/* Split a double into fraction and mantissa. Copyright (C) 2007-2018 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Paolo Bonzini , 2003, and Bruno Haible , 2007. */ #if ! defined USE_LONG_DOUBLE # include #endif /* Specification. */ #include #include #ifdef USE_LONG_DOUBLE # include "isnanl-nolibm.h" # include "fpucw.h" #else # include "isnand-nolibm.h" #endif /* This file assumes FLT_RADIX = 2. If FLT_RADIX is a power of 2 greater than 2, or not even a power of 2, some rounding errors can occur, so that then the returned mantissa is only guaranteed to be <= 1.0, not < 1.0. */ #ifdef USE_LONG_DOUBLE # define FUNC frexpl # define DOUBLE long double # define ISNAN isnanl # define DECL_ROUNDING DECL_LONG_DOUBLE_ROUNDING # define BEGIN_ROUNDING() BEGIN_LONG_DOUBLE_ROUNDING () # define END_ROUNDING() END_LONG_DOUBLE_ROUNDING () # define L_(literal) literal##L #else # define FUNC frexp # define DOUBLE double # define ISNAN isnand # define DECL_ROUNDING # define BEGIN_ROUNDING() # define END_ROUNDING() # define L_(literal) literal #endif DOUBLE FUNC (DOUBLE x, int *expptr) { int sign; int exponent; DECL_ROUNDING /* Test for NaN, infinity, and zero. */ if (ISNAN (x) || x + x == x) { *expptr = 0; return x; } sign = 0; if (x < 0) { x = - x; sign = -1; } BEGIN_ROUNDING (); { /* Since the exponent is an 'int', it fits in 64 bits. Therefore the loops are executed no more than 64 times. */ DOUBLE pow2[64]; /* pow2[i] = 2^2^i */ DOUBLE powh[64]; /* powh[i] = 2^-2^i */ int i; exponent = 0; if (x >= L_(1.0)) { /* A positive exponent. */ DOUBLE pow2_i; /* = pow2[i] */ DOUBLE powh_i; /* = powh[i] */ /* Invariants: pow2_i = 2^2^i, powh_i = 2^-2^i, x * 2^exponent = argument, x >= 1.0. */ for (i = 0, pow2_i = L_(2.0), powh_i = L_(0.5); ; i++, pow2_i = pow2_i * pow2_i, powh_i = powh_i * powh_i) { if (x >= pow2_i) { exponent += (1 << i); x *= powh_i; } else break; pow2[i] = pow2_i; powh[i] = powh_i; } /* Avoid making x too small, as it could become a denormalized number and thus lose precision. */ while (i > 0 && x < pow2[i - 1]) { i--; powh_i = powh[i]; } exponent += (1 << i); x *= powh_i; /* Here 2^-2^i <= x < 1.0. */ } else { /* A negative or zero exponent. */ DOUBLE pow2_i; /* = pow2[i] */ DOUBLE powh_i; /* = powh[i] */ /* Invariants: pow2_i = 2^2^i, powh_i = 2^-2^i, x * 2^exponent = argument, x < 1.0. */ for (i = 0, pow2_i = L_(2.0), powh_i = L_(0.5); ; i++, pow2_i = pow2_i * pow2_i, powh_i = powh_i * powh_i) { if (x < powh_i) { exponent -= (1 << i); x *= pow2_i; } else break; pow2[i] = pow2_i; powh[i] = powh_i; } /* Here 2^-2^i <= x < 1.0. */ } /* Invariants: x * 2^exponent = argument, and 2^-2^i <= x < 1.0. */ while (i > 0) { i--; if (x < powh[i]) { exponent -= (1 << i); x *= pow2[i]; } } /* Here 0.5 <= x < 1.0. */ } if (sign < 0) x = - x; END_ROUNDING (); *expptr = exponent; return x; }