1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
/*
* OpenVPN -- An application to securely tunnel IP networks
* over a single TCP/UDP port, with support for SSL/TLS-based
* session authentication and key exchange,
* packet encryption, packet authentication, and
* packet compression.
*
* Copyright (C) 2002-2018 OpenVPN Inc <sales@openvpn.net>
* Copyright (C) 2010-2018 Fox Crypto B.V. <openvpn@fox-it.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* @file Data Channel Cryptography Module
*
* @addtogroup data_crypto Data Channel Crypto module
*
* @par Crypto packet formats
* The Data Channel Crypto module supports a number of crypto modes and
* configurable options. The actual packet format depends on these options. A
* Data Channel packet can consist of:
* - \b Opcode, one byte specifying the packet type (see @ref network_protocol
* "Network protocol").
* - \b Peer-id, if using the v2 data channel packet format (see @ref
* network_protocol "Network protocol").
* - \b HMAC, covering the ciphertext IV + ciphertext. The HMAC size depends
* on the \c \-\-auth option. If \c \-\-auth \c none is specified, there is no
* HMAC at all.
* - \b Ciphertext \b IV, if not disabled by \c \-\-no-iv. The IV size depends on
* the \c \-\-cipher option.
* - \b Packet \b ID, a 32-bit incrementing packet counter that provides replay
* protection (if not disabled by \c \-\-no-replay).
* - \b Timestamp, a 32-bit timestamp of the current time.
* - \b Payload, the plain text network packet to be encrypted (unless
* encryption is disabled by using \c \-\-cipher \c none). The payload might
* already be compressed (see @ref compression "Compression module").
*
* @par
* This section does not discuss the opcode and peer-id, since those do not
* depend on the data channel crypto. See @ref network_protocol
* "Network protocol" for more information on those.
*
* @par
* \e Legenda \n
* <tt>[ xxx ]</tt> = unprotected \n
* <tt>[ - xxx - ]</tt> = authenticated \n
* <tt>[ * xxx * ]</tt> = encrypted and authenticated
*
* @par
* <b>CBC data channel cypto format</b> \n
* In CBC mode, both TLS-mode and static key mode are supported. The IV
* consists of random bits to provide unpredictable IVs. \n
* <i>CBC IV format:</i> \n
* <tt> [ - random - ] </tt> \n
* <i>CBC data channel crypto format in TLS-mode:</i> \n
* <tt> [ HMAC ] [ - IV - ] [ * packet ID * ] [ * packet payload * ] </tt> \n
* <i>CBC data channel crypto format in static key mode:</i> \n
* <tt> [ HMAC ] [ - IV - ] [ * packet ID * ] [ * timestamp * ]
* [ * packet payload * ] </tt>
*
* @par
* <b>CFB/OFB data channel crypto format</b> \n
* CFB and OFB modes are only supported in TLS mode. In these modes, the IV
* consists of the packet counter and a timestamp. If the IV is more than 8
* bytes long, the remaining space is filled with zeroes. The packet counter may
* not roll over within a single TLS sessions. This results in a unique IV for
* each packet, as required by the CFB and OFB cipher modes.
*
* @par
* <i>CFB/OFB IV format:</i> \n
* <tt> [ - packet ID - ] [ - timestamp - ] [ - opt: zero-padding - ] </tt>\n
* <i>CFB/OFB data channel crypto format:</i> \n
* <tt> [ HMAC ] [ - IV - ] [ * packet payload * ] </tt>
*
* @par
* <b>GCM data channel crypto format</b> \n
* GCM modes are only supported in TLS mode. In these modes, the IV consists of
* the 32-bit packet counter followed by data from the HMAC key. The HMAC key
* can be used as IV, since in GCM and CCM modes the HMAC key is not used for
* the HMAC. The packet counter may not roll over within a single TLS sessions.
* This results in a unique IV for each packet, as required by GCM.
*
* @par
* The HMAC key data is pre-shared during the connection setup, and thus can be
* omitted in on-the-wire packets, saving 8 bytes per packet (for GCM and CCM).
*
* @par
* In GCM mode, P_DATA_V2 headers (the opcode and peer-id) are also
* authenticated as Additional Data.
*
* @par
* <i>GCM IV format:</i> \n
* <tt> [ - packet ID - ] [ - HMAC key data - ] </tt>\n
* <i>P_DATA_V1 GCM data channel crypto format:</i> \n
* <tt> [ opcode ] [ - packet ID - ] [ TAG ] [ * packet payload * ] </tt>
* <i>P_DATA_V2 GCM data channel crypto format:</i> \n
* <tt> [ - opcode/peer-id - ] [ - packet ID - ] [ TAG ] [ * packet payload * ] </tt>
*
* @par
* <b>No-crypto data channel format</b> \n
* In no-crypto mode (\c \-\-cipher \c none is specified), both TLS-mode and
* static key mode are supported. No encryption will be performed on the packet,
* but packets can still be authenticated. This mode does not require an IV.\n
* <i>No-crypto data channel crypto format in TLS-mode:</i> \n
* <tt> [ HMAC ] [ - packet ID - ] [ - packet payload - ] </tt> \n
* <i>No-crypto data channel crypto format in static key mode:</i> \n
* <tt> [ HMAC ] [ - packet ID - ] [ - timestamp - ] [ - packet payload - ] </tt>
*
*/
#ifndef CRYPTO_H
#define CRYPTO_H
#ifdef ENABLE_CRYPTO
#include "crypto_backend.h"
#include "basic.h"
#include "buffer.h"
#include "packet_id.h"
#include "mtu.h"
/** Wrapper struct to pass around SHA256 digests */
struct sha256_digest {
uint8_t digest[SHA256_DIGEST_LENGTH];
};
/*
* Defines a key type and key length for both cipher and HMAC.
*/
struct key_type
{
uint8_t cipher_length; /**< Cipher length, in bytes */
uint8_t hmac_length; /**< HMAC length, in bytes */
const cipher_kt_t *cipher; /**< Cipher static parameters */
const md_kt_t *digest; /**< Message digest static parameters */
};
/**
* Container for unidirectional cipher and HMAC %key material.
* @ingroup control_processor
*/
struct key
{
uint8_t cipher[MAX_CIPHER_KEY_LENGTH];
/**< %Key material for cipher operations. */
uint8_t hmac[MAX_HMAC_KEY_LENGTH];
/**< %Key material for HMAC operations. */
};
/**
* Container for one set of cipher and/or HMAC contexts.
* @ingroup control_processor
*/
struct key_ctx
{
cipher_ctx_t *cipher; /**< Generic cipher %context. */
hmac_ctx_t *hmac; /**< Generic HMAC %context. */
uint8_t implicit_iv[OPENVPN_MAX_IV_LENGTH];
/**< The implicit part of the IV */
size_t implicit_iv_len; /**< The length of implicit_iv */
};
#define KEY_DIRECTION_BIDIRECTIONAL 0 /* same keys for both directions */
#define KEY_DIRECTION_NORMAL 1 /* encrypt with keys[0], decrypt with keys[1] */
#define KEY_DIRECTION_INVERSE 2 /* encrypt with keys[1], decrypt with keys[0] */
/**
* Container for bidirectional cipher and HMAC %key material.
* @ingroup control_processor
*/
struct key2
{
int n; /**< The number of \c key objects stored
* in the \c key2.keys array. */
struct key keys[2]; /**< Two unidirectional sets of %key
* material. */
};
/**
* %Key ordering of the \c key2.keys array.
* @ingroup control_processor
*
* This structure takes care of correct ordering when using unidirectional
* or bidirectional %key material, and allows the same shared secret %key
* file to be loaded in the same way by client and server by having one of
* the hosts use an reversed ordering.
*/
struct key_direction_state
{
int out_key; /**< Index into the \c key2.keys array for
* the sending direction. */
int in_key; /**< Index into the \c key2.keys array for
* the receiving direction. */
int need_keys; /**< The number of key objects necessary
* to support both sending and
* receiving.
*
* This will be 1 if the same keys are
* used in both directions, or 2 if
* there are two sets of unidirectional
* keys. */
};
/**
* Container for two sets of OpenSSL cipher and/or HMAC contexts for both
* sending and receiving directions.
* @ingroup control_processor
*/
struct key_ctx_bi
{
struct key_ctx encrypt; /**< Cipher and/or HMAC contexts for sending
* direction. */
struct key_ctx decrypt; /**< cipher and/or HMAC contexts for
* receiving direction. */
bool initialized;
};
/**
* Security parameter state for processing data channel packets.
* @ingroup data_crypto
*/
struct crypto_options
{
struct key_ctx_bi key_ctx_bi;
/**< OpenSSL cipher and HMAC contexts for
* both sending and receiving
* directions. */
struct packet_id packet_id; /**< Current packet ID state for both
* sending and receiving directions. */
struct packet_id_persist *pid_persist;
/**< Persistent packet ID state for
* keeping state between successive
* OpenVPN process startups. */
#define CO_PACKET_ID_LONG_FORM (1<<0)
/**< Bit-flag indicating whether to use
* OpenVPN's long packet ID format. */
#define CO_USE_IV (1<<1)
/**< Bit-flag indicating whether to
* generate a pseudo-random IV for each
* packet being encrypted. */
#define CO_IGNORE_PACKET_ID (1<<2)
/**< Bit-flag indicating whether to ignore
* the packet ID of a received packet.
* This flag is used during processing
* of the first packet received from a
* client. */
#define CO_MUTE_REPLAY_WARNINGS (1<<3)
/**< Bit-flag indicating not to display
* replay warnings. */
unsigned int flags; /**< Bit-flags determining behavior of
* security operation functions. */
};
#define CRYPT_ERROR(format) \
do { msg(D_CRYPT_ERRORS, "%s: " format, error_prefix); goto error_exit; } while (false)
/**
* Minimal IV length for AEAD mode ciphers (in bytes):
* 4-byte packet id + 8 bytes implicit IV.
*/
#define OPENVPN_AEAD_MIN_IV_LEN (sizeof(packet_id_type) + 8)
#define RKF_MUST_SUCCEED (1<<0)
#define RKF_INLINE (1<<1)
void read_key_file(struct key2 *key2, const char *file, const unsigned int flags);
int write_key_file(const int nkeys, const char *filename);
int read_passphrase_hash(const char *passphrase_file,
const md_kt_t *digest,
uint8_t *output,
int len);
void generate_key_random(struct key *key, const struct key_type *kt);
void check_replay_iv_consistency(const struct key_type *kt, bool packet_id, bool use_iv);
bool check_key(struct key *key, const struct key_type *kt);
void fixup_key(struct key *key, const struct key_type *kt);
bool write_key(const struct key *key, const struct key_type *kt,
struct buffer *buf);
int read_key(struct key *key, const struct key_type *kt, struct buffer *buf);
/**
* Initialize a key_type structure with.
*
* @param kt The struct key_type to initialize
* @param ciphername The name of the cipher to use
* @param authname The name of the HMAC digest to use
* @param keysize The length of the cipher key to use, in bytes. Only valid
* for ciphers that support variable length keys.
* @param tls_mode Specifies wether we are running in TLS mode, which allows
* more ciphers than static key mode.
* @param warn Print warnings when null cipher / auth is used.
*/
void init_key_type(struct key_type *kt, const char *ciphername,
const char *authname, int keysize, bool tls_mode, bool warn);
/*
* Key context functions
*/
void init_key_ctx(struct key_ctx *ctx, const struct key *key,
const struct key_type *kt, int enc,
const char *prefix);
void free_key_ctx(struct key_ctx *ctx);
void init_key_ctx_bi(struct key_ctx_bi *ctx, const struct key2 *key2,
int key_direction, const struct key_type *kt,
const char *name);
void free_key_ctx_bi(struct key_ctx_bi *ctx);
/**************************************************************************/
/** @name Functions for performing security operations on data channel packets
* @{ */
/**
* Encrypt and HMAC sign a packet so that it can be sent as a data channel
* VPN tunnel packet to a remote OpenVPN peer.
* @ingroup data_crypto
*
* This function handles encryption and HMAC signing of a data channel
* packet before it is sent to its remote OpenVPN peer. It receives the
* necessary security parameters in the \a opt argument, which should have
* been set to the correct values by the \c tls_pre_encrypt() function.
*
* This function calls the \c EVP_Cipher* and \c HMAC_* functions of the
* OpenSSL library to perform the actual security operations.
*
* If an error occurs during processing, then the \a buf %buffer is set to
* empty.
*
* @param buf - The %buffer containing the packet on which to
* perform security operations.
* @param work - An initialized working %buffer.
* @param opt - The security parameter state for this VPN tunnel.
*
* @return This function returns void.\n On return, the \a buf argument
* will point to the resulting %buffer. This %buffer will either
* contain the processed packet ready for sending, or be empty if an
* error occurred.
*/
void openvpn_encrypt(struct buffer *buf, struct buffer work,
struct crypto_options *opt);
/**
* HMAC verify and decrypt a data channel packet received from a remote
* OpenVPN peer.
* @ingroup data_crypto
*
* This function handles authenticating and decrypting a data channel
* packet received from a remote OpenVPN peer. It receives the necessary
* security parameters in the \a opt argument, which should have been set
* to the correct values by the \c tls_pre_decrypt() function.
*
* This function calls the \c EVP_Cipher* and \c HMAC_* functions of the
* OpenSSL library to perform the actual security operations.
*
* If an error occurs during processing, then the \a buf %buffer is set to
* empty.
*
* @param buf - The %buffer containing the packet received from a
* remote OpenVPN peer on which to perform security
* operations.
* @param work - A working %buffer.
* @param opt - The security parameter state for this VPN tunnel.
* @param frame - The packet geometry parameters for this VPN
* tunnel.
* @param ad_start - A pointer into buf, indicating from where to start
* authenticating additional data (AEAD mode only).
*
* @return
* @li True, if the packet was authenticated and decrypted successfully.
* @li False, if an error occurred. \n On return, the \a buf argument will
* point to the resulting %buffer. This %buffer will either contain
* the plaintext packet ready for further processing, or be empty if
* an error occurred.
*/
bool openvpn_decrypt(struct buffer *buf, struct buffer work,
struct crypto_options *opt, const struct frame *frame,
const uint8_t *ad_start);
/** @} name Functions for performing security operations on data channel packets */
/**
* Check packet ID for replay, and perform replay administration.
*
* @param opt Crypto options for this packet, contains replay state.
* @param pin Packet ID read from packet.
* @param error_prefix Prefix to use when printing error messages.
* @param gc Garbage collector to use.
*
* @return true if packet ID is validated to be not a replay, false otherwise.
*/
bool crypto_check_replay(struct crypto_options *opt,
const struct packet_id_net *pin, const char *error_prefix,
struct gc_arena *gc);
/** Calculate crypto overhead and adjust frame to account for that */
void crypto_adjust_frame_parameters(struct frame *frame,
const struct key_type *kt,
bool use_iv,
bool packet_id,
bool packet_id_long_form);
/** Return the worst-case OpenVPN crypto overhead (in bytes) */
unsigned int crypto_max_overhead(void);
/* Minimum length of the nonce used by the PRNG */
#define NONCE_SECRET_LEN_MIN 16
/* Maximum length of the nonce used by the PRNG */
#define NONCE_SECRET_LEN_MAX 64
/** Number of bytes of random to allow before resetting the nonce */
#define PRNG_NONCE_RESET_BYTES 1024
/**
* Pseudo-random number generator initialisation.
* (see \c prng_rand_bytes())
*
* @param md_name Name of the message digest to use
* @param nonce_secret_len_param Length of the nonce to use
*/
void prng_init(const char *md_name, const int nonce_secret_len_parm);
/*
* Message digest-based pseudo random number generator.
*
* If the PRNG was initialised with a certain message digest, uses the digest
* to calculate the next random number, and prevent depletion of the entropy
* pool.
*
* This PRNG is aimed at IV generation and similar miscellaneous tasks. Use
* \c rand_bytes() for higher-assurance functionality.
*
* Retrieves len bytes of pseudo random data, and places it in output.
*
* @param output Output buffer
* @param len Length of the output buffer
*/
void prng_bytes(uint8_t *output, int len);
void prng_uninit(void);
void test_crypto(struct crypto_options *co, struct frame *f);
/* key direction functions */
void key_direction_state_init(struct key_direction_state *kds, int key_direction);
void verify_fix_key2(struct key2 *key2, const struct key_type *kt, const char *shared_secret_file);
void must_have_n_keys(const char *filename, const char *option, const struct key2 *key2, int n);
int ascii2keydirection(int msglevel, const char *str);
const char *keydirection2ascii(int kd, bool remote, bool humanreadable);
/* print keys */
void key2_print(const struct key2 *k,
const struct key_type *kt,
const char *prefix0,
const char *prefix1);
void crypto_read_openvpn_key(const struct key_type *key_type,
struct key_ctx_bi *ctx, const char *key_file, const char *key_inline,
const int key_direction, const char *key_name, const char *opt_name);
/*
* Inline functions
*/
/**
* As memcmp(), but constant-time.
* Returns 0 when data is equal, non-zero otherwise.
*/
static inline int
memcmp_constant_time(const void *a, const void *b, size_t size)
{
const uint8_t *a1 = a;
const uint8_t *b1 = b;
int ret = 0;
size_t i;
for (i = 0; i < size; i++) {
ret |= *a1++ ^ *b1++;
}
return ret;
}
static inline bool
key_ctx_bi_defined(const struct key_ctx_bi *key)
{
return key->encrypt.cipher || key->encrypt.hmac || key->decrypt.cipher || key->decrypt.hmac;
}
#endif /* ENABLE_CRYPTO */
#endif /* CRYPTO_H */
|