summaryrefslogtreecommitdiff
path: root/tests/intprops.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/intprops.h')
-rw-r--r--tests/intprops.h319
1 files changed, 41 insertions, 278 deletions
diff --git a/tests/intprops.h b/tests/intprops.h
index f85ccad..46f4d47 100644
--- a/tests/intprops.h
+++ b/tests/intprops.h
@@ -1,6 +1,7 @@
/* intprops.h -- properties of integer types
- Copyright (C) 2001-2005, 2009-2015 Free Software Foundation, Inc.
+ Copyright (C) 2001, 2002, 2003, 2004, 2005, 2009, 2010 Free Software
+ Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -17,304 +18,66 @@
/* Written by Paul Eggert. */
-#ifndef _GL_INTPROPS_H
-#define _GL_INTPROPS_H
+#ifndef GL_INTPROPS_H
+# define GL_INTPROPS_H
-#include <limits.h>
-
-/* Return an integer value, converted to the same type as the integer
- expression E after integer type promotion. V is the unconverted value. */
-#define _GL_INT_CONVERT(e, v) (0 * (e) + (v))
-
-/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see
- <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>. */
-#define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))
+# include <limits.h>
/* The extra casts in the following macros work around compiler bugs,
e.g., in Cray C 5.0.3.0. */
/* True if the arithmetic type T is an integer type. bool counts as
an integer. */
-#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
+# define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)
/* True if negative values of the signed integer type T use two's
complement, ones' complement, or signed magnitude representation,
respectively. Much GNU code assumes two's complement, but some
people like to be portable to all possible C hosts. */
-#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
-#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
-#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
-
-/* True if the signed integer expression E uses two's complement. */
-#define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)
+# define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1)
+# define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0)
+# define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1)
/* True if the arithmetic type T is signed. */
-#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
+# define TYPE_SIGNED(t) (! ((t) 0 < (t) -1))
-/* Return 1 if the integer expression E, after integer promotion, has
- a signed type. */
-#define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0)
-
-
-/* Minimum and maximum values for integer types and expressions. These
+/* The maximum and minimum values for the integer type T. These
macros have undefined behavior if T is signed and has padding bits.
If this is a problem for you, please let us know how to fix it for
your host. */
-
-/* The maximum and minimum values for the integer type T. */
-#define TYPE_MINIMUM(t) \
- ((t) (! TYPE_SIGNED (t) \
- ? (t) 0 \
- : TYPE_SIGNED_MAGNITUDE (t) \
- ? ~ (t) 0 \
- : ~ TYPE_MAXIMUM (t)))
-#define TYPE_MAXIMUM(t) \
- ((t) (! TYPE_SIGNED (t) \
- ? (t) -1 \
- : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1)))
-
-/* The maximum and minimum values for the type of the expression E,
- after integer promotion. E should not have side effects. */
-#define _GL_INT_MINIMUM(e) \
- (_GL_INT_SIGNED (e) \
- ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e) \
- : _GL_INT_CONVERT (e, 0))
-#define _GL_INT_MAXIMUM(e) \
- (_GL_INT_SIGNED (e) \
- ? _GL_SIGNED_INT_MAXIMUM (e) \
- : _GL_INT_NEGATE_CONVERT (e, 1))
-#define _GL_SIGNED_INT_MAXIMUM(e) \
- (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1)
-
-
-/* Return 1 if the __typeof__ keyword works. This could be done by
- 'configure', but for now it's easier to do it by hand. */
-#if (2 <= __GNUC__ || defined __IBM__TYPEOF__ \
- || (0x5110 <= __SUNPRO_C && !__STDC__))
-# define _GL_HAVE___TYPEOF__ 1
-#else
-# define _GL_HAVE___TYPEOF__ 0
-#endif
-
-/* Return 1 if the integer type or expression T might be signed. Return 0
- if it is definitely unsigned. This macro does not evaluate its argument,
- and expands to an integer constant expression. */
-#if _GL_HAVE___TYPEOF__
-# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t))
-#else
-# define _GL_SIGNED_TYPE_OR_EXPR(t) 1
-#endif
-
-/* Bound on length of the string representing an unsigned integer
- value representable in B bits. log10 (2.0) < 146/485. The
- smallest value of B where this bound is not tight is 2621. */
-#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)
+# define TYPE_MINIMUM(t) \
+ ((t) (! TYPE_SIGNED (t) \
+ ? (t) 0 \
+ : TYPE_SIGNED_MAGNITUDE (t) \
+ ? ~ (t) 0 \
+ : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))
+# define TYPE_MAXIMUM(t) \
+ ((t) (! TYPE_SIGNED (t) \
+ ? (t) -1 \
+ : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))))
+
+/* Return zero if T can be determined to be an unsigned type.
+ Otherwise, return 1.
+ When compiling with GCC, INT_STRLEN_BOUND uses this macro to obtain a
+ tighter bound. Otherwise, it overestimates the true bound by one byte
+ when applied to unsigned types of size 2, 4, 16, ... bytes.
+ The symbol signed_type_or_expr__ is private to this header file. */
+# if __GNUC__ >= 2
+# define signed_type_or_expr__(t) TYPE_SIGNED (__typeof__ (t))
+# else
+# define signed_type_or_expr__(t) 1
+# endif
/* Bound on length of the string representing an integer type or expression T.
- Subtract 1 for the sign bit if T is signed, and then add 1 more for
- a minus sign if needed.
-
- Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is
- signed, this macro may overestimate the true bound by one byte when
- applied to unsigned types of size 2, 4, 16, ... bytes. */
-#define INT_STRLEN_BOUND(t) \
- (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT \
- - _GL_SIGNED_TYPE_OR_EXPR (t)) \
- + _GL_SIGNED_TYPE_OR_EXPR (t))
+ Subtract 1 for the sign bit if T is signed; log10 (2.0) < 146/485;
+ add 1 for integer division truncation; add 1 more for a minus sign
+ if needed. */
+# define INT_STRLEN_BOUND(t) \
+ ((sizeof (t) * CHAR_BIT - signed_type_or_expr__ (t)) * 146 / 485 \
+ + signed_type_or_expr__ (t) + 1)
/* Bound on buffer size needed to represent an integer type or expression T,
including the terminating null. */
-#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
-
-
-/* Range overflow checks.
-
- The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C
- operators might not yield numerically correct answers due to
- arithmetic overflow. They do not rely on undefined or
- implementation-defined behavior. Their implementations are simple
- and straightforward, but they are a bit harder to use than the
- INT_<op>_OVERFLOW macros described below.
-
- Example usage:
-
- long int i = ...;
- long int j = ...;
- if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX))
- printf ("multiply would overflow");
- else
- printf ("product is %ld", i * j);
-
- Restrictions on *_RANGE_OVERFLOW macros:
-
- These macros do not check for all possible numerical problems or
- undefined or unspecified behavior: they do not check for division
- by zero, for bad shift counts, or for shifting negative numbers.
-
- These macros may evaluate their arguments zero or multiple times,
- so the arguments should not have side effects. The arithmetic
- arguments (including the MIN and MAX arguments) must be of the same
- integer type after the usual arithmetic conversions, and the type
- must have minimum value MIN and maximum MAX. Unsigned types should
- use a zero MIN of the proper type.
-
- These macros are tuned for constant MIN and MAX. For commutative
- operations such as A + B, they are also tuned for constant B. */
-
-/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. */
-#define INT_ADD_RANGE_OVERFLOW(a, b, min, max) \
- ((b) < 0 \
- ? (a) < (min) - (b) \
- : (max) - (b) < (a))
-
-/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. */
-#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max) \
- ((b) < 0 \
- ? (max) + (b) < (a) \
- : (a) < (min) + (b))
-
-/* Return 1 if - A would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. */
-#define INT_NEGATE_RANGE_OVERFLOW(a, min, max) \
- ((min) < 0 \
- ? (a) < - (max) \
- : 0 < (a))
-
-/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. Avoid && and || as they tickle
- bugs in Sun C 5.11 2010/08/13 and other compilers; see
- <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>. */
-#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max) \
- ((b) < 0 \
- ? ((a) < 0 \
- ? (a) < (max) / (b) \
- : (b) == -1 \
- ? 0 \
- : (min) / (b) < (a)) \
- : (b) == 0 \
- ? 0 \
- : ((a) < 0 \
- ? (a) < (min) / (b) \
- : (max) / (b) < (a)))
-
-/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. Do not check for division by zero. */
-#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max) \
- ((min) < 0 && (b) == -1 && (a) < - (max))
-
-/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. Do not check for division by zero.
- Mathematically, % should never overflow, but on x86-like hosts
- INT_MIN % -1 traps, and the C standard permits this, so treat this
- as an overflow too. */
-#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max) \
- INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max)
-
-/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic.
- See above for restrictions. Here, MIN and MAX are for A only, and B need
- not be of the same type as the other arguments. The C standard says that
- behavior is undefined for shifts unless 0 <= B < wordwidth, and that when
- A is negative then A << B has undefined behavior and A >> B has
- implementation-defined behavior, but do not check these other
- restrictions. */
-#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max) \
- ((a) < 0 \
- ? (a) < (min) >> (b) \
- : (max) >> (b) < (a))
-
-
-/* The _GL*_OVERFLOW macros have the same restrictions as the
- *_RANGE_OVERFLOW macros, except that they do not assume that operands
- (e.g., A and B) have the same type as MIN and MAX. Instead, they assume
- that the result (e.g., A + B) has that type. */
-#define _GL_ADD_OVERFLOW(a, b, min, max) \
- ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max) \
- : (a) < 0 ? (b) <= (a) + (b) \
- : (b) < 0 ? (a) <= (a) + (b) \
- : (a) + (b) < (b))
-#define _GL_SUBTRACT_OVERFLOW(a, b, min, max) \
- ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max) \
- : (a) < 0 ? 1 \
- : (b) < 0 ? (a) - (b) <= (a) \
- : (a) < (b))
-#define _GL_MULTIPLY_OVERFLOW(a, b, min, max) \
- (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a)))) \
- || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max))
-#define _GL_DIVIDE_OVERFLOW(a, b, min, max) \
- ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \
- : (a) < 0 ? (b) <= (a) + (b) - 1 \
- : (b) < 0 && (a) + (b) <= (a))
-#define _GL_REMAINDER_OVERFLOW(a, b, min, max) \
- ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max) \
- : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b) \
- : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max))
-
-/* Return a nonzero value if A is a mathematical multiple of B, where
- A is unsigned, B is negative, and MAX is the maximum value of A's
- type. A's type must be the same as (A % B)'s type. Normally (A %
- -B == 0) suffices, but things get tricky if -B would overflow. */
-#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max) \
- (((b) < -_GL_SIGNED_INT_MAXIMUM (b) \
- ? (_GL_SIGNED_INT_MAXIMUM (b) == (max) \
- ? (a) \
- : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1)) \
- : (a) % - (b)) \
- == 0)
-
-
-/* Integer overflow checks.
-
- The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators
- might not yield numerically correct answers due to arithmetic overflow.
- They work correctly on all known practical hosts, and do not rely
- on undefined behavior due to signed arithmetic overflow.
-
- Example usage:
-
- long int i = ...;
- long int j = ...;
- if (INT_MULTIPLY_OVERFLOW (i, j))
- printf ("multiply would overflow");
- else
- printf ("product is %ld", i * j);
-
- These macros do not check for all possible numerical problems or
- undefined or unspecified behavior: they do not check for division
- by zero, for bad shift counts, or for shifting negative numbers.
-
- These macros may evaluate their arguments zero or multiple times, so the
- arguments should not have side effects.
-
- These macros are tuned for their last argument being a constant.
-
- Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B,
- A % B, and A << B would overflow, respectively. */
-
-#define INT_ADD_OVERFLOW(a, b) \
- _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW)
-#define INT_SUBTRACT_OVERFLOW(a, b) \
- _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW)
-#define INT_NEGATE_OVERFLOW(a) \
- INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
-#define INT_MULTIPLY_OVERFLOW(a, b) \
- _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW)
-#define INT_DIVIDE_OVERFLOW(a, b) \
- _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW)
-#define INT_REMAINDER_OVERFLOW(a, b) \
- _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW)
-#define INT_LEFT_SHIFT_OVERFLOW(a, b) \
- INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \
- _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a))
-
-/* Return 1 if the expression A <op> B would overflow,
- where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test,
- assuming MIN and MAX are the minimum and maximum for the result type.
- Arguments should be free of side effects. */
-#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow) \
- op_result_overflow (a, b, \
- _GL_INT_MINIMUM (0 * (b) + (a)), \
- _GL_INT_MAXIMUM (0 * (b) + (a)))
+# define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1)
-#endif /* _GL_INTPROPS_H */
+#endif /* GL_INTPROPS_H */