too damn useful to be open-coded every time. Two
such examples are what is these days known as HX_basename and HX_mkdir. The name does
not relate to anyone’s initials; it is a result of a truncation of the author’s nick used years ago.

Around the beginning of 2003, the author also started on the C programming language and
soon the small library was converted from Perl to C. The libHX library as of today is the result
of working with C ever since, and naturally grew from there to support whatever the author
was in need of.

The “correct” name for libHX is with an uppercase “H” and uppercase “X”, and the same
is used for filenames, such as “libHX.so”1.

1Software projects may choose to entirely lowercase the project name for use in filenames, such as the Linux
kernel which is released as linux-${version}.tar.bz2, or the project may choose to keep the name for filenames,
like Mesa and SDL do. libHX is of the latter.

5

Part I

General
Many functions are prefixed with “HX_” or “HXsubsys_”, as are structures (sometimes without
underscores, be sure to check the syntax and names), to avoid name clashes with possibly
existing files. Functions that are not tied to a specific data structure such as most of the string
functions (see chapter 17) use the subsystem-less prefix, “HX_”. Functions from a clearly-defined
subsystem, such as map or deque, augment the base prefix by a suffix, forming e. g. “HXmap_”.

7 Initialization
#include <libHX/init.h>

int HX_init(void);
void HX_exit(void);

Before using the library’s functions, HX_init must be called. This function will initialize any
needed state libHX needs for itself, if any. It is designed to be invoked multiple times, such as
for example, from different libraries linking to libHX itself, and will refcount. On success, >0
is returned. If there was an error, it will return a negative error code or zero. HX_exit is the
logical counterpart of notifying that the library is no longer used.

8 Type-checking casts
The C++ language provides so-called “new-style casts”, referring to the four template-looking
invocations static_cast<>, const_cast<>, reinterpret_cast<> and dynamic_cast<>. No
such blessing was given to the C language, but still, even using macros that expand to the
olde cast make it much easier to find casts in source code and annotate why something was
casted, which is already an improvement. — Actually, it is possible to do a some type checking,
using some GCC extensions, which augments these macros from their documentary nature to
an actual safety measure.

8.1 reinterpret_cast

reinterpret_cast() maps directly to the old-style typecast, (type)(expr), and causes the
bit pattern for the expr rvalue to be “reinterpreted” as a new type. You will notice that
“reinterpret” is the longest of all the *_cast names, and can easily cause your line to grow to
80 columns (the good maximum in many style guides). As a side effect, it is a good indicator
that something potentially dangerous might be going on, for example converting intergers
from/to pointer.

#include <libHX/defs.h>

int i;
/* Tree with numeric keys */
tree = HXhashmap_init(0);
for (i = 0; i < 6; ++i)

HXmap_add(tree, reinterpret_cast(void *,
static_cast(long, i)), my_data);

6

From \ To c*section sc* uc* Cc* Csc* Cuc*
char * X X X X X X

signed char * X X X X X X
unsigned char * X X X X X X

const char * – – – X X X
const signed char * – – – X X X

const unsigned char * – – – X X X

Table 1: Accepted conversions for signed_cast()

8.2 signed_cast

This tag is for annotating that the cast was solely done to change the signedness of pointers
to char — and only those. No integers etc. The intention is to facilitate working with libraries
that use unsigned char * pointers, such as libcrypto and libssl (from the OpenSSL project)
or libxml2, for example. See table 1 for the allowed conversions. C++ does not actually
have a signed_cast<>, and one would have to use reinterpret_cast<> to do the conversion,
because static_cast<> does not allow conversion from const char * to const unsigned
char *, for example. (libHX’s static_cast() would also throw at least a compiler warning
about the different signedness.) libHX does provide a signed_cast<> for C++ though. This
is where signed_cast comes in.

8.3 static_cast

Just like C++’s static_cast<>, libHX’s static_cast() verifies that expr can be implicitly
converted to the new type (by a simple b = a). Such is mainly useful for forcing a specific type,
as is needed in varargs functions such as printf, and where the conversion actually incurs other
side effects, such as truncation or promotion:

/* Convert to a type printf knows about */
uint64_t x = something;
printf("%llu\n", static_cast(unsigned long long, x));

Because there is no format specifier for uint64_t for printf, a conversion to an accepted type
is necessary to not cause undefined behavior. The author has seen code that did, for example,
printf("%u") on a “long”, which only works on architectures where sizeof(unsigned int)
happens to equal sizeof(unsigned long), such as x86_32. On x86_64, an unsigned long
is usually twice as big as an unsigned int, so that 8 bytes are pushed onto the stack, but
printf only unshifts 4 bytes because the developer used “%u”, leading to misreading the next
variable on the stack.

/* Force promotion */
double a_quarter = static_cast(double, 1) / 4;

Were “1” not promoted to double, the result in q would be zero because 1/4 is just an integer
division, yielding zero. By making one of the operands a floating-point quantity, the compiler
will instruct the FPU to compute the result. Of course, one could have also written “1.0”
instead of static_cast(double, 1), but this is left for the programmer to decide which style
s/he prefers.

/* Force truncation before invoking second sqrt */
double f = sqrt(static_cast(int, 10 * sqrt(3.0 / 4)));

7

And here, the conversion from double to int incurs a (wanted) truncation of the decimal
fraction, that is, rounding down for positive numbers, and rounding up for negative numbers.

8.3.1 Allowed conversions

• Numbers
Conversion between numeric types, such as char, short, int, long, long long, intN _t,
both their signed and unsigned variants, float and double.

• Generic Pointer
Conversion from type * to and from void *. (Where type may very well be a type with
further indirection.)

• Generic Pointer (const)
Conversion from const type * to and from const void *.

8.4 const_cast

const_cast allows to add or remove “const” qualifiers from the type a pointer is pointing
to. Due to technical limitations, it could not be implemented to support arbitrary indirection.
Instead, const_cast comes in three variants, to be used for indirection levels of 1 to 3:

• const_cast1(type *, expr) with typeof(expr) = type *. (Similarly for any combi-
nations of const.)

• const_cast2(type **, expr) with typeof(expr) = type ** (and all combinations
of const in all possible locations).

• const_cast3(type ***, expr) with typeof(expr) = type *** (and all combinations...).

As indirection levels above 3 are really unlikely2, having only these three type-checking cast
macros was deemed sufficient. The only place where libHX even uses a level-3 indirection is in
the option parser.

int ** int *const *
const int ** const int *const *

Table 2: Accepted expr/target types for const_cast2; example for the “int” type
Conversion is permitted when expression and target type are from the table.

It is currently not possible to use const_cast1/2/3 on pointers to structures whose member
structure is unknown.

2See “Three Star Programmer”

8

9 Macros
All macros in this section are available through #include <libHX/defs.h>.

9.1 Preprocessor
#define HX_STRINGIFY(s)

Transforms the expansion of the argument s into a C string.

9.2 Sizes
#define HXSIZEOF_Z16
#define HXSIZEOF_Z32
#define HXSIZEOF_Z64

Expands to the size needed for a buffer (including ’\0’) to hold the base-10 string representation
of a 16-, 32- or 64-bit integer.

9.3 Locators
long offsetof(type, member);
output_type *containerof(input_type *ptr, output_type, member);
size_t FIELD_SIZEOF(struct_type, member);
output_type HXtypeof_member(struct_type, member);

In case offsetof and containerof have not already defined by inclusion of another header file,
libHX’s defs.h will define these accessors. offsetof is defined in stddef.h (for C) or cstddef
(C++), but inclusion of these is not necessary if you have included defs.h. defs.h will use
GCC’s __builtin_offsetof if available, which does some extra sanity checks in C++ mode.

offsetof calculates the offset of the specified member in the type, which needs to be a
struct or union.

containerof will return a pointer to the struct in which ptr is contained as the given
member.

struct foo {
int bar;
int baz;

};

static void test(int *ptr)
{

struct foo *self = containerof(baz, struct foo, baz);
}

FIELD_SIZEOF (formerly HXsizeof_member) and HXtypeof_member are convenient shortcuts to
get the size or type of a named member in a given struct:

char padding[FIELD_SIZEOF(struct foo, baz)];

9

9.4 Array size
size_t ARRAY_SIZE(type array[]); /* implemented as a macro */

Returns the number of elements in array. This only works with true arrays (type[]), and will
not output a meaningful value when used with a pointer-to-element (type *), which is often
used for array access too.

9.5 Compile-time build checks
int BUILD_BUG_ON_EXPR(bool condition); /* implemented as a macro */
void BUILD_BUG_ON(bool condition); /* implemented as a macro */

Causes the compiler to fail when condition evaluates to true. If not implemented for a com-
piler, it will be a no-op. BUILD_BUG_ON is meant to be used as a standalone statement, while
BUILD_BUG_ON_EXPR is for when a check is to occur within an expression, that latter of which
is useful for within macros when one cannot, or does not want to use multiple statements.

type DEMOTE_TO_PTR(type expr); /* macro */

Changes the type of expr to pointer type: If expr of array type class, changes it to a pointer
to the first element. If expr of function type class, changes it to a pointer to the function.

int main(void);
int (*fp)(void);
char a[123];
DEMOTE_TO_PTR(main); /* yields int (*)(void); */
DEMOTE_TO_PTR(fp); /* also yields int (*)(void); */
DEMOTE_TO_PTR(a); /* yields char * */

9.6 UNIX file modes
#define S_IRUGO (S_IRUSR | S_IRGRP | S_IROTH)
#define S_IWUGO (S_IWUSR | S_IWGRP | S_IWOTH)
#define S_IXUGO (S_IXUSR | S_IXGRP | S_IXOTH)
#define S_IRWXUGO (S_IRUGO | S_IWUGO | S_IXUGO)

The defines make it vastly easier to specify permissions for large group of users. For example,
if one wanted to create a file with the permissions rw-r--r-- (ignoring the umask in this
description), S_IRUSR | S_IWUSR can now be used instead of the longer S_IRUSR | S_IWUSR |
S_IRGRP | S_IROTH.

9.7 VC runtime format specifiers
The Microsoft Visual C runtime (a weak libc) uses non-standard format specifiers for certain
types. Whereas C99 specifies “z” for size_t and “ll” for long long, MSVCRT users must use
“I” and “I64” (forming %Id instead of %zd for ssize_t, for example). libHX provides two
convenience macros for this:

#define HX_SIZET_FMT "z" or "I"
#define HX_LONGLONG_FMT "ll" or "I64"

These may be used together with printf or scanf:
printf("struct timespec is of size %" HX_SIZET_FMT "u\n",

sizeof(struct timespec));

10

10 Miscellaneous functions
#include <libHX/misc.h>

int HX_ffs(unsigned long z);
int HX_fls(unsigned long z);
void HX_hexdump(FILE *fp, const void *ptr, unsigned int len);
void HX_zvecfree(char **);
unsigned int HX_zveclen(const char *const *);

HX_ffs Finds the first (lowest-significant) bit in a value and returns its position, or -1 to
indicate failure.

HX_fls Finds the last (most-significant) bit in a value and returns its position, or -1 to indicate
failure.

HX_hexdump Outputs a nice pretty-printed hex and ASCII dump to the filedescriptor fp. ptr
is the memory area, of which len bytes will be dumped.

HX_zvecfree Frees the supplied Z-vector array. (Frees all array elements from the first element
to (excluding) the first NULL element.)

HX_zveclen Counts the number of array elements until the first NULL array element is seen,
and returns this number.

11 Time functions
Time in POSIX systems is represented in struct timespec. This structure is composed of
two members: one integer for the number of full seconds in the time value, and one integer for
the number of nanoseconds that remain when subtracting the full seconds from the time value.
POSIX leaves it unspecified how negative time is to be represented with this structure, so I
have devised an algebra for use with the same struct that gives negative time support.

Since integers often cannot store negative zero (due to e. g. use of 2s complements in the
language implementation), we will store the minus sign in the nanosecond member if the integral
second part is zero. This gives us the property that we can test for negative time by looking
for whether at least one member of the structure is negative. Also, we want to avoid storing
the minus in both members to somewhat aid the pretty-printing construct often seen,

printf("%ld.%09ld\n", (long)ts.tv_sec, ts.tv_nsec);

The number of combinations of a (non-zero) negative number, zero and a (non-zero) positive
number is small, so we can actually just exhaustively list them all.

Representation Time value R T R T
{−1,−1} illegal {0,−1} -0.1 s {1,−1} illegal
{−1, 0} -1.0 s {0, 0} 0.0 s {1, 0} 1.0 s
{−1, 1} -1.1 s {0, 1} 0.1 s {1, 1} 1.1 s

The set of so-extended valid timespecs is therefore:

K =
{
(i, f) : i, f ∈ Z ∧ i 6= 0 ∧ 0 ≤ f < 109

}
∪

{
(i, f) : i = 0 ∧ f ∈ Z ∧ −109 < f < 109

}

11

11.1 Function list
#include <libHX/misc.h>

bool HX_timespec_isneg(const struct timespec *p);
struct timespec *HX_timespec_neg(struct timespec *result,

const struct timespec *p);
struct timespec *HX_timespec_add(struct timespec *result,

const struct timespec *p, const struct timespec *q);
struct timespec *HX_timespec_sub(struct timespec *delta,

const struct timespec *p, const struct timespec *q);
struct timespec *HX_timespec_mul(struct timespec *delta,

const struct timespec *p, int f);
struct timespec *HX_timespec_mulf(struct timespec *delta,

const struct timespec *p, double f);
struct timeval *HX_timeval_sub(struct timeval *delta,

const struct timeval *p, const struct timeval *q);
int HX_time_compare(const struct stat *a, const struct stat *b, int mode);

HX_timespec_isneg Determines whether a timespec structure represents (non-zero) negative
time.

HX_timespec_neg Computes the negation of the time specified by p. result and p may point
to the same structure.

HX_timespec_add Calculates the sum of the two times specified by p and q, which are of type
struct timespec. Any of result, p and q may point to the same structure.

HX_timespec_sub Calculates the difference between the two timepoints p and q, which are of
type struct timespec (nanosecond granularity).

HX_timespec_mul Multiplies the time quantum in p by f.

HX_timespec_mulf Multiplies the time quantum in p by f.

HX_timeval_sub Calculates the difference between the two timepoints p and q, which are of
type struct timeval (microsecnod granularity).

HX_time_compare Compares the timestamps from two struct stats. mode indicates which
field is compared, which can either be ’a’ for the access time, ’c’ for the inode change
time, ’m’ for the modification time, or ’o’ for the creation time (where available). Re-
turns a negative number if the time in a is less than b, zero when they are equal, or a
positive number greater than zero if a is greater than b.

The macros HX_TIMESPEC_FMT and HX_TIMESPEC_EXP can be used for passing and printing a
struct timespec using the *printf function family:

struct timespec p;
clock_gettime(CLOCK_MONOTONIC, &p);
printf("Now: " HX_TIMESPEC_FMT, HX_TIMESPEC_EXP(&p));

Similarly, HX_TIMEVAL_FMT and HX_TIMEVAL_EXP exist for the older struct timeval.

12

12 Bitmaps
#include <libHX/misc.h>

size_t HXbitmap_size(type array, unsigned int bits);
void HXbitmap_set(type *bmap, unsigned int bit);
void HXbitmap_clear(type *bmap, unsigned int bit);
bool HXbitmap_test(type *bmap, unsigned int bit);

All of these four are implemented as macros, so they can be used with any integer type that is
desired to be used.

HXbitmap_size Returns the amount of “type”-based integers that would be needed to hold an
array of the requested amount of bits.

HXbitmap_set Set the specific bit in the bitmap.

HXbitmap_clear Clear the specific bit in this bitmap.

HXbitmap_test Test for the specific bit and returns true if it is set, otherwise false.

12.0.1 Example

#include <stdlib.h>
#include <string.h>
#include <libHX/misc.h>

int main(void)
{

unsigned long bitmap[HXbitmap_size(unsigned long, 128)];

memset(bitmap, 0, sizeof(bitmap));
HXbitmap_set(bitmap, 49);
return HXbitmap_get(bitmap, HX_irand(0, 128)) ?

EXIT_SUCCESS : EXIT_FAILURE;
}

13

Part II

Data structures
13 Maps
A map is a collection of key-value pairs. (Some languages, such as Perl, also call them “asso-
ciative array” or just “hash”, however, the underlying storage mechanism may not be an array
or a hash, however.) Each key is unique and has an associated value. Keys can be any data
desired; HXmap allows to specify your own key and data handling functions so they can be
strings, raw pointers, or complex structures.

To access any map-related functions, #include <libHX/map.h>.

13.1 Structural definition
The HXmap structure is a near-opaque type. Unlike the predecessor map implementation struct
HXbtree from libHX 2.x, the 3.x API exposes much less fields.

struct HXmap {
unsigned int items, flags;

};

items The number of items in the tree. This field tracks the number of items in the map and
is used to report the number of elements to the user, and is updated whenever an element
is inserted or removed from the map. The field must not be changed by user.

flags The current behavior flags for the map. While implementation-private bits are exposed,
only HXMAP_NOREPLACE is currently allowed to be (un)set by the developer while a map
exists.

For retrieving elements from a tree, some functions work with struct HXmap_node, which is
defined as follows:

struct HXmap_node {
union {

void *key;
const char *const skey;

};
union {

void *data;
char *sdata;

};
};

key The so-called primary key, which uniquely identifies an element (a key-value pair) in the
map. The memory portions that make up the key must not be modified. (If the key
changes, so does its hash value and/or position index, and without taking that into
account, writing to the key directly is going to end up with an inconsistent state. To
change the key, you will need to delete the element and reinsert it with its new key.)

skey A convenience type field for when the map’s keys are C strings. It is useful for use
with e. g. printf or other varargs function, which would otherwise require casting of the
void *key member to const char * first.

14

data The data associated with the key.

sdata Convenience type field.

13.2 Map initialization
During initialization, you specify the underlying storage type by selecting a given constructor
function. All further operations are done through the unified HXmap API which uses a form
of virtual calls internally.

Currently, there are two distinct map types in libHX. There are a handful of selectable
symbols, though. Abstract types are:

HXMAPT_DEFAULT No further preferences or guarantees; selects any map type that the libHX
maintainer deemed fast.

HXMAPT_ORDERED The map shall use a data structure that provides ordered traversal.

Specific types include:

HXMAPT_HASH Hash-based map – Amortized O (1) insertion, lookup and deletion; unordered.

HXMAPT_RBTREE Red-black binary tree – O (log (n)) insertion, lookup and deletion; ordered.

These can then be used with the initialization functions:

struct HXmap *HXmap_init(unsigned int type, unsigned int flags);
struct HXmap *HXmap_init5(unsigned int type, unsigned int flags,

const struct HXmap_ops *ops, size_t key_size, size_t data_size);

Both the *_init and *_init5 variant creates a new map; the latter function allows to specify
the operations in detail as well as key and data size, which may become necessary when using
data sets which have their own way of being managed. The flags parameter can contain any
of the following:

HXMAP_NONE This is just a mnemonic for the value 0, indicating no flags.

HXMAP_NOREPLACE If a key already exists and another add operation is attempted, the key’s
associated value will be replaced by the new value. If this flag is absent, -EEXIST is
returned. This flag is allowed to be subsequently changed by the developer if so desired,
using bit logic such as map->flags &= ~HXMAP_NOREPLACE;.

HXMAP_SKEY Notifies the constructor that keys will be C-style strings. The flag presets the
k_compare operation to use strcmp. In the flag’s absence, direct value comparison will
be used if the key size is specified as zero (e. g. with the HXhashmap_init4 function call),
or memcmp if the key size is non-zero.

HXMAP_CKEY Instructs the map to make copies of keys when they are added to the map. This
is required when the buffer holding the key changes or goes out of scope. The flag presets
the k_clone and k_free operations to HX_memdup and free, and as such, the key_size
parameter must not be zero. If however, HXMAP_SKEY is also specified, HX_strdup and
free will be used and key_size must be zero.

HXMAP_SDATA Notifies the constructor that data will be C-style strings. This sets up the
d_clone and d_free operations.

15

HXMAP_CDATA Instructs the map to make copies of the data when new entries are added to the
map. This is required when the buffer holding the data either goes out of scope, or you
want to keep the original contents instead of just a pointer.

HXMAP_SCKEY Mnemonic for the combination of HXMAP_SKEY OR’ed with HXMAP_CKEY.

HXMAP_SCDATA Mnemonic for the combination of HXMAP_SDATA OR’ed with HXMAP_SDATA.

HXMAP_SINGULAR Specifies that the “map” is only used as a set, i. e. it does not store any
values, only keys. Henceforth, the value argument to HXmap_add must always be NULL.

13.3 Flag combinations
This subsection highlights the way HXMAP_SKEY interacts with HXMAP_CKEY and the key size.
The copy semantics are the same for HXMAP_SDATA and HXMAP_CDATA.

HXMAP_SKEY is unset, HXMAP_CKEY is unset

The key_size parameter at the time of map construction is ignored. The pointer value of the
key parameter for the HXmap_add call is directly stored in the tree, and this is the key that
uniquely identifies the map entry and which is used for comparisons. This may be used if you
intend to directly map pointer values.

static struct something *x = ..., *y = ...;
HXmap_add(map, &x[0], "foo");
HXmap_add(map, &x[1], "bar");

HXMAP_SKEY is set, HXMAP_CKEY is unset

The key_size parameter at the time of map construction is ignored. The pointer value of the
key parameter for the HXmap_add call is directly stored in the tree, but it is the C string pointed
to by the key parameter that serves as the key.

HXMAP_SKEY is set, HXMAP_CKEY is set

The key_size parameter at the time of map construction is ignored. The string pointed to
by the key parameter will be duplicated, and the resulting pointer will be stored in the tree.
Again, it is the pointed-to string that is the key.

HXMAP_SKEY is unset, HXMAP_CKEY is set

The memory block pointed to by the key parameter will be duplicated. The key_size param-
eter must be non-zero for this to successfully work.

With separate ops

However, when a custom struct HXmap_ops is provided in the call to HXmap_init5, any of
these semantics can be overridden. Particularly, since your own ops can practically ignore
key_size, it could be set to any value.

16

13.4 Key-data operations
The HXMAP_SKEY/CKEY/SDATA/CDATA flags are generally sufficient to set up common maps where
keys and/or data are C strings or simple binary data where memdup/memcmp is enough. Where
the provided mechanisms are not cutting it, an extra HXmap_ops structure with functions
specialized in handling the keys and/or data has to be used as an argument to the initialization
function call.

struct HXmap_ops {
int (*k_compare)(const void *, const void *, size_t);
void *(*k_clone)(const void *, size_t);
void (*k_free)(void *);
void *(*d_clone)(const void *, size_t);
void (*d_free)(void *);
unsigned long (*k_hash)(const void *, size_t);

};

k_compare Function to compare two keys. The return value is the same as that of memcmp or
strcmp: negative values indicate that the first key is “less than” the second, zero indicates
that both keys are equal, and positive values indicate that the first key is “greater than”
the second. The size argument in third position is provided so that memcmp, which wants
a size parameter, can directly be used without having to write an own function.

k_clone Function that will clone (duplicate) a key. This is used for keys that will be added
to the tree, and potentially also for state-keeping during traversal of the map. It is valid
that this clone function simply returns the value of the pointer it was actually passed;
this is used by default for maps without HXMAP_CKEY for example.

k_free Function to free a key. In most cases it defaults to free(3), but in case you are using
complex structs, more cleanup may be needed.

d_clone Same as k_clone, but for data.

d_free Same as k_free, but for data.

k_hash Specifies an alternate hash function. Only to be used with hash-based maps. Hashmaps
default to using the DJB2 string hash function when HXMAP_SKEY is given, or otherwise
the Jenkins’ lookup3 hash function.

libHX exports two hash functions that you can select for struct HXmap_ops’s k_hash if the
default for a given flag combination is not to your liking.

HXhash_jlookup3 Bob Jenkins’s lookup3 hash.

HXhash_djb2 DJB2 string hash.

13.5 Map operations
int HXmap_add(struct HXmap *, const void *key, const void *value);
const struct HXmap_node *HXmap_find(const struct HXmap *, const void *key);
void *HXmap_get(const struct HXmap *, const void *key);
void *HXmap_del(struct HXmap *, const void *key);
void HXmap_free(struct HXmap *);
struct HXmap_node *HXmap_keysvalues(const struct HXmap *);

17

HXmap_add Adds a new node to the tree using the given key and data. When an element is in
the map, the key may not be modified, as doing so could possibly invalidate the internal
location of the element, or its ordering with respect to other elements. If you need to
change the key, you will have to delete the element from the tree and re-insert it. On
error, -errno will be returned.
When HXMAP_SINGULAR is in effect, value must be NULL, or -EINVAL is returned.

HXmap_find Finds the node for the given key. The key can be read from the node using
node->key or node->skey (convenience alias for key, but with a type of const char *),
and the data by using node->data or node->sdata. (see section 13.1).

HXmap_get Get is a find operation directly returning node->data instead of the node itself.
Since HXmap_get may legitimately return NULL if NULL was stored in the tree as the data
for a given key, only errno will really tell whether the node was found or not; in the latter
case, errno is set to ENOENT.

HXmap_del Removes an element from the map and returns the data value that was associated
with it. When an error occurred, or the element was not found, NULL is returned. Because
NULL can be a valid data value, errno can be checked for non-zero. errno will be -ENOENT
if the element was not found, or zero when everything was ok.

HXmap_free The function will delete all elements in the map and free memory it holds.

HXmap_keysvalues Returns all key-value-pairs in an array of the size as many items were in
the map (map->items) at the time it was called. The memory must be freed using free(3)
when it is no longer needed. The order elements in the array follows the traverser notes
(see below), unless otherwise specified.

13.6 Map traversal
struct HXmap_trav *HXmap_travinit(const struct HXmap *);
const struct HXmap_node *HXmap_traverse(struct HXmap_trav *iterator);
void HXmap_travfree(struct HXmap_trav *iterator);
void HXmap_qfe(const struct HXmap *, bool (*fn)(const struct HXmap_node *,

void *arg), void *arg);

HXmap_travinit Initializes a traverser (a. k. a. iterator) for the map, and returns a pointer to
it. NULL will be returned in case of an error, such as memory allocation failure. Traversers
are returned even if the map has zero elements.

HXmap_traverse Returns a pointer to a struct HXmap_node for the next element / key-value
pair from the map, or NULL if there are no more entries.

HXmap_travfree Release the memory associated with a traverser.

HXmap_qfe The “quick foreach”. Iterates over all map elements in the fastest possible manner,
but has the restriction that no modifications to the map are allowed. Furthermore, a
separate function to handle each visited node, is required. (Hence this is also called “closed
traversal”, because one cannot access the stack frame of the original function which called
HXmap_qfe.) The user-defined function returns a bool which indicates whether traversal
shall continue or not.

Flags for HXmap_travinit:

18

HXMAP_NOFLAGS A mnemonic for no flags, and is defined to be 0.

HXMAP_DTRAV Enable support for deletion during traversal. As it can make traversal slower, it
needs to be explicitly specified for cases where it is needed, to not penalize cases where
it is not.

WARNING: Modifying the map while a traverser is active is implementation-specific behavior!
libHX generally ensures that there will be no undefined behavior (e. g. crashes), but there is no
guarantee that elements will be returned exactly once. There are fundamental cases that one
should be aware of:

• An element is inserted before where the traverser is currently positioned at. The ele-
ment may not be returned in subsequent calls to HXmap_traverse on an already-active
traverser.

• Insertion or deletion may cause internal data structure to re-layout.

– Traversers of ordered data structures may choose to rebuild their state.
– Traversers of unordered data structures would run risk to return more than once, or

not at all.

Descriptions for different map types follow.

Hashmaps On HXmap_add, an element may be inserted in a position that is before where the
traverser is currently positioned. Such elements will not be returned in the remaining
calls to HXmap_traverse. The insertion or deletion of an element may cause the internal
data structure to re-layout itself. When this happens, the traverser will stop, so as to not
return entries twice.

Binary trees Elements may be added before the traverser’s position. These elements will not
be returned in subsequent traversion calls. If the data structure changes as a result of an
addition or deletion, the traverser will rebuild its state and continue traversal transpar-
ently. Because elements in a binary tree are ordered, that is, element positions may not
change with respect to another when the tree is rebalanced, there is no risk of returning
entries more than once. Nor will elements that are sorted after the current traverser’s
position not be returned (= they will be returned, because they cannot get reordered to
before the traverser like in a hash map). The HX rbtree implementation also has proper
handling for when the node which is currently visiting is deleted.

13.7 RB-tree Limitations
The implementation has a theoretical minimum on the maximum number of nodes, 224 =
16,777,216. A worst-case tree with this many elements already has a height of 48 (RBT_MAXDEP),
which is the maximum height currently supported. The larger the height is that HXrbtree is
supposed to handle, the more memory (linear increase) it needs. All functions that build or keep
a path reserve memory for RBT_MAXDEP nodes; on x86_64 this is 9 bytes per 〈node, direction〉
pair, amounting to 432 bytes for path tracking alone. It may not sound like a lot to many, but
given that kernel people can limit their stack usage to 4096 bytes is impressive alone

3.
3Not always of course. Linux kernels are often configured to use an 8K stack because some components still

use a lot of stack space, but even 8K is still damn good.

19

13.8 Examples
13.8.1 Case-insensitive ordering

The correct way:

static int my_strcasecmp(const void *a, const void *b, size_t z)
{

return strcasecmp(a, b);
}

static const struct HXmap_ops icase = {
.k_compare = my_strcasecmp,

};
HXmap_init5(HXMAPT_RBTREE, HXMAP_SKEY, &icase, 0, dsize);

A hackish way (which wholly depends on the C implementation and use of extra safeguards is
a must):

static const struct HXmap_ops icase = {
.k_compare = (void *)strcasecmp,

};
BUILD_BUG_ON(sizeof(DEMOTE_TO_PTR(strcasecmp)) > sizeof(void *));
BUILD_BUG_ON(sizeof(DEMOTE_TO_PTR(strcasecmp)) > sizeof(icase.k_compare));
HXmap_init5(HXMAPT_RBTREE, HXMAP_SKEY, &icase, 0, dsize);

13.8.2 Reverse sorting order

Any function that behaves like strcmp can be used. It merely has to return negative when
a < b, zero on a = b, and positive non-zero when a > b.

static int strcmp_rev(const void *a, const void *b, size_t z)
{

/* z is provided for cases when things are raw memory blocks. */
return strcmp(b, a);

}

static const struct HXmap_ops rev = {
.k_compare = strcmp_rev,

};
HXmap_init5(HXMAPT_RBTREE, HXMAP_SKEY, &rev, 0, dsize);

13.8.3 Keys with non-unique data

Keys can actually store non-unique data, as long as this extra fields does not actually contribute
to the logical key — the parts that do uniquely identify it. In the following example, the notes
member may be part of struct package, which is the key as far as HXmap is concerned, but
still, only the name and versions are used to identify it.

struct package {
char *name;
unsigned int major_version;
unsigned int minor_version;

20

char notes[64];
};

static int package_cmp(const void *a, const void *b)
{

const struct package *p = a, *q = b;
int ret;
ret = strcmp(p->name, q->name);
if (ret != 0)

return ret;
ret = p->major_version - q->major_version;
if (ret != 0)

return ret;
ret = p->minor_version - q->minor_version;
if (ret != 0)

return ret;
return 0;

}

static const struct HXmap_ops package_ops = {
.k_compare = package_cmp,

};

HXmap_init5(HXMAPT_RBTREE, flags, &package_ops,
sizeof(struct package), dsize);

21

14 Doubly-linked list
HXdeque is a data structure for a doubly-linked non-circular NULL-sentineled list. Despite being
named a deque, which is short for double-ended queue, and which may be implemented using
an array, HXdeque is in fact using a linked list to provide its deque functionality. Furthermore,
a dedicated root structure and decidated node structures with indirect data referencing are
used.

14.1 Structural definition
#include <libHX/deque.h>

struct HXdeque {
struct HXdeque_node *first, *last;
unsigned int items;
void *ptr;

};

struct HXdeque_node {
struct HXdeque_node *next, *prev;
struct HXdeque *parent;
void *ptr;

};

The ptr member in struct HXdeque provides room for an arbitrary custom user-supplied
pointer. items will reflect the number of elements in the list, and must not be modified. first
and last provide entrypoints to the list’s ends.

ptr within struct HXdeque_node is the pointer to the user’s data. It may be modified and
used at will by the user. See example section .

14.2 Constructor, destructors
struct HXdeque *HXdeque_init(void);
void HXdeque_free(struct HXdeque *dq);
void HXdeque_genocide(struct HXdeque *dq);
void HXdeque_genocide2(struct HXdeque *dq, void (*xfree)(void *));
void **HXdeque_to_vec(struct HXdeque *dq, unsigned int *num);

To allocate a new empty list, use HXdeque_init. HXdeque_free will free the list (including all
nodes owned by the list), but not the data pointers.

HXdeque_genocide is a variant that will not only destroy the list, but also calls a freeing
function free() on all stored data pointers. This puts a number of restrictions on the charac-
teristics of the list: all data pointers must have been obtained with malloc, calloc or realloc
before, and no data pointer must exist twice in the list. The function is more efficient than an
open-coded loop over all nodes calling HXdeque_del.

A generic variant is available with HXdeque_genocide2, which takes a pointer to an ap-
propriate freeing function. HXdeque_genocide is thus equivalent to HXdeque_genocide2(dq,
free).

To convert a linked list to a NULL-terminated array, HXdeque_to_vec can be used. If num
is not NULL, the number of elements excluding the NULL sentinel, is stored in *num.

22

14.3 Addition and removal
struct HXdeque_node *HXdeque_push(struct HXdeque *dq, void *ptr);
struct HXdeque_node *HXdeque_unshift(struct HXdeque *dq, void *ptr);
void *HXdeque_pop(struct HXdeque *dq);
void *HXdeque_shift(struct HXdeque *dq);
struct HXdeque *HXdeque_move(struct HXdeque_node *target,

struct HXdeque_node *node);
void *HXdeque_del(struct HXdeque_node *node);

HXdeque_push and HXdeque_unshift add the data item in a new node at the end (“push”) or
as the new first element (“unshift” as Perl calls it), respectively. The functions will return the
new node on success, or NULL on failure and errno will be set. The node is owned by the list.

HXdeque_pop and HXdeque_shift remove the last (“pop”) or first (“shift”) node, respec-
tively, and return the data pointer that was stored in the data.

HXdeque_move will unlink a node from its list, and reinsert it after the given target node,
which may be in a different list.

Deleting a node is accomplished by calling HXdeque_del on it. The data pointer stored in
the node is not freed, but returned.

14.4 Iteration
Iterating over a HXdeque linked list is done manually and without additional overhead of
function calls:

const struct HXdeque_node *node;
for (node = dq->first; node != NULL; node = node->next)

do_something(node->ptr);

14.5 Searching

struct HXdeque_node *HXdeque_find(struct HXdeque *dq, const void *ptr);
void *HXdeque_get(struct HXdeque *dq, void *ptr);

HXdeque_find searches for the node which contains ptr, and does so by beginning at the start
of the list. If no node is found, NULL is returned. If a pointer is more than once in the list, any
node may be returned.

HXdeque_get will further return the data pointer stored in the node — however, since that
is just what the ptr argument is, the function practically only checks for existence of ptr in
the list.

14.6 Examples

In this example, all usernames are obtained from NSS, and put into a list. HX_strdup is used,
because getpwent will overwrite the buffer it uses to store its results. The list is then converted
to an array, and the list is freed (because it is not need it anymore). HXdeque_genocide must
not be used here, because it would free all the data pointers (strings here) that were just
inserted into the list. Finally, the list is sorted using the well-known qsort function. Because
strcmp takes two const char * arguments, but qsort mandates a function taking two const
void *, a cast can be used to silence the compiler. This only works because we know that the
array consists of a bunch of char * pointers, so strcmp will work.

23

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <libHX/defs.h>
#include <libHX/deque.h>
#include <libHX/string.h>
#include <pwd.h>

int main(void)
{

struct HXdeque *dq = HXdeque_init();
struct passwd *pw;
unsigned int elem;
char **users;

setpwent();
while ((pw = getpwent()) != NULL)

HXdeque_push(dq, HX_strdup(pw->pw_name));
endpwent();

users = reinterpret_cast(char **, HXdeque_to_vec(dq, &elem));
HXdeque_free(dq);

qsort(users, elem, sizeof(*users), static_cast(void *, strcmp));
return 0;

}

Figure 1: Example use of HXdeque to store and sort a list

24

15 Inline doubly-linked list
Classical linked-list implementations, such as HXdeque, either store the actual data within a
node, or indirectly through a pointer, but the “inline doubly-linked list” instead does it reverse
and has the list head within the data structure.

struct package_desc {
char *package_name;
int version;

};
struct classic_direct_node {

struct classic_direct_node *next, *prev;
struct package_desc direct_data;

};
struct classic_indirect_node {

struct classic_indirect_node *next, *prev;
void *indirect_data;

};

Figure 2: Classic linked-list implementations with direct/indirect data blocks.

struct package_desc {
struct HXlist_head list;
char *package_name;
int version;

};

Figure 3: List head (next,prev pointers) inlined into the data block

At first glance, an inline list does not look much different from struct classic_direct_-
data, it is mostly a viewpoint decision which struct is in the foreground.

15.1 Synopsis
#include <libHX/list.h>

struct HXlist_head {
/* All fields considered private */

};

HXLIST_HEAD_INIT(name);
HXLIST_HEAD(name);
void HXlist_init(struct HXlist_head *list);
void HXlist_add(struct HXlist_head *list, struct HXlist_head *elem);
void HXlist_add_tail(struct HXlist_head *list, struct HXlist_head *elem);
void HXlist_del(struct HXlist_head *element);
bool HXlist_empty(const struct HXlist_head *list);

HXLIST_HEAD_INIT This macro expands to the static initializer for a list head.

25

HXLIST_HEAD This macro expands to the definition of a list head (i. e. struct HXlist_head
name = HXLIST_HEAD_INIT;)

HXlist_init Initializes the list head. This function is generally used when the list head is on
the heap where the static initializer cannot be used.

HXlist_add Adds elem to the front of the list.

HXlist_add_tail Adds elem to the end of the list.

HXlist_del Deletes the given element from the list.

HXlist_empty Tests whether the list is empty. Note: For clists, you could also use clist->items
== 0.

15.2 Traversal
Traversal is implemented using macros that expand to for() statements which can syntactically
be used like them, i. e. curly braces may be omitted if only a single statement is in the body of
the loop.

The head parameter specifies the list head (struct HXlist_head), pos specifies an iterator,
also of type struct HXlist_head. Lists can either be traversed in forward direction, or, using
the _rev variants, in reverse direction. The _safe variants use a temporary n to hold the next
object in the list, which is needed when pos itself is going to be inaccessible at the end of the
block, through, for example, freeing its encompassing object.

HXlist_for_each(pos, head)
HXlist_for_each_rev(pos, head)
HXlist_for_each_safe(pos, n, head)
HXlist_for_each_rev_safe(pos, n, head)

HXlist_for_each Forward iteration over the list heads.

HXlist_for_each_rev Reverse iteration over the list heads.

HXlist_for_each_safe Forward iteration over the list heads that is safe against freeing pos.

HXlist_for_each_rev_safe Reverse iteration over the list heads that is safe against freeing
pos.

The _entry variants use an iterator pos of the type of the encompassing object (e. g. struct
item in below’s example), so that the manual HXlist_entry invocation is not needed. member
is the name of the list structure embedded into the item.

HXlist_for_each_entry(pos, head, member)
HXlist_for_each_entry_rev(pos, head, member)
HXlist_for_each_entry_safe(pos, n, head, member)

HXlist_for_each_entry Forward iteration over the list elements.

HXlist_for_each_entry_rev Reverse iteration over the list elements.

HXlist_for_each_entry_safe Forward iteration over the list elements that is safe against
freeing pos.

26

15.3 Examples
struct item {

struct HXlist_head anchor;
char name[32];

};

struct HXlist_head *e;
struct item *i, *j;
HXLIST_HEAD(list);

i = malloc(sizeof(*i));
HXlist_init(&e->anchor);
strcpy(i->name, "foo");
HXlist_add_tail(&list, &i->anchor);

i = malloc(sizeof(*i));
HXlist_init(&e->anchor);
strcpy(i->name, "bar");
HXlist_add_tail(&list, &i->anchor);

HXlist_for_each(e, &list) {
i = HXlist_entry(e, typeof(*i), anchor);
printf("e=%p i=%p name=%s\n", e, i, i->name);

}

HXlist_for_each_entry(i, &list, anchor)
printf("i=%p name=%s\n", i, i->name);

HXlist_for_each_entry_rev(i, &list, anchor)
printf("i=%p name=%s\n", i, i->name);

HXlist_for_each_entry_safe(i, j, &list, anchor) {
printf("i=%p name=%s\n", i, i->name);
free(i);

}

15.4 When to use HXdeque/HXlist
The choice whether to use HXdeque or HXlist/HXclist depends on whether one wants the list
head handling on the developer or on the library. Especially for “atomic” and “small” data,
it might be easier to just let HXdeque do the management. Compare the following two code
examples to store strings:

27

int main(int argc, const char **argv)
{

struct HXdeque *dq = HXdeque_init();
while (--argc)

HXdeque_push(dq, ++argv);
return 0;

}

Figure 4: Storing strings in a HXdeque

struct element {
struct HXlist_head list;
char *data;

};

int main(int main, const char **argv)
{

HXLIST_HEAD(lh);
while (--argc) {

struct element *e = malloc(sizeof(*e));
e->data = *++argv;
HXlist_init(&e->list);
HXlist_add_tail(&e->list);

}
return 0;

}

Figure 5: Storing strings in a HXlist

These examples assume that argv is persistent, which, for the sample, is true.
With HXlist, one needs to have a struct with a HXlist_head in it, and if one does not

already have such a struct —e. g. by means of wanting to store more than just one value — one
will need to create it first, as shown, and this may lead to an expansion of code.

This however does not mean that HXlist is the better solution over HXdeque for data
already available in a struct. As each struct has a list_head that is unique to the node, it is
not possible to share this data. Trying to add a HXlist_head to another list is not going to
end well, while HXdeque has no problem with this as list heads are detached from the actual
data in HXdeque.

struct point p = {15, 30};
HXdeque_push(dq, &p);
HXdeque_push(dq, &p);

Figure 6: Data can be added multiple times in a HXdeque without ill effects

To support this, an extra allocation is needed on the other hand. In a HXlist, to store n
elements of compound data (e. g. struct point), n allocations are needed, assuming the list
head is a stack object, and the points are not. HXdeque will need at least 2n + 1 allocations,
n for the nodes, n for the points and another for the head.

28

16 Counted inline doubly-linked list
clist is the inline doubly-linked list from chapter 15, extended by a counter to retrieve the
number of elements in the list in O (1) time. This is also why all operations always require the
list head. For traversal of clists, use the corresponding HXlist macros.

16.1 Synopsis
#include <libHX/list.h>

struct HXclist_head {
/* public readonly: */
unsigned int items;
/* Undocumented fields are considered “private” */

};

HXCLIST_HEAD_INIT(name);
HXCLIST_HEAD(name);
void HXclist_init(struct HXclist_head *head);
void HXclist_unshift(struct HXclist_head *head, struct HXlist_head *new_node);
void HXclist_push(struct HXclist_head *head, struct HXlist_head *new_node);
type HXclist_pop(struct HXclist_head *head, type, member);
type HXclist_shift(struct HXclist_head *head, type, member);
void HXclist_del(struct HXclist_head *head, struct HXlist_chead *node);

HXCLIST_HEAD_INIT Macro that expands to the static initializer for a clist.

HXCLIST_HEAD Macro that expands to the definition of a clist head, with initialization.

HXclist_init Initializes a clist. This function is generally used when the head has been
allocated from the heap.

HXclist_unshift Adds the node to the front of the list.

HXclist_push Adds the node to the end of the list.

HXclist_pop Removes the last node in the list and returns it.

HXclist_shift Removes the first node in the list and returns it.

HXclist_del Deletes the node from the list.

The list count in the clist head is updated whenever a modification is done on the clist through
these functions.

29

Part III

Strings and memory
17 String operations
Some string functions are merely present in libHX because they are otherwise unportable; some
are only in the C libraries of the BSDs, some only in GNU libc.

17.1 Locating chars
#include <libHX/string.h>

void *HX_memmem(const void *haystack, size_t hsize,
const void *needle, size_t nsize);

char *HX_strbchr(const char *start, const char *now, char delimiter);
char *HX_strchr2(const char *s, const char *accept);
size_t HX_strrcspn(const char *s, const char *reject);

HX_memmem Analogous to strstr(3), memmem tries to locate the memory block pointed to by
needle (which is of length nsize) in the block pointed to by haystack (which is of size
hsize). It returns a pointer to the first occurrence in haystack, or NULL when it was not
found.

HX_strbchr Searches the character specified by delimiter in the range from now to start.
It works like strrchr(3), but begins at now rather than the end of the string.

HX_strchr2 This function searches the string s for any set of bytes that are not specified in
the second argument, n. In this regard, the function is the opposite to strpbrk(3).

HX_strrcspn Works like strcspn(3), but processes the string from end to start.

17.2 Extraction
#include <libHX/string.h>

char *HX_basename(const char *s);
char *HX_basename_exact(const char *s);
char *HX_dirname(const char *s);
char *HX_strmid(const char *s, long offset, long length);

HX_basename Returns a pointer to the basename portion of the supplied path s. The result
of this function is never NULL, and must never be freed either. Trailing slashes are not
stripped, to avoid having to do an allocation. In other words, basename("/mnt/") will
return “mnt/”. If you need to have the slashes stripped, use HX_basename_exact. A
possible use for this function is, for example, to derive a logging prefix from argv[0].

int main(int argc, const char **argv)
{

if (foo())
fprintf(stderr, "%s: Special condition occurred.\n",

30

HX_basename(argv[0]));
return 0;

}

HX_basename_exact The accurate and safe version of HX_basename that deals with trailing
slashes correctly and produces the same result as dirname(3). It returns a pointer to a
newly-allocated string that must be freed when done using. NULL may be returned in case
of an allocation error.

HX_dirname Returns a pointer to a new string that contains the directory name portion (every-
thing except basename). When done using the string, it must be freed to avoid memory
leaks.

HX_strmid Extract a substring of length characters from s, beginning at offset. If offset
is negative, counting beings from the end of the string; −1 is the last character (not the
’\0’ byte). If length is negative, it will leave out that many characters off the end. The
function returns a pointer to a new string, and the user has to free it.

17.3 In-place transformations
#include <libHX/string.h>

char *HX_chomp(char *s);
size_t HX_strltrim(char *s);
char *HX_stpltrim(const char *s);
char *HX_strlower(char *s);
char *HX_strrev(char *s);
size_t HX_strrtrim(char *s);
char *HX_strupper(char *s);

HX_chomp Removes the characters ’\r’ and ’\n’ from the right edge of the string. Returns
the original argument.

HX_strltrim Trim all whitespace (characters on which isspace(3) return true) on the left
edge of the string. Returns the number of characters that were stripped.

HX_stpltrim Returns a pointer to the first non-whitespace character in s.

HX_strlower Transforms all characters in the string s into lowercase using tolower(3). Re-
turns the original argument.

HX_strrev Reverse the string in-place. Returns the original argument.

HX_strrtrim Trim all whitespace on the right edge of the string. Returns the number of
characters that were stripped.

HX_strupper Transforms all characters in the string s into uppercase using toupper(3). Re-
turns the original argument.

31

17.4 Out-of-place quoting transforms
#include <libHX/string.h>

char *HX_strquote(const char *s, unsigned int type, char **free_me);

HX_strquote will escape metacharacters in a string according to type, and returns the escaped
result.

Possible values for type:

HXQUOTE_SQUOTE Escape all single quotes and backslashes in a string with a backslash. (“Ol’
\Backslash” → “Ol\’ \\Backslash”)

HXQUOTE_DQUOTE Escape all double quotes and backslahes in a string with the backslash
method. (“Ol” \Backslash” → “Ol\” \\Backslash”)

HXQUOTE_HTML Escape ’<’, ’>’, ’&’ and ’"’ by their respective HTML entities <, >, &
and ".

HXQUOTE_LDAPFLT Escape the string using backslash-plus-hexcode notation as described in
RFC 45154, to make it suitable for use in an LDAP search filter.

HXQUOTE_LDAPRDN Escape the string using backslash-plus-hexcode notation as described in
RFC 45145, to make it suitable for use in an LDAP Relative Distinguished Name.

HXQUOTE_BASE64 Transform the string to BASE64, as described in RFC 46486.

HXQUOTE_URIENC Escape the string so that it becomes a valid part for an URI.

HXQUOTE_SQLSQUOTE Escape all single quotes in the string by double single-quotes, as required
for using it in a single-quoted SQL string. No surrounding quotes will be generated to
facilitate concatenating of HX_strquote results.

HXQUOTE_SQLBQUOTE Escape all backticks in the string by double backticks, as required for
using it in a backtick-quoted SQL string (used for table names and columns). No sur-
rounding ticks will be generated to facilitate concatenation.

Specifying an unrecognized type will result in NULL being returned and errno be set to EINVAL.
If free_me is NULL, the function will always allocate memory, even if the string needs no

quoting. The program then has to free the result:

char *s = HX_strquote("<head>", HXQUOTE_HTML, NULL);
printf("%s\n", s);
free(s);

If free_me is not NULL however, the function will put the pointer to the memory area into
*free_me, if the string needed quoting. The program then has to free that after it is done with
the quoted result:

char *tmp = NULL;
char *s = HX_strquote("head", HXQUOTE_HTML, &tmp);
printf("%s\n", s);
free(tmp);

4http://tools.ietf.org/html/rfc4515
5http://tools.ietf.org/html/rfc4514
6http://tools.ietf.org/html/rfc4648

32

http://tools.ietf.org/html/rfc4515
http://tools.ietf.org/html/rfc4514
http://tools.ietf.org/html/rfc4648

tmp could be NULL, and since free(NULL) is not an error, this is perfectly valid. Furthermore,
if *free_me is not NULL by the time HX_strquote is called, the function will free it. This makes
it possible to call HX_strquote in succession without frees in between:

char *tmp = NULL;
printf("%s\n", HX_strquote("<html>", HXQUOTE_HTML, &tmp));
printf("%s\n", HX_strquote("<head>", HXQUOTE_HTML, &tmp));
free(tmp);

17.5 Tokenizing
#include <libHX/string.h>

char **HX_split(const char *s, const char *delimiters,
size_t *fields, int max);

char **HX_split4(char *s, const char *delimiters, int *fields, int max);
int HX_split5(char *s, const char *delimiters, int max, char **stack);
char *HX_strsep(char **sp, const char *delimiters);
char *HX_strsep2(char **sp, const char *dstr);

HX_split Split the string s on any characters from the “delimiters” string. Both the sub-
strings and the array holding the pointers to these substrings will be allocated as required;
the original string is not modified. If max is larger than zero, produces no more than max
fields. If fields is not NULL, the number of elements produced will be stored in *fields.
The result is a NULL-terminated array of char *, and the user needs to free it when done
with it, using HX_zvecfree or equivalent. An empty string (zero-length string) for s
yields a single field.

HX_split4 Split the string s in-place on any characters from the “delimiters” string. The
array that will be holding the pointers to the substrings will be allocated and needs to be
freed by the user, using free(3). The fields and max arguments work as with HX_split.

HX_split5 Split the string s in-place on any characters from the “delimiters” string. The
array for the substring pointers must be provided by the user through the stack argument.
max must be the number of elements in the array or less. The array will not be NULL-
terminated7. The number of fields produced is returned.

HX_strsep Extract tokens from a string.
This implementation of strsep has been added since the function is non-standard (ac-
cording to the manpage, conforms to BSD4.4 only) and may not be available on every
operating system.
This function extracts tokens, separated by one of the characters in delimiters. The
string is modified in-place and thus must be writable. The delimiters in the string are
then overwritten with ’\0’, *sp is advanced to the character after the delimiter, and the
original pointer is returned. After the final token, strsep will return NULL.

HX_strsep2 Like HX_strsep, but dstr is not an array of delimiting characters, but an entire
substring that acts as a delimiter.

7An implementation may however decide to put NULL in the unassigned fields, but this is implementation
and situation-specific. Do not rely on it.

33

17.6 Size-bounded string ops
#include <libHX/string.h>

char *HX_strlcat(char *dest, const char *src, size_t length);
char *HX_strlcpy(char *dest, const char *src, size_t length);
char *HX_strlncat(char *dest, const char *src, size_t dlen, size_t slen);
size_t HX_strnlen(const char *src, size_t max);

HX_strlcat and HX_strlcpy provide implementations of the BSD-originating strlcat(3) and
strlcpy(3). strlcat and strlcpy are less error-prone variants for strncat and strncpy as
they always take the length of the entire buffer specified by dest, instead of just the length
that is to be written. The functions guarantee that the buffer is ’\0’-terminated.

HX_strnlen will return the length of the input string or the upper bound given by max,
whichever is less. It will not attempt to access more than this many bytes in the input buffer.

17.7 Allocation-related
#include <libHX/string.h>

void *HX_memdup(const void *ptr, size_t length);
char *HX_strdup(const char *str);
char *HX_strndup(const char *str, size_t max);
char *HX_strclone(char **pa, const char *pb);

#ifdef __cplusplus
template<typename type> type HX_memdup(const void *ptr, size_t length);
#endif

HX_memdup Duplicates length bytes from the memory area pointed to by ptr and returns a
pointer to the new memory block. ptr may not be NULL.

HX_strdup Duplicates the string. The function is equivalent to strdup, but the latter may not
be available on all platforms. str may be NULL, in which case NULL is also returned.

HX_strndup Duplicates the input string, but copies at most max characters. (The resulting
string will be NUL-terminated of course.) str may not be NULL.

HX_strclone Copies the string pointed to by pb into *pa. If *pa was not NULL by the time
HX_strclone was called, the string is freed before a new one is allocated. The function
returns NULL and sets errno to EINVAL if pb is NULL (this way it can be freed), or, if
malloc fails, returns NULL and leaves errno at what malloc set it to.
The use of this function is deprecated, albeit no replacement is proposed.

17.8 Examples
17.8.1 Using HX_split5

HX_split5, where the “5” should be interpreted (with a bit of imagination and the knowledge
of leetspeak) as an “S” for stack, as HX_split5 is often used only with on-stack variables and
where the field count of interest is fixed, as the example for parsing /etc/passwd shows:

34

#include <stdio.h>
#include <libHX/string.h>

char *field[8];
hxmc_t *line = NULL;

while (HX_getl(&line, fp) != NULL) {
if (HX_split5(line, ":", ARRAY_SIZE(field), field) < 7) {

fprintf(stderr, "That does not look like a valid line.\n");
continue;

}
printf("Username: %s\n", field[0]);

}

17.8.2 Using HX_split4

Where the number of fields is not previously known and/or estimatable, but the string can be
modified in place, one uses HX_split4 as follows:

#include <errno.h>
#include <stdio.h>
#include <libHX/string.h>

while (HX_getl(&line, fp) != NULL) {
char **field = HX_split4(line, ":", NULL, 0);
if (field == NULL) {

fprintf(stderr, "Badness! %s\n", strerror(errno));
break;

}
printf("Username: %s\n", field[0]);
free(field);

}

17.8.3 Using HX_split

Where the string is not modifiable in-place, one has to resort to using the full-fledged HX_split
that allocates space for each substring.

#include <errno.h>
#include <stdio.h>
#include <libHX/string.h>

while (HX_getl(&line, fp) != NULL) {
char **field = HX_split(line, ":", NULL, 0);
if (field == NULL) {

fprintf(stderr, "Badness. %s\n", strerror(errno));
break;

}
printf("Username: %s\n", field[0]);
/* Suppose “callme” needs the original string */
callme(line);

35

HX_zvecfree(field);
}

17.8.4 Using HX_strsep

HX_strsep provides for thread- and reentrant-safe tokenizing a string where strtok from the C
standard would otherwise fail.

#include <stdio.h>
#include <libHX/string.h>

char line[] = "root:x:0:0:root:/root:/bin/bash";
char *wp, *p;

wp = line;
while ((p = HX_strsep(&wp, ":")) != NULL)

printf("%s\n", p)

36

18 Memory containers
The HXmc series of functions provide scripting-like semantics for strings, especially automat-
ically resizing the buffer on demand. They can also be used to store a binary block of data
together with its length. (Hence the name: mc = memory container.)

The benefit of using the HXmc functions is that one does not have to meticulously watch
buffer and string sizes anymore.

/* Step 1 */
char buf[whatever was believed to be long enough] = "helloworld";
if (strlen(buf) + strlen(".txt") < sizeof(buf))

strcat(s, ".txt");

/* Step 2 */

char buf[long_enough] = "helloworld";
strlcat(s, ".txt", sizeof(buf));

/* Step 3 */

hxmc_t *buf = HXmc_strinit("helloworld");
HXmc_strcat(&s, ".txt");

Figure 7: Improvement of string safety over time

This makes it quite similar to the string operations (and append seems to be the most com-
monly used one to me) supported in scripting languages that also do without a size argument.
The essential part of such memory containers is that their internal (hidden) metadata structure
contains the length of the memory block in the container. For binary data this may be the
norm, but for C-style strings, the stored and auto-updated length field serves as an accelerator
cache. For more details, see HXmc_length.

Of course, the automatic management of memory comes with a bit of overhead as the string
expands beyond its preallocated region. Such may be mitigated by doing explicit (re)sizing.

18.1 Structural overview
HXmc functions do not actually return a pointer to the memory container (e. g. struct) itself,
but a pointer to the data block. Conversely, input parameters to HXmc functions will be the
data block pointer. It is of type hxmc_t *, which is typedef’ed to char * and inherits all
properties and privileges of char *. Pointer arithmetic is thus supported. It also means you
can just pass it to functions that take a char * without having to do a member access like
s.c_str. The drawback is that many functions operating on the memory container need a
hxmc_t ** (a level-two indirection), because not only does the memory block move, but also
the memory container itself. This is due to the implementation of the container metadata which
immediately and always precedes the writable memory block.

HXmc ensures that the data block is terminated by a NUL (’\0’) byte (unless you trash
it), so you do not have to, and of course, to be on the safe side. But, the automatic NUL byte
is not part of the region allocated by the user. That is, when one uses the classic approach with
malloc(4096), the user will have control of 4096 bytes and has to stuff the NUL byte in there
somehow on his own; for strings this means the maximum string length is 4095. Requesting

37

space for a 4096-byte sized HXmc container gives you the possibility to use all 4096 bytes for
the string, because HXmc provides a NUL byte.

By the way, hxmc_t is the only typedef in this entire library, to distinguish it from regular
char * that does not have a backing memory cointainer.

18.2 Constructors, destructors
#include <libHX/string.h>

hxmc_t *HXmc_strinit(const char *s);
hxmc_t *HXmc_meminit(const void *ptr, size_t size);

HXmc_strinit Creates a new hxmc_t object from the supplied string and returns it.

HXmc_meminit Creates a new hxmc_t object from the supplied memory buffer of the given size
and returns it. HXmc_meminit(NULL, len) may be used to obtain an empty container
with a preallocated region of len bytes (zero is accepted for len).

void HXmc_free(hxmc_t *s);
void HXmc_zvecfree(hxmc_t **s);

HXmc_free Frees the hxmc object.

HXmc_zvecfree Frees all hxmc objects in the NULL-terminated array, and finally frees the
array itself, similar to HX_zvecfree.

18.3 Data manipulation
18.3.1 Binary-based

hxmc_t *HXmc_trunc(hxmc_t **mc, size_t len);
hxmc_t *HXmc_setlen(hxmc_t **mc, size_t len);
hxmc_t *HXmc_memcpy(hxmc_t **mc, const void *ptr, size_t len);
hxmc_t *HXmc_memcat(hxmc_t **mc, const void *ptr, size_t len);
hxmc_t *HXmc_mempcat(hxmc_t **mc, const void *ptr, size_t len);
hxmc_t *HXmc_memins(hxmc_t **mc, size_t pos, const void *ptr, size_t len);
hxmc_t *HXmc_memdel(hxmc_t **mc, size_t pos, size_t len);

When ptr is NULL, each call behaves as if len would be zero. Specifically, no undefined behavior
will result of the use of NULL.

HXmc_trunc Truncates the container’s data to len size. If len is greater than the current
data size of the container, the length is in fact not updated, but a reallocation may be
triggered, which can be used to do explicit allocation.

HXmc_setlen Set the data length, doing a reallocation of the memory container if needed. The
newly available bytes are uninitialized. Make use of this function when letting 3rd party
functions write to the buffer, but it should not be used with HXmc_str*(),

HXmc_memcpy Truncates the container’s data and copies len bytes from the memory area
pointed to by ptr to the container.

HXmc_memcat Concatenates (appends) len bytes from the memory area pointed to by ptr to
the container’s data.

38

HXmc_mempcat Prepends len bytes from the memory area pointed to by ptr to the container’s
data.

HXmc_memins Prepends len bytes from the memory area pointed to by ptr to the pos’th byte
of the container’s data.

HXmc_memdel Deletes len bytes from the container beginning at position pos.

In case of a memory allocation failure, the HXmc_* functions will return NULL.

18.3.2 String-based

The string-based functions correspond to their binary-based equivalents with a len argument
of strlen(s).

hxmc_t *HXmc_strcpy(hxmc_t **mc, const char *s);
hxmc_t *HXmc_strcat(hxmc_t **mc, const char *s);
hxmc_t *HXmc_strpcat(hxmc_t **mc, const char *s);
hxmc_t *HXmc_strins(hxmc_t **mc, size_t pos, const char *s);

HXmc_strcpy Copies the string pointed to by s into the memory container given by mc. If mc
is NULL, the memory container will be deallocated, that is, *mc becomes NULL.

18.3.3 From auxiliary sources

hxmc_t *HX_getl(hxmc_t **mc, FILE *fp);

HX_getl Read the next line from fp and store the result in the container. Returns NULL on
error, or when end of file occurs while no characters have been read.

18.4 Container properties
size_t HXmc_length(const hxmc_t **mc);

HXmc_length Returns the length of the memory container. This is not always equal to the
actual string length. For example, if HX_chomp was used on an MC-backed string, strlen
will return less than HXmc_length if newline control characters (’\r’ and ’\n’) were
removed.

39

19 Format templates
HXfmt is a small template system for by-name variable expansion. It can be used to substitute
placeholders in format strings supplied by the user by appropriate expanded values defined by
the program. Such can be used to allow for flexible configuration files that define key-value
mappings such as

detect_peer = ping6 -c1 %(ADDR)
#detect_peer = nmap -sP %(ADDR) | grep -Eq "appears to be up"

Consider for example a monitoring daemon that allows the administrator to specify a program
of his choice with which to detect whether a peer is alive or not. The user can choose any
program that is desired, but evidently needs to pass the address to be tested to the program.
This is where the daemon will do a substitution of the string “ping -c1 %(ADDR)” it read from
the config file, and put the actual address in it before finally executing the command.

printf("%s has %u files\n", user, num);
printf("%2$u files belong to %1$s\n", num, user);

“%s” (or “%1$s” here) specifies how large “user” is — sizeof(const char *) in this case. If
that is missing, there is no way to know the offset of “num” relative to “user”, making varargs
retrieval impossible.

Figure 8: printf positional parameters

printf, at least from GNU libc, has something vaguely similar: positional parameters.
They have inherent drawbacks, though. One is of course the question of portability, but there
is a bigger issue. All parameters must be specified, otherwise there is no way to determine the
location of all following objects following the missing one on the stack in a varargs-function like
printf., which makes it unsuitable to be used with templates where omitting some placeholders
is allowed.

19.1 Initialization, use and deallocation
#include <libHX/option.h>

struct HXformat_map *HXformat_init(void);
void HXformat_free(struct HXformat_map *table);
int HXformat_add(struct HXformat_map *table, const char *key,

const void *ptr, unsigned int ptr_type);

HXformat_init will allocate and set up a simple string-to-string map that is used for the
underlying storage, and returns it.

To release the substitution table and memory associated with it, call HXformat_free.
HXformat_add is used to add substitution entries. One can also specify other types such

as numeral types. ptr_type describes the type behind ptr and are constants from option.h
(cf. section 24.2) — not all constants can be used, though, and their meaning also differs from
what HX_getopt or HX_shconfig use them for — the two could be seen as “read” operations,
while HXformat is a write operation.

40

19.1.1 Immediate types

“Immediate types” are resolved when HXformat_add is called, that is, they are copied and
inserted into the tree, and are subsequently independent from any changes to variables in
the program. Because the HXopt-originating type name, that is, HXTYPE_*, is also used for
deferred types, the constant HXFORMAT_IMMED needs to be specified on some types to denote an
immediate value.

• HXTYPE_STRING — ptr is a const char *.

• HXTYPE_{U,}{CHAR,SHORT,INT,LONG,LLONG} | HXFORMAT_IMMED — mapping to the stan-
dard types

19.1.2 Deferred types

“Deferred types” are resolved on every invocation of a formatter function (HXformat_*printf).
The expansions may be changed by modifying the underlying variable pointed to, but the
pointer must remain valid and its pointee not go out of scope. Figure 9 shows the difference in
a code sample.

• HXTYPE_STRP — ptr is a const char *const *; the pointer resolution is deferred until
the formatter is called with one of the HXformat_*printf functions. Deferred in the
sense it is always resolved anew.

• HXTYPE_BOOL — ptr is a const int *.

• HXTYPE_{U,}{CHAR,SHORT,INT,LONG,LLONG} — mapping to the standard types with one
indirection (e. g. int *)

• HXTYPE_{FLOAT,DOUBLE} — mapping to the two floating-point types with one indirection
(e. g. double *)

19.2 Invoking the formatter

int HXformat_aprintf(struct HXformat_map *table, hxmc_t **dest, const char *template);
int HXformat_sprintf(struct HXformat_map *table, char *dest, size_t size, const char *template);
int HXformat_fprintf(struct HXformat_map *table, FILE *filp, const char *template);

HXformat_aprintf Substitute placeholders in template using the given table. This will pro-
duce a string in a HX memory container (hxmc_t), and the pointer is put into *dest.
The caller will be responsible for freeing it later when it is done using the result.

HXformat_sprintf Do substitution and store the expanded result in the buffer dest which is
of size size.

HXformat_fprintf Do substituion and directly output the expansion to the given stdio stream.

On success, the length of the expanded string is returned, excluding the trailing ’\0’. While
HXformat_sprintf will not write more than size bytes (including the ’\0’), the length it
would have taken is returned, similar to what sprintf does. On error, negative errno is
returned.

The HXformat function family recognizes make-style like functions and recursive expansion,
described below.

41

19.3 Functions
To expand a variable, one uses a syntax like “%(NAME)” in the format string. Recursive expan-
sion like “%(%(USER))” is supported; assuming %(USER) would expand to “linux”, HXformat
would try to resolve “%(linux)” next. Besides these variable substitutions, HXformat also
provides function calls whose syntax is “%(nameOfFunction parameters[...])”. Parameters
can be any text, including variables. Paramters are separated from another by a delimiter
specific to each function. See this list for details:

• %(env variable)
The env function expands to the string that is stored in the environmental variable by
the given name.

• %(exec command [args...])
The exec function expands to the standard output of the command. The command is
directly run without shell invocation, so no special character expansion (wildcards, etc.)
takes place. stdin is set to /dev/null. The parameter delimiter is the space character.
To be able to use this function — as it is relevant to security — the fmt table needs to
have a key called “/libhx/exec”. See example 10 for details.

• %(if condition,[then][,[else]])
If the condition parameter expands to a string of non-zero length, the function expands
to the “then” block, otherwise the “else” block. The delimiter used is a comma.

• %(lower text), %(upper text)
Lowercases or uppercases the supplied argument. As these functions are meant to take
only one argument, there is no delimiter defined that would need escaping if multiple
arguments were supposed to be passed. %(lower a,b) is equivalent to %(lower "a,b").

• %(shell command [args...])
Similar to %(exec), but invokes the shell inbetween (i. e. ‘sh -c ’command...’‘) such
that special characters, redirection, and so on can be used.

• %(substr text,offset[,length])
Extracts a substring out of the given text, starting at offset and running for the given
length. If no length is given, will extract until the end of the string. If offset is negative, it
specifies the offset from the end of the string. If length is negative, that many characters
are left off the end.

• %(snl text)
Strips trailing newlines from text and replaces any other newline by a space. What
happens implicity in Makefiles’ $(shell ...) statements usually is explicitly separate in
libHX.

42

struct HXformat_map *table = HXformat_init();
HXformat_add(table, "/libhx/exec", NULL, HXTYPE_IMMED);
HXformat_aprintf(table, &result, "%(exec uname -s)");

Figure 10: Using the %(exec) function

19.4 Examples

const char *b = "Hello World";
char c[] = "Hello World";
struct HXformat_map *table = HXformat_init();
HXformat_add(table, "%(GREETING1)", b, HXTYPE_STRING);
HXformat_add(table, "%(GREETING2)", &c, HXTYPE_STRP);
b = NULL;
snprintf(c, sizeof(c), "Hello Home");
HXformat_aprintf(...);

Upon calling HXformat_*printf, %(GREETING1) will expand to “Hello World” whereas
%(GREETING2) will expand to “Hello Home”.

Figure 9: Immediate and deferred resolution

43

Part IV

Filesystem operations
20 Dentry operations

20.1 Synopsis
#include <libHX/io.h>

int HX_readlink(hxmc_t **buf, const char *path);
int HX_realpath(hxmc_t **buf, const char *path, unsigned int flags);

HX_readlink calls through to readlink to read the target of a symbolic link, and stores the
result in the memory container referenced by *buf (similar to HX_getl semantics). If *buf is
NULL, a new container will be allocated and a pointer to it stored in *buf. The container’s
content is naturally zero-terminated automatically. The return value of the function will be the
length of the link target, or negative to indicate the system error value.

HX_realpath will normalize the given path by transforming various path components into
alternate descriptions. The flags parameter controls its actions:

HX_REALPATH_DEFAULT A mnemonic for a set of standard flags: HX_REALPATH_SELF | HX_-
REALPATH_PARENT. Note that HX_REALPATH_ABSOLUTE, which would also be required to
get libc’s realpath(3) behavior, is not included in the set.

HX_REALPATH_ABSOLUTE Requests that the output path shall be absolute. In the absence of
this flag, an absolute output path will only be produced if the input path is also absolute.

HX_REALPATH_SELF Request resolution of “.” path components.

HX_REALPATH_PARENT Request resolution of “..” path components.

The result is stored in a memory container whose pointer is returned through *buf. The return
value of the function will be negative to indicate a possible system error, or be positive non-zero
for success.

21 Directory traversal
libHX provides a minimal readdir-style wrapper for cross-platform directory traversal. This is
needed because the Win32 platforms does not have readdir, and there is some housekeeping to
do on Unixish platforms, since the dirent structure needs allocation of a path-specific size.

21.1 Synopsis
#include <libHX/io.h>

struct HXdir *HXdir_open(const char *directory);
const char *HXdir_read(struct HXdir *handle);
void HXdir_close(struct HXdir *handle);

44

HXdir_open returns a pointer to its private data area, or NULL upon failure, in which case
errno is preserved from the underlying system calls. HXdir_read causes the next entry from
the directory to be fetched. The pointer returned by HXdir_read must not be freed, and the
data is overwritten in subsequent calls to the same handle. If you want to keep it around, you
will have to duplicate it yourself. HXdir_close will close the directory and free the private
data it held.

21.2 Example
#include <errno.h>
#include <stdio.h>
#include <libHX/io.h>

struct HXdir *dh;
if ((dh = HXdir_open(".")) == NULL) {

fprintf(stderr, "Could not open directory: %s\n", strerror(errno));
return;

}
while ((dentry = HXdir_read(dh)) != NULL)

printf("%s\n", dentry);
HXdir_close(dh);

This sample will open the current directory, and print out all entries as it iterates over them.

22 Directory operations

22.1 Synopsis
#include <libHX/io.h>

int HX_mkdir(const char *path, unsigned int mode);
int HX_rrmdir(const char *path);

HX_mkdir will create the directory given by path and all its parents that do not exist yet using
the given mode. It is equivalent to the ‘mkdir -p‘ shell command. It will return >0 for success,
or -errno on error.

HX_rrmdir also maps to an operation commonly done on the shell, ‘rm -Rf‘, deleting the
directory given by path, including all files within it and its subdirectories. Errors during
deletion are ignored, but if there was any, the errno value of the first one is returned negated.

23 File operations

23.1 Synopsis
#include <libHX/io.h>

int HX_copy_file(const char *src, const char *dest, unsigned int flags, ...);
int HX_copy_dir(const char *src, const char *dest, unsigned int flags, ...);

Possible flags that can be used with the functions:

45

HXF_KEEP Do not overwrite existing files.

HXF_UID Change the new file’s owner to the UID given in the varargs section (...). HXF_UID
is processed before HXF_GID.

HXF_GID Change the new file’s group owner to the GID given in the varargs section. This is
processed after HXF_UID.

Error checking is flakey.
HX_copy_file will return >0 on success, or -errno on failure. Errors can arise from the

use of the syscalls open, read and write. The return value of fchmod, which is used to set the
UID and GID, is actually ignored, which means verifying that the owner has been set cannot
be detected with HX_copy_file alone (historic negligience?).

23.2 Filedescriptor I/O
#include <libHX/io.h>

ssize_t HXio_fullread(int fd, void *buf, size_t size, unsigned int flags);
ssize_t HXio_fullwrite(int fd, const void *buf, size_t size, unsigned int flags);

Since plain read(2) and write(2) may process only part of the buffer — even more likely so
with sockets —, libHX provides two functions that calls these in a loop to retry said operations
until the full amount has been processed. Since read and write can also be used with socket
file descriptors, so can these.

46

Part V

Options and Configuration Files
24 Option parsing
libHX uses a table-based approach like libpopt8. It provides for both long and short options and
the different styles associated with them, such as absence or presence of an equals sign for long
options (--foo=bar and --foo bar), bundling (writing -abc for non-argument taking options
-a -b -c), squashing (writing -fbar for an argument-requiring option -f bar). The “lone
dash” that is often used to indicate standard input or standard output, is correctly handled9,
as in -f -.

A table-based approach allows for the parser to run as one atomic block of code (callbacks
are, by definition, “special” exceptions), making it more opaque than an open-coded getopt(3)
loop. You give it your argument vector and the table, snip the finger (call the parser function
once), and it is done. In getopt on the other hand, the getopt function returns for every
argument it parsed and needs to be called repeatedly.

24.1 Synopsis
#include <libHX/option.h>

struct HXoption {
const char *ln;
char sh;
unsigned int type;
void *ptr, *uptr;
void (*cb)(const struct HXoptcb *);
int val;
const char *help, *htyp;

};

int HX_getopt(const struct HXoption *options_table, int *argc,
const char ***argv, unsigned int flags);

The various fields of struct HXoption are:

ln The long option name, if any. May be NULL if none is to be assigned for this entry.

sh The short option name/character, if any. May be ’\0’ if none is to be assigned for this
entry.

type The type of the entry, essentially denoting the type of the target variable.

val An integer value to be stored into *(int *)ptr when HXTYPE_IVAL is used.

ptr A pointer to the variable so that the option parser can store the requested data in it. The
pointer may be NULL in which case no data is stored (but cb is still called if defined, with
the data).

8The alternative would be an iterative, open-coded approach like getopt(3) requires.
9popt failed to do this for a long time.

47

uptr A user-supplied pointer. Its value is passed verbatim to the callback, and may be used
for any purpose the user wishes. If type is HXTYPE_SVAL, it is the value in uptr that will
be used to populate *(const char **)ptr. (The original .sval field has been removed
in libHX 3.12.)

cb If not NULL, call out to the referenced function after the option has been parsed (and the
results possibly be stored in ptr)

help A help string that is shown for the option when the option table is dumped by request
(e. g. yourprgram --help)

htyp String containing a keyword to aid the user in understanding the available options during
dump. See examples.

Due to the amount of fields, it is advised to use C99 named initializers to populate a struct, as
they allow to omit unspecified fields, and assume no specific order of the members:

struct HXoption e = {.sh = ’f’, .help = "Force"};

It is a sad fact that C++ has not gotten around to implement these yet. It is advised to put
the option parsing code into a separate .c file that can then be compiled in C99 rather than
C++ mode.

24.2 Type map
HXTYPE_NONE The option does not take any argument, but the presence of the option may be

record by setting the *(int *)ptr to 1. Other rules apply when HXOPT_INC or HXOPT_DEC
are specified as flags (see section 24.3).

HXTYPE_VAL Use the integer value specified by ival and store it in *(int *)ptr.

HXTYPE_SVAL Use the memory location specified by sval and store it in *(const char **)ptr.

HXTYPE_BOOL Interpret the supplied argument as a boolean descriptive (must be “yes”, “no”,
“on”, “off”, “true”, “false”, “0” or “1”) and store the result in *(int *)ptr.

HXTYPE_STRING The argument string is duplicated to a new memory region and the result-
ing pointer stored into *(char **)ptr. This incurs an allocation so that subsequently
modifying the original argument string in any way will not falsely propagate.

HXTYPE_STRDQ The argument string is duplicated to a new memory region and the result-
ing pointer is added to the given HXdeque. Note that you often need to use deferred
initialization of the options table to avoid putting NULL into the entry. See section 24.6.1.

The following table lists the types that map to the common integral and floating-point types.
Signed and unsigned integeral types are processed using strtol and strtoul, respectively.
strtol and strtoul will be called with automatic base detection. This usually means that a
leading “0” indicates the string is given in octal (8) base, a leading “0x” indicates hexadecimal
(16) base, and decimal (10) otherwise. HXTYPE_LLONG, HXTYPE_ULLONG, HXTYPE_INT64 and
HXTYPE_UINT64 use strtoll and/or strtoull, which may not be available on all platforms.

48

type Type of pointee type Type of pointee
HXTYPE_CHAR char HXTYPE_INT8 int8_t
HXTYPE_UCHAR unsigned char HXTYPE_UINT8 uint8_t
HXTYPE_SHORT short HXTYPE_INT16 int16_t
HXTYPE_USHORT unsigned short HXTYPE_UINT16 uint16_t

HXTYPE_INT int HXTYPE_INT32 int32_t
HXTYPE_UINT unsigned int HXTYPE_UINT32 uint32_t
HXTYPE_LONG long HXTYPE_INT64 int64_t
HXTYPE_ULONG unsigned long HXTYPE_UINT64 uint64_t
HXTYPE_LLONG long long HXTYPE_FLOAT float
HXTYPE_ULLONG unsigned long long HXTYPE_DOUBLE double
HXTYPE_SIZE_T size_t

Table 3: Integral and floating-point types for the libHX option parser

HXTYPE_FLOAT and HXTYPE_DOUBLE make use of strtod (strtof is not used). A corre-
sponding type for the “long double” format is not specified, but may be implemented on behalf
of the user via a callback (see section 24.8.4).

24.3 Flags
Flags can be combined into the type parameter by OR’ing them. It is valid to not specify any
flags at all, but most flags collide with one another.

HXOPT_INC Perform an increment on the memory location specified by the *(int *)ptr pointer.
Make sure the referenced variable is initialized before!

HXOPT_DEC Perform a decrement on the pointee.

Only one of HXOPT_INC and HXOPT_DEC may be specified at a time, and they require that
the base type is HXTYPE_NONE, or they will have no effect. An example may be found in
section 24.8.2.

HXOPT_NOT Binary negation of the argument directly after reading it from the command line
into memory. Any of the three following operations are executed with the already-negated
value.

HXOPT_OR Binary “OR”s the pointee with the specified/transformed value.

HXOPT_AND Binary “AND”s the pointee with the specified/transformed value.

HXOPT_XOR Binary “XOR”s the pointee with the specified/transformed value.

Only one of (HXOPT_OR, HXOPT_AND, HXOPT_XOR) may be specified at a time, but they can be
used with any integral type (HXTYPE_UINT, HXTYPE_ULONG, etc.). An example can be found in
section 24.8.3.

HXOPT_OPTIONAL This flag allows for an option to take zero or one argument. Needless to
say that this can be confusing to the user. iptables’s “-L” option for example is one of
this kind (though it does not use the libHX option parser). When this flag is used, “-f
-b” is interpreted as -f without an argument, as is “-f --bar” — things that look like
an option take precedence over an option with an optional argument. “-f -” of course
denotes an option with an argument, as “-” is used to indicate standard input/output.

49

24.4 Special entries
HXopt provides two special entries via macros:

HXOPT_AUTOHELP Adds entries to recognize “-?” and “--help” that will display the (long-
format) help screen, and “--usage” that will display the short option syntax overview.
All three options will exit the program afterwards.

HXOPT_TABLEEND This sentinel marks the end of the table and is required on all tables. (See
examples for details.)

24.5 Invoking the parser
int HX_getopt(const struct HXoption *options_table, int *argc,

const char ***argv, unsigned int flags);

HX_getopt is the actual parsing function. It takes the option table, and a pointer to your
argc and argv variables that you get from the main function. The parser will, unlike GNU
getopt, literally “eat” all options and their arguments, leaving only non-options in argv, and
argc updated, when finished. This is similar to how Perl’s “Getopt::Long” module works.
Additional flags can control the exact behavior of HX_getopt:

HXOPT_PTHRU “Passthrough mode”. Any unknown options are not “eaten” and are instead
passed back into the resulting argv array.

HXOPT_QUIET Do not print any diagnostics when encountering errors in the user’s input.

HXOPT_HELPONERR Display the (long-format) help when an error, such as an unknown option
or a violation of syntax, is encountered.

HXOPT_USAGEONERR Display the short-format usage syntax when an error is encountered.

HXOPT_RQ_ORDER Specifying this option terminates option processing when the first non-option
argument in argv is encountered. This behavior is also implicit when the environment
variable POSIXLY_CORRECT is set.

The return value can be one of the following:

HXOPT_ERR_SUCCESS Parsing was successful.

HXOPT_ERR_UNKN An unknown option was encountered.

HXOPT_ERR_VOID An argument was given for an option which does not allow one. In practice
this only happens with “--foo=bar” when --foo is of type HXTYPE_NONE, HXTYPE_VAL
or HXTYPE_SVAL. This does not affect “--foo bar”, because this can be unambiguously
interpreted as “bar” being a remaining argument to the program.

HXOPT_ERR_MIS Missing argument for an option that requires one.

HXOPT_ERR_AMBIG An abbreviation of a long option was ambiguous.

negative non-zero Failure on behalf of lower-level calls; errno.

50

24.6 Pitfalls
24.6.1 Staticness of tables

The following is an example of a possible pitfall regarding HXTYPE_STRDQ:

static struct HXdeque *dq;

static bool get_options(int *argc, const char ***argv)
{

static const struct HXoption options_table[] = {
{.sh = ’N’, .type = HXTYPE_STRDQ, .q_strdq = dq,
.help = "Add name"},

HXOPT_TABLEEND,
};
return HX_getopt(options_table, argc, argv, HXOPT_USAGEONERR) ==

HXOPT_ERR_SUCCESS;
}

int main(int argc, const char **argv)
{

dq = HXdeque_init();
get_options(&argc, &argv);
return 0;

}

The problem here is that options_table is, due to the static keyword, initialized at compile-
time where dq is still NULL. To counter this problem and have it doing the right thing, you must
remove the static qualifier on the options table when used with HXTYPE_STRDQ, so that it will
be evaluated when it is first executed.

It was not deemed worthwhile to have HXTYPE_STRDQ take an indirect HXdeque (struct
HXdeque **) instead just to bypass this issue. (Live with it.)

24.7 Limitations
The HX option parser has been influenced by both popt and Getopt::Long, but eventually,
there are differences:

• Long options with a single dash (“-foo bar”). This unsupported syntax clashes very
easily with support for option bundling or squashing. In case of bundling, “-foo” might
actually be “-f -o -o”, or “-f oo” in case of squashing. It also introduces redundant
ways to specify options, which is not in the spirit of the author.

• Options using a “+” as a prefix, as in “+foo”. Xterm for example uses it as a way to negate
an option. In the author’s opinion, using one character to specify options is enough — by
GNU standards, a negator is named “--no-foo”. Even Microsoft stuck to a single option
introducing character (that would be “/”).

• Table nesting like implemented in popt. HXopt has no provision for nested tables, as the
need has not come up yet. It does however support chained processing (see section 24.8.5).
You cannot do nested tables even with callbacks, as the new argv array is only put in
place shortly before HX_getopt returns.

51

24.8 Examples
24.8.1 Basic example

The following code snippet should provide an equivalent of the GNU getopt sample10.

#include <stdio.h>
#include <stdilb.h>
#include <libHX/option.h>

int main(int argc, const char **argv)
{

int aflag = 0;
int bflag = 0;
char *cflag = NULL;

struct HXoption options_table[] = {
{.sh = ’a’, .type = HXTYPE_NONE, .ptr = &aflag},
{.sh = ’b’, .type = HXTYPE_NONE, .ptr = &bflag},
{.sh = ’c’, .type = HXTYPE_STRING, .ptr = &cflag},
HXOPT_AUTOHELP,
HXOPT_TABLEEND,

};

if (HX_getopt(options_table, &argc, &argv, HXOPT_USAGEONERR) !=
HXOPT_ERR_SUCCESS)

return EXIT_FAILURE;

printf("aflag = %d, bflag = %d, cvalue = %s\n",
aflag, bflag, cvalue);

while (*++argv != NULL)
printf("Non-option argument %s\n", *argv);

return EXIT_SUCCESS;
}

24.8.2 Verbosity levels

static int verbosity = 1; /* somewhat silent by default */
static const struct HXoption options_table[] = {

{.sh = ’q’, .type = HXTYPE_NONE | HXOPT_DEC, .q_int = &verbosity,
.help = "Reduce verbosity"},

{.sh = ’v’, .type = HXTYPE_NONE | HXOPT_INC, .q_int = &verbosity,
.help = "Increase verbosity"},

HXOPT_TABLEEND,
};

This sample option table makes it possible to turn the verbosity of the program up or down,
depending on whether the user specified -q or -v. By passing multiple -v flags, the verbosity

10http://www.gnu.org/software/libtool/manual/libc/Example-of-Getopt.html#Example-of-Getopt

52

http://www.gnu.org/software/libtool/manual/libc/Example-of-Getopt.html#Example-of-Getopt

can be turned up even more. The range depends on the “int” data type for your particular
platform and compiler; if you want to have the verbosity capped at a specific level, you will
need to use an extra callback:

static int verbosity = 1;

static void v_check(const struct HXoptcb *cbi)
{

if (verbosity < 0)
verbosity = 0;

else if (verbosity > 4)
verbosity = 4;

}

static const struct HXoption options_table[] = {
{.sh = ’q’, .type = HXTYPE_NONE | HXOPT_DEC, .q_int = &verbosity,
.cb = v_check, .help = "Lower verbosity"},

{.sh = ’v’, .type = HXTYPE_NONE | HXOPT_INC, .q_int = &verbosity,
.cb = v_check, .help = "Raise verbosity"},

HXOPT_TABLEEND,
};

24.8.3 Mask operations

/* run on all CPU cores by default */
static unsigned int cpu_mask = ~0U;
/* use no network connections by default */
static unsigned int net_mask = 0;
static struct HXoption options_table[] = {

{.sh = ’c’, .type = HXTYPE_UINT | HXOPT_NOT | HXOPT_AND,
.q_uint = &cpu_mask,
.help = "Mask of cores to exclude", .htyp = "cpu_mask"},

{.sh = ’n’, .type = HXTYPE_UINT | HXOPT_OR, .q_uint = &net_mask,
.help = "Mask of network channels to additionally use",
.htyp = "channel_mask"},

HXOPT_TABLEEND,
};

What this options table does is cpu_mask &= ~x and net_mask |= y, the classic operations of
clearing and setting bits.

24.8.4 Support for non-standard actions

Supporting additional types or custom storage formats is easy, by simply using HXTYPE_STRING,
NULL as the data pointer (usually by not specifying it at all), the pointer to your data in the
user-specified pointer uptr, and the callback function in cb.

struct fixed_point {
int integral;
unsigned int fraction;

};

53

static struct fixed_point number;

static void fixed_point_parse(const struct HXoptcb *cbi)
{

char *end;

number.integral = strtol(cbi->data, &end, 0);
if (*end == ’\0’)

number.fraction = 0;
else if (*end == ’.’)

number.fraction = strtoul(end + 1, NULL, 0);
else

fprintf(stderr, "Illegal input.\n");
}

static const struct HXoption options_table[] = {
{.sh = ’n’, .type = HXTYPE_STRING, .cb = fixed_point_parse,
.uptr = &number, .help = "Do this or that",

HXOPT_TABLEEND,
};

24.8.5 Chained argument processing

On the first run, only --cake and --fruit is considered, which is then used to select the next
set of accepted options. Note that HXOPT_DESTROY_OLD is used here, which causes the argv that
is produced by the first invocation of HX_getopt in the get_options function to be freed as it
gets replaced by a new argv again by HX_getopt in get_cakes/get_fruit. HXOPT_DESTROY_-
OLD is however not specified in the first invocation, because the initial argv resides on the stack
and cannot be freed.

static bool get_cakes(int *argc, const char ***argv)
{

struct HXoption option_table[] = {
...

};
return HX_getopt(cake_table, argc, argv,

HXOPT_USAGEONERR | HXOPT_DESTROY_OLD) == HXOPT_ERR_SUCCESS;
}

static bool get_fruit(int *argc, const char ***argv)
{

struct HXoption fruit_table[] = {
...

};
return HX_getopt(fruit_table, argc, argv,

HXOPT_USAGEONERR | HXOPT_DESTROY_OLD) == HXOPT_ERR_SUCCESS;
}

static bool get_options(int *argc, const char ***argv)
{

54

int cake = 0, fruit = 0;
struct HXoption option_table[] = {

{.ln = "cake", .type = HXTYPE_NONE, .ptr = &cake},
{.ln = "fruit", .type = HXTYPE_NONE, .ptr = &fruit},
HXOPT_TABLEEND,

};
if (HX_getopt(option_table, argc, argv, HXOPT_PTHRU) !=

HXOPT_ERR_SUCCESS)
return false;

if (cake)
return get_cakes(argc, argv);

else if (fruit)
return get_fruit(argc, argv);

return false;
}

55

25 Shell-style configuration file parser
libHX provides functions to read shell-style configuration files. Such files are common, for
example, in /etc/sysconfig on Linux systems. The format is pretty basic; it only knows
about “key=value” pairs and does not even have sections like INI files. Not relying on any
features however makes them quite interchangable as the syntax is accepted by Unix Shells.

Lines beginning with a hash mark (#) are ignored, as are empty lines and unrecognized
keys.

Minimum / maximum values for automatic UID selection
UID_MIN=100
UID_MAX=65000

Home directory base
HOME="/home"
#HOME="/export/home"

Any form of variable or parameter substitution or expansion is highly implementation specific,
and is not supported in libHX’s reader. Even Shell users should not rely on it as you never know
in which context the configuration files are evaluated. Still, you will have to escape specific
sequences like you would need to in Shell. The use of single quotes is acceptable. That means:

AMOUNT="US\$5"
AMOUNT=’US$5’

25.1 Synopsis
#include <libHX/option.h>

int HX_shconfig(const char *file, const struct HXoption *table);
int HX_shconfig_pv(const char **path_vec, const char *file,

const struct HXoption *table, unsigned int flags);
struct HXmap *HX_shconfig_map(const char *file);

The shconfig parser reuses struct HXoption that fits very well in specifying name-pointer
associations. HX_shconfig will read the given file using the key-to-pointer mappings from the
table to store the variable contents. Of struct HXoption, described in section 24.1, only the
“ln”, “type” and “ptr” fields are used. The list of accepted types is described in section 24.2.

To parse a file, call HX_shconfig function with the corresponding parameters. If you want
to read configuration files from different paths, i. e. to build up on default values, you can use
HX_shconfig_pv11, which is a variant for reading a file from multiple locations. Its purpose is
to facilitate reading system-wide settings which are then overriden by a file in the users home
directory, for example (per-setting-override). It is also possible to do per-file-override, that is, a
file in the home directory has higher precedence than a system-wide one in such a way that the
system-wide configuration file is not even read. This is accomplished by traversing the paths
in the “other” direction (actually you have to turn the array around) and stopping at the first
existing file by use of the SHCONF_ONE flag.

HX_shconfig_map will return all entries from the file in a HXmap, usable for parsing arbi-
trary keys without having to specify any static key table.

11pv = path vector

56

SHCONF_ONE Parsing files will stop after one file has been successfully parsed. This allows for
a “personal overrides system config” style.

The call to HX_shconfig will either return >0 for success, 0 for no success (actually, this is
never returned) and -errno for an error.

25.2 Example
25.2.1 Per-setting-override

This example sources key-value pairs from a configuration file in a system location (/etc) first,
before overriding specific keys with new values from the file in the home directory.

long uid_min, uid_max;
char *passwd_file;
struct HXoption options_table[] = {

{.ln = "UID_MIN", .type = HXTYPE_LONG, .ptr = &uid_min},
{.ln = "UID_MAX", .type = HXTYPE_LONG, .ptr = &uid_max},
{.ln = "PWD_FILE", .type = HXTYPE_STRING, .ptr = &passwd_file},
HXOPT_TABLEEND,

};
const char *home = getenv("HOME");
const char *paths[] = {"/etc", home, NULL};
HX_shconfig(paths, "test.cf", options_table, 0);

25.2.2 Per-file-override

This particular example reads from the file in the home directory first (if it exists), but stops
after it has been successfull, so any subsequent locations listed in the paths variable are not
read. This has the effect that the file from the home directory has the highest priority too like
in the previous example, but without any keys from the system files. Note the SHCONF_ONE
flag.

const char *home = getenv("HOME");
const char *paths[] = {home, "/usr/local/etc", "/etc", NULL};
HX_shconfig_pv(paths, "test.cf", options_table, SHCONF_ONE);

57

Part VI

Systems-related components
26 Random numbers

26.1 Function overview
#include <libHX/misc.h>

int HX_rand(void);
unsigned int HX_irand(unsigned int min, unsigned int max);
double HX_drand(double min, double max);

HX_rand Retrieve the next random number.

HX_irand Retrieve the next random number and fold it so that min ≤ n < max, where min
and max are unsigned integers.

HX_drand Retrieve the next random number and fold it so that min ≤ n < max, where min
and max are double-precision floating point numbers.

26.2 Implementation information
On systems that provide operating system-level random number generators, predominantly
Linux and Unix-alikes such as BSD and Solaris, these will be used when they are available and
random numbers are requested through HX_rand or HX_irand.

On Linux, Solaris and the BSDs, this is /dev/urandom.
If no random number generating device is available (and libHX configured to use it), it will

fall back to using the libc’s rand function. If libc is selected for random number generation,
srand will be called on library initialization with what is believed to be good defaults —
usually this will be before a program’s main function with normal linking, but may actually
happen later when used with dlopen. The initial seed would be the current microtime when
gettimeofday is available, or just the seconds with time. To counter the problem of different
programs potentially using the same seed within a time window of a second due to the limited
granularity of standard time, the seed is augmented by process ID and parent process ID where
available.

/dev/random is not used on Linux because it may block during read, and /dev/urandom is
just as good when there is entropy available. If you need definitive PRNG security, perhaps
use one from a crypto suite such as OpenSSL.

58

27 Process management
The process code is experimental at this stage (just moved from the pam_mount codebase).
As it also relies on the POSIX functions fork, execv, execvp and pipe(2), so it may not be
available everywhere. Where this is the case, the functions will return -ENOSYS.

27.1 Process metadata structure
#include <libHX/proc.h>

struct HXproc {
const struct HXproc_ops *p_ops;
void *p_data;
unsigned int p_flags;

/* Following members should only be read */
int p_stdin, p_stdout, p_stderr;
int p_pid;
char p_status;
bool p_exited, p_terminated;

};

When creating a new process with the intent of running it asynchronously (using HXproc_-
run_async), the first three fields must be filled in by the user.
p_ops A table of callbacks, generally used for setting and/or restoring signals before/after

execution. This member may be NULL.

p_data Free pointer for the user to supply. Will be passed to the callback functions when they
are invoked.

p_flags Process creation flags, see below.
After the subprocess has been started, HXproc_run_async will have filled in some fields:
p_stdin If HXPROC_STDIN was specified in p_flags, p_stdin will be assigned the write side file

descriptor of the subprocess’s to-be stdin. The subprocess will get the read side file de-
scriptor in this member. This is so that the correct fd is used in when p_ops->p_postfork
is called.

p_stdout If HXPROC_STDOUT is specified in p_flags, p_stdout will be assigned the read side
file descriptor of the subprocess’s to-be stdout. The subprocess will get the write side file
descriptor in this member.

p_stderr If HXPROC_STDERR is specified in p_flags, p_stderr will be assigned the read side
file descriptor of the subprocess’s to-be stderr, and the subprocess will get the write side
fd.

p_pid The process ID of the spawned process.
Upon calling HXproc_wait, further fields will have been filled when the function returns:
p_exited Whether the process exited normally (cf. signalled/terminated).

p_terminated Whether the process was terminated (signalled).

p_status The exit status of the process or the termination signal.

59

27.1.1 Flags

Possible values for the p_flags member are:

HXPROC_STDIN The subprocess’s stdin file descriptor shall be connected to the master program,
that is, not inherit the stdin of the master. Cannot be used for HXproc_run_sync (because
there would be no one to provide data in a sync operation).

HXPROC_STDOUT Connect the stdout file descriptor of the subprocess with the master. Cannot
be used for HXproc_run_sync.

HXPROC_STDERR Connect the stderr file descriptor of the subprocess with the master. Cannot
be used for HXproc_run_sync.

HXPROC_NULL_STDIN The subprocess’s stdin file descriptor shall be connected to /dev/null.
HXPROC_STDIN and HXPROC_NULL_STDIN are mutually exclusive.

HXPROC_NULL_STDOUT Connect the stdout file descriptor of the subprocess to /dev/null,
thereby essentially discarding its output. HXPROC_STDOUT and HXPROC_NULL_STDOUT are
mutuall exclusive.

HXPROC_NULL_STDERR Connect the stderr file descriptor of the subprocess to /dev/null, thereby
essentially discarding its output. HXPROC_STDERR and HXPROC_NULL_STDERR are mutually
exclusive.

HXPROC_VERBOSE Have the subprocess print an error message to stderr if exec’ing returned an
error.

HXPROC_A0 argv[0] refers to program file, while argv[1] to the program invocation name,
with argv[2] being the arguments. Without this flag, argv[0] will be both the program
file and program invocation name, and arguments begin at argv[1].

HXPROC_EXECV Normally, execvp(3) will be used which scans $PATH for the program. Use this
flag to use execv(3) instead, which will not do such thing.

27.2 Callbacks
#include <libHX/proc.h>

struct HXproc_ops {
void (*p_prefork)(void *);
void (*p_postfork)(void *);
void (*p_complete)(void *);

};

struct HXproc_ops provides a way to run user-specified functions just before the fork, after,
and when the process has been waited for. They can be used to set and/or restore signals as
needed, for example. The function pointers can be NULL. The p_data member is passed as an
argument.

p_prefork Run immediately before calling fork(2). This is useful, for taking any action
regarding signals, like setting SIGCHLD to SIG_DFL, or SIGPIPE to SIG_IGN, for example.

p_postfork Run in the subprocess (and only there) after forking. Useful to do a setuid(2)
or other change in privilege level.

60

p_complete Run in HXproc_wait when the process has been waited for. Useful to restore the
signal handler(s).

27.3 Process control
#include <libHX/proc.h>

int HXproc_run_async(const char *const *argv, struct HXproc *proc);
int HXproc_run_sync(const char *const *argv, unsigned int flags);
int HXproc_wait(struct HXproc *proc);

HXproc_run_async Start a subprocess according to the parameters in proc. Returns a negative
errno code if something went wrong, or positive non-zero on success.

HXproc_run_sync Start a subprocess synchronously, similar to calling system(3), but with
the luxury of being able to specify arguments as separate strings (via argv) rather than
one big command line that is run through the shell. flags is a value composed of the
HXproc flags mentioned above in section 27.1.1. HXPROC_STDIN, HXPROC_STDOUT and
HXPROC_STDERR are ignored because there would be no one in a synchronous execution
that could supply data to these file descriptors or read from them12.

HXproc_wait Wait for a subprocess to terminate, if it has not already. It will also retrieve the
exit status of the process and store it in the struct HXproc.

Return value will be positive non-zero on success, or negative on error. Underlying system
function’s errors are returned, plus:

EINVAL Flags were not accepted.

28 Helper headers

28.1 ctype helpers
Functions from the <ctype.h> header, including, but not limited to, isalpha, tolower, and so
forth, are defined to take an “int” as first argument. Strings used in C programs are usually
“char *”, without any “signed” or “unsigned” qualifier. By a high-level view, which also
matches daily common sense, characters (a. k. a. letters) have no notion of signedness — there
is no “positive” or “negative” “A” in at least the Latin alphabet that is mapped into the ASCII
set. In fact, char * could either be signed char * or unsigned char *, depending on the
compiler settings. Only when you start interpreting and using characters as a number does
such become important.

There come the problems. Characters are in the same class as numbers in C, that is,
can be implicitly converted from or to a “number” (in this case, their ASCII code point)
without causing a compiler warning. That may be practical in some cases, but is also a bit
“unfortunate”. Characters, when interpreted as the 8-bit signed numeric quantity they are
implicitly convertable to, run from 0 to 127 and -128 to -1. Since the isalpha function and
others from ctype.h take a (signed) int as argument means that values fed to isalpha are
sign-extended, preserving negative values.

12Even for threads, please just use the async model.

61

/* “hyvää yötä”, UTF-8 encoded */
const char h[] = {’h’, ’y’, ’v’, 0xc3, 0xa4, 0xc3, 0xa4, ’ ’,

’y’, 0xc3, 0xb6, ’t’, 0xc3, 0xa4};

When you now pass h[3] to isalpha for example (regardless of whether doing so actually
produces a meaningful result), the CPU is instructed to copy “0xc3” into a register and sign-
extend it (because “char” is often “signed char”, see above), producing 0xffffffc3 (-61). But
passing -61 is not what was intended.

libHX’s ctype_helper.h therefore provides wrappers with a different function signature
that uses zero extension (not sign extension) by means of using an unsigned quantity. Currently
this is unsigned char, because isalpha’s domain only goes from 0–255. The implication is
that you cannot pass EOF to HX_isalpha.

#include <libHX/ctype_helper.h>

bool HX_isalnum(unsigned char c);
bool HX_isalpha(unsigned char c);
bool HX_isdigit(unsigned char c);
bool HX_islower(unsigned char c);
bool HX_isprint(unsigned char c);
bool HX_isspace(unsigned char c);
bool HX_isupper(unsigned char c);
bool HX_isxdigit(unsigned char c);
unsigned char HX_tolower(unsigned char c);
unsigned char HX_toupper(unsigned char c);

The is* functions also differ from ctype’s in that they return bool instead of int. Not all
functions from ctype.h are present either; isascii, isblank, iscntrl, isgraph, ispunct
and isxdigit have been omitted as the author has never needed them so far.

28.2 libxml2 helpers
libxml2 uses an “xmlChar” type as an underlying type for the strings that it reads and outputs.
xmlChar is typedef’ed to unsigned char by libxml2, causing compiler warnings related to
differing signedness whenever interacting with strings from the outside world, which are usually
just a pointer to char. Because casting would be a real chore, libxml_helper.h will do it by
providing some wrappers with better argument types.

#include <libHX/libxml_helper.h>

int xml_strcmp(const xmlChar *a, const char *b);
int xml_strcasecmp(const xmlChar *a, const char *b);
char *xml_getprop(xmlNode *node, const char *attr);
char *xml_getnsprop(xmlNode *node, const char *nsprefix, const char *attr);
xmlAttr *xml_newprop(xmlNode *node, const char *attr);
xmlNode *xml_newnode(xmlNode *parent, const char *name, const char *value);
xmlAttr *xml_setprop(xmlNode *node, const char *name, const char *value);

The functions map to strcmp(3), strcasecmp(3), xmlGetProp, xmlNewProp, xmlNewTextNode
and xmlSetProp, respectively.

xml_getnsprop works similar to xmlGetNsProp, but instead of taking a namespace URI,
it does a lookup by namespace prefix. The argument order is also different compared to
xmlGetNsProp.

62

28.3 wxWidgets
#include <libHX/wx_helper.hpp>

28.3.1 Shortcut macros

wxACV Expands to wxALIGN_CENTER_VERTICAL

wxCDF Expands to a set of common dialog flags for wxDialogs, which includes wxDEFAULT_-
FRAME_STYLE and a flag such that the dialog does not create a new window in the task
bar (wxFRAME_NO_TASKBAR).

wxDPOS Expands to wxDefaultPosition.

wxDSIZE Expands to wxDefaultSize.

wxDSPAN Expands to wxDefaultSpan.

28.3.2 String conversion

wxString wxfu8(const char *);
wxString wxfv8(const char *);
const char *wxtu8(const wxString &);

wxfu8 Converts an UTF-8 string to a wxString object.

wxfv8 Converts an UTF-8 string to an entity usable by wxPrintf.

wxtu8 Converts a wxString to a pointer to char usable by printf. Note that the validity of
the pointer is very limited and usually does not extend the statement in which it is used.
Hence storing the pointer in a variable (“const char *p = wxtu8(s);”) will make p
pointing to an invalid region as soon as the assignment is done.

Part VII

Appendix

63

