1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* Test of isnanl() substitute.
Copyright (C) 2007-2009 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2007. */
#include <float.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include "nan.h"
#define ASSERT(expr) \
do \
{ \
if (!(expr)) \
{ \
fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
fflush (stderr); \
abort (); \
} \
} \
while (0)
/* On HP-UX 10.20, negating 0.0L does not yield -0.0L.
So we use minus_zero instead.
IRIX cc can't put -0.0L into .data, but can compute at runtime.
Note that the expression -LDBL_MIN * LDBL_MIN does not work on other
platforms, such as when cross-compiling to PowerPC on MacOS X 10.5. */
#if defined __hpux || defined __sgi
static long double
compute_minus_zero (void)
{
return -LDBL_MIN * LDBL_MIN;
}
# define minus_zero compute_minus_zero ()
#else
long double minus_zero = -0.0L;
#endif
int
main ()
{
#define NWORDS \
((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
typedef union { unsigned int word[NWORDS]; long double value; }
memory_long_double;
/* Finite values. */
ASSERT (!isnanl (3.141L));
ASSERT (!isnanl (3.141e30L));
ASSERT (!isnanl (3.141e-30L));
ASSERT (!isnanl (-2.718L));
ASSERT (!isnanl (-2.718e30L));
ASSERT (!isnanl (-2.718e-30L));
ASSERT (!isnanl (0.0L));
ASSERT (!isnanl (minus_zero));
/* Infinite values. */
ASSERT (!isnanl (1.0L / 0.0L));
ASSERT (!isnanl (-1.0L / 0.0L));
/* Quiet NaN. */
ASSERT (isnanl (NaNl ()));
#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
/* A bit pattern that is different from a Quiet NaN. With a bit of luck,
it's a Signalling NaN. */
{
memory_long_double m;
m.value = NaNl ();
# if LDBL_EXPBIT0_BIT > 0
m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1);
# else
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
# endif
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
|= (unsigned int) 1 << LDBL_EXPBIT0_BIT;
ASSERT (isnanl (m.value));
}
#endif
#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_))
/* Representation of an 80-bit 'long double' as an initializer for a sequence
of 'unsigned int' words. */
# ifdef WORDS_BIGENDIAN
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \
((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16), \
(unsigned int) (mantlo) << 16 \
}
# else
# define LDBL80_WORDS(exponent,manthi,mantlo) \
{ mantlo, manthi, exponent }
# endif
{ /* Quiet NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) };
ASSERT (isnanl (x.value));
}
{
/* Signalling NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) };
ASSERT (isnanl (x.value));
}
/* The isnanl function should recognize Pseudo-NaNs, Pseudo-Infinities,
Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in
Intel IA-64 Architecture Software Developer's Manual, Volume 1:
Application Architecture.
Table 5-2 "Floating-Point Register Encodings"
Figure 5-6 "Memory to Floating-Point Register Data Translation"
*/
{ /* Pseudo-NaN. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) };
ASSERT (isnanl (x.value));
}
{ /* Pseudo-Infinity. */
static memory_long_double x =
{ LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) };
ASSERT (isnanl (x.value));
}
{ /* Pseudo-Zero. */
static memory_long_double x =
{ LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) };
ASSERT (isnanl (x.value));
}
{ /* Unnormalized number. */
static memory_long_double x =
{ LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) };
ASSERT (isnanl (x.value));
}
{ /* Pseudo-Denormal. */
static memory_long_double x =
{ LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) };
ASSERT (isnanl (x.value));
}
#endif
return 0;
}
|