diff options
author | Bernhard Schmidt <berni@debian.org> | 2020-08-15 21:29:54 +0200 |
---|---|---|
committer | Bernhard Schmidt <berni@debian.org> | 2020-08-15 21:29:54 +0200 |
commit | 7c229d538824cb679351220ad8911f7b2daa7c23 (patch) | |
tree | 5c4d64b60da9018c7db3a9335a9787d326beade3 /doc/doxygen/doc_tunnel_state.h | |
parent | d3986a312f5fbcfd0e78e6b147eef419fb4e5f54 (diff) | |
parent | 1079962e4c06f88a54e50d997c1b7e84303d30b4 (diff) |
Update upstream source from tag 'upstream/2.5_beta1'
Update to upstream version '2.5~beta1'
with Debian dir d53f9a482ac24eb491a294b26c24bb1d87afad24
Diffstat (limited to 'doc/doxygen/doc_tunnel_state.h')
-rw-r--r-- | doc/doxygen/doc_tunnel_state.h | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/doc/doxygen/doc_tunnel_state.h b/doc/doxygen/doc_tunnel_state.h new file mode 100644 index 0000000..46e750f --- /dev/null +++ b/doc/doxygen/doc_tunnel_state.h @@ -0,0 +1,154 @@ +/* + * OpenVPN -- An application to securely tunnel IP networks + * over a single TCP/UDP port, with support for SSL/TLS-based + * session authentication and key exchange, + * packet encryption, packet authentication, and + * packet compression. + * + * Copyright (C) 2010-2018 Fox Crypto B.V. <openvpn@fox-it.com> + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 + * as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +/** + * @file + * VPN tunnel state documentation file. + */ + +/** + * @page tunnel_state Structure of the VPN tunnel state storage + * + * This section describes how OpenVPN stores its VPN tunnel state during + * operation. + * + * OpenVPN uses several data structures as storage containers for state + * information of active VPN tunnels. These are described in this + * section, together with a little bit of history to help understand the + * origin of the current architecture. + * + * Whether an OpenVPN process is running in client-mode or server-mode + * determines whether it can support only one or multiple simultaneously + * active VPN tunnels. This consequently also determines how the + * associated state information is wrapped up internally. This section + * gives an overview of the differences. + * + * @section tunnel_state_history Historic developments + * + * In the old v1.x series, an OpenVPN process managed only one single VPN + * tunnel. This allowed the VPN tunnel state to be stored together with + * process-global information in one single \c context structure. + * + * This changed, however, in the v2.x series, as new OpenVPN versions + * running in server-mode can support multiple simultaneously active VPN + * tunnels. This necessitated a redesign of the VPN tunnel state + * container structures, and modification of the \link + * external_multiplexer External Multiplexer\endlink and \link + * internal_multiplexer Internal Multiplexer\endlink systems. The + * majority of these changes are only relevant for OpenVPN processes + * running in server-mode, and the client-mode structure has remained very + * similar to the v1.x single-tunnel form. + * + * @section tunnel_state_client Client-mode state + * + * An OpenVPN process running in client-mode can manage at most one single + * VPN tunnel at any one time. The state information for a client's VPN + * tunnel is stored in a \c context structure. + * + * The \c context structure is created in the \c main() function. That is + * also where process-wide initialization takes place, such as parsing + * command line %options and reading configuration files. The \c context + * is then passed to \c tunnel_point_to_point() which drives OpenVPN's + * main event processing loop. These functions are both part of the \link + * eventloop Main Event Loop\endlink module. + * + * @subsection tunnel_state_client_init Initialization and cleanup + * + * Because there is only one \c context structure present, it can be + * initialized and cleaned up from the client's main event processing + * function. Before the \c tunnel_point_to_point() function enters its + * event loop, it calls \c init_instance_handle_signals() which calls \c + * init_instance() to initialize the single \c context structure. After + * the event loop stops, it calls \c close_instance() to clean up the \c + * context. + * + * @subsection tunnel_state_client_event Event processing + * + * When the main event processing loop activates the external or internal + * multiplexer to handle a network event, it is not necessary to determine + * which VPN tunnel the event is associated with, because there is only + * one VPN tunnel active. + * + * @section tunnel_state_server Server-mode state + * + * An OpenVPN process running in server-mode can manage multiple + * simultaneously active VPN tunnels. For every VPN tunnel active, in + * other words for every OpenVPN client which is connected to a server, + * the OpenVPN server has one \c context structure in which it stores that + * particular VPN tunnel's state information. + * + * @subsection tunnel_state_server_multi Multi_context and multi_instance structures + * + * To support multiple \c context structures, each is wrapped in a \c + * multi_instance structure, and all the \c multi_instance structures are + * registered in one single \c multi_context structure. The \link + * external_multiplexer External Multiplexer\endlink and \link + * internal_multiplexer Internal Multiplexer\endlink then use the \c + * multi_context to retrieve the correct \c multi_instance and \c context + * associated with a given network address. + * + * @subsection tunnel_state_server_init Startup and initialization + * + * An OpenVPN process running in server-mode starts in the same \c main() + * function as it would in client-mode. The same process-wide + * initialization is performed, and the resulting state and configuration + * is stored in a \c context structure. The server-mode and client-mode + * processes diverge when the \c main() function calls one of \c + * tunnel_point_to_point() or \c tunnel_server(). + * + * In server-mode, \c main() calls the \c tunnel_server() function, which + * transfers control to \c tunnel_server_udp_single_threaded() or \c + * tunnel_server_tcp() depending on the external transport protocol. + * + * These functions receive the \c context created in \c main(). This + * object has a special status in server-mode, as it does not represent an + * active VPN tunnel, but does contain process-wide configuration + * parameters. In the source code, it is often stored in "top" variables. + * To distinguish this object from other instances of the same type, its + * \c context.mode value is set to \c CM_TOP. Other \c context objects, + * which do represent active VPN tunnels, have a \c context.mode set to \c + * CM_CHILD_UDP or \c CM_CHILD_TCP, depending on the external transport + * protocol. + * + * Both \c tunnel_server_udp_single_threaded() and \c tunnel_server_tcp() + * perform similar initialization. In either case, a \c multi_context + * structure is created, and it is initialized according to the + * configuration stored in the top \c context by the \c multi_init() and + * \c multi_top_init() functions. + * + * @subsection tunnel_state_server_tunnels Creating and destroying VPN tunnels + * + * When an OpenVPN client makes a new connection to a server, the server + * creates a new \c context and \c multi_instance. The latter is + * registered in the \c multi_context, which makes it possible for the + * external and internal multiplexers to retrieve the correct \c + * multi_instance and \c context when a network event occurs. + * + * @subsection tunnel_state_server_cleanup Final cleanup + * + * After the main event loop exits, both \c + * tunnel_server_udp_single_threaded() and \c tunnel_server_tcp() perform + * similar cleanup. They call \c multi_uninit() followed by \c + * multi_top_free() to clean up the \c multi_context structure. + */ |