summaryrefslogtreecommitdiff
path: root/src/openvpn/mtcp.c
blob: 3cb5211373ef341b4f5a016e3dc3a6aa54cd6df1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
/*
 *  OpenVPN -- An application to securely tunnel IP networks
 *             over a single TCP/UDP port, with support for SSL/TLS-based
 *             session authentication and key exchange,
 *             packet encryption, packet authentication, and
 *             packet compression.
 *
 *  Copyright (C) 2002-2017 OpenVPN Technologies, Inc. <sales@openvpn.net>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2
 *  as published by the Free Software Foundation.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_MSC_VER)
#include "config-msvc.h"
#endif

#include "syshead.h"

#if P2MP_SERVER

#include "multi.h"
#include "forward-inline.h"

#include "memdbg.h"

#ifdef HAVE_SYS_INOTIFY_H
#include <sys/inotify.h>
#endif

/*
 * TCP States
 */
#define TA_UNDEF                 0
#define TA_SOCKET_READ           1
#define TA_SOCKET_READ_RESIDUAL  2
#define TA_SOCKET_WRITE          3
#define TA_SOCKET_WRITE_READY    4
#define TA_SOCKET_WRITE_DEFERRED 5
#define TA_TUN_READ              6
#define TA_TUN_WRITE             7
#define TA_INITIAL               8
#define TA_TIMEOUT               9
#define TA_TUN_WRITE_TIMEOUT     10

/*
 * Special tags passed to event.[ch] functions
 */
#define MTCP_SOCKET      ((void *)1)
#define MTCP_TUN         ((void *)2)
#define MTCP_SIG         ((void *)3) /* Only on Windows */
#ifdef ENABLE_MANAGEMENT
#define MTCP_MANAGEMENT ((void *)4)
#endif

#ifdef ENABLE_ASYNC_PUSH
#define MTCP_FILE_CLOSE_WRITE ((void *)5)
#endif

#define MTCP_N           ((void *)16) /* upper bound on MTCP_x */

struct ta_iow_flags
{
    unsigned int flags;
    unsigned int ret;
    unsigned int tun;
    unsigned int sock;
};

static const char *
pract(int action)
{
    switch (action)
    {
        case TA_UNDEF:
            return "TA_UNDEF";

        case TA_SOCKET_READ:
            return "TA_SOCKET_READ";

        case TA_SOCKET_READ_RESIDUAL:
            return "TA_SOCKET_READ_RESIDUAL";

        case TA_SOCKET_WRITE:
            return "TA_SOCKET_WRITE";

        case TA_SOCKET_WRITE_READY:
            return "TA_SOCKET_WRITE_READY";

        case TA_SOCKET_WRITE_DEFERRED:
            return "TA_SOCKET_WRITE_DEFERRED";

        case TA_TUN_READ:
            return "TA_TUN_READ";

        case TA_TUN_WRITE:
            return "TA_TUN_WRITE";

        case TA_INITIAL:
            return "TA_INITIAL";

        case TA_TIMEOUT:
            return "TA_TIMEOUT";

        case TA_TUN_WRITE_TIMEOUT:
            return "TA_TUN_WRITE_TIMEOUT";

        default:
            return "?";
    }
}

static struct multi_instance *
multi_create_instance_tcp(struct multi_context *m)
{
    struct gc_arena gc = gc_new();
    struct multi_instance *mi = NULL;
    struct hash *hash = m->hash;

    mi = multi_create_instance(m, NULL);
    if (mi)
    {
        struct hash_element *he;
        const uint32_t hv = hash_value(hash, &mi->real);
        struct hash_bucket *bucket = hash_bucket(hash, hv);

        he = hash_lookup_fast(hash, bucket, &mi->real, hv);

        if (he)
        {
            struct multi_instance *oldmi = (struct multi_instance *) he->value;
            msg(D_MULTI_LOW, "MULTI TCP: new incoming client address matches existing client address -- new client takes precedence");
            oldmi->did_real_hash = false;
            multi_close_instance(m, oldmi, false);
            he->key = &mi->real;
            he->value = mi;
        }
        else
        {
            hash_add_fast(hash, bucket, &mi->real, hv, mi);
        }

        mi->did_real_hash = true;
    }

#ifdef ENABLE_DEBUG
    if (mi)
    {
        dmsg(D_MULTI_DEBUG, "MULTI TCP: instance added: %s", mroute_addr_print(&mi->real, &gc));
    }
    else
    {
        dmsg(D_MULTI_DEBUG, "MULTI TCP: new client instance failed");
    }
#endif

    gc_free(&gc);
    ASSERT(!(mi && mi->halt));
    return mi;
}

bool
multi_tcp_instance_specific_init(struct multi_context *m, struct multi_instance *mi)
{
    /* buffer for queued TCP socket output packets */
    mi->tcp_link_out_deferred = mbuf_init(m->top.options.n_bcast_buf);

    ASSERT(mi->context.c2.link_socket);
    ASSERT(mi->context.c2.link_socket->info.lsa);
    ASSERT(mi->context.c2.link_socket->mode == LS_MODE_TCP_ACCEPT_FROM);
    ASSERT(mi->context.c2.link_socket->info.lsa->actual.dest.addr.sa.sa_family == AF_INET
           || mi->context.c2.link_socket->info.lsa->actual.dest.addr.sa.sa_family == AF_INET6
           );
    if (!mroute_extract_openvpn_sockaddr(&mi->real, &mi->context.c2.link_socket->info.lsa->actual.dest, true))
    {
        msg(D_MULTI_ERRORS, "MULTI TCP: TCP client address is undefined");
        return false;
    }
    return true;
}

void
multi_tcp_instance_specific_free(struct multi_instance *mi)
{
    mbuf_free(mi->tcp_link_out_deferred);
}

struct multi_tcp *
multi_tcp_init(int maxevents, int *maxclients)
{
    struct multi_tcp *mtcp;
    const int extra_events = BASE_N_EVENTS;

    ASSERT(maxevents >= 1);
    ASSERT(maxclients);

    ALLOC_OBJ_CLEAR(mtcp, struct multi_tcp);
    mtcp->maxevents = maxevents + extra_events;
    mtcp->es = event_set_init(&mtcp->maxevents, 0);
    wait_signal(mtcp->es, MTCP_SIG);
    ALLOC_ARRAY(mtcp->esr, struct event_set_return, mtcp->maxevents);
    *maxclients = max_int(min_int(mtcp->maxevents - extra_events, *maxclients), 1);
    msg(D_MULTI_LOW, "MULTI: TCP INIT maxclients=%d maxevents=%d", *maxclients, mtcp->maxevents);
    return mtcp;
}

void
multi_tcp_delete_event(struct multi_tcp *mtcp, event_t event)
{
    if (mtcp && mtcp->es)
    {
        event_del(mtcp->es, event);
    }
}

void
multi_tcp_free(struct multi_tcp *mtcp)
{
    if (mtcp)
    {
        event_free(mtcp->es);
        if (mtcp->esr)
        {
            free(mtcp->esr);
        }
        free(mtcp);
    }
}

void
multi_tcp_dereference_instance(struct multi_tcp *mtcp, struct multi_instance *mi)
{
    struct link_socket *ls = mi->context.c2.link_socket;
    if (ls && mi->socket_set_called)
    {
        event_del(mtcp->es, socket_event_handle(ls));
    }
    mtcp->n_esr = 0;
}

static inline void
multi_tcp_set_global_rw_flags(struct multi_context *m, struct multi_instance *mi)
{
    if (mi)
    {
        mi->socket_set_called = true;
        socket_set(mi->context.c2.link_socket,
                   m->mtcp->es,
                   mbuf_defined(mi->tcp_link_out_deferred) ? EVENT_WRITE : EVENT_READ,
                   mi,
                   &mi->tcp_rwflags);
    }
}

static inline int
multi_tcp_wait(const struct context *c,
               struct multi_tcp *mtcp)
{
    int status;
    socket_set_listen_persistent(c->c2.link_socket, mtcp->es, MTCP_SOCKET);
    tun_set(c->c1.tuntap, mtcp->es, EVENT_READ, MTCP_TUN, &mtcp->tun_rwflags);
#ifdef ENABLE_MANAGEMENT
    if (management)
    {
        management_socket_set(management, mtcp->es, MTCP_MANAGEMENT, &mtcp->management_persist_flags);
    }
#endif

#ifdef ENABLE_ASYNC_PUSH
    /* arm inotify watcher */
    event_ctl(mtcp->es, c->c2.inotify_fd, EVENT_READ, MTCP_FILE_CLOSE_WRITE);
#endif

    status = event_wait(mtcp->es, &c->c2.timeval, mtcp->esr, mtcp->maxevents);
    update_time();
    mtcp->n_esr = 0;
    if (status > 0)
    {
        mtcp->n_esr = status;
    }
    return status;
}

static inline struct context *
multi_tcp_context(struct multi_context *m, struct multi_instance *mi)
{
    if (mi)
    {
        return &mi->context;
    }
    else
    {
        return &m->top;
    }
}

static bool
multi_tcp_process_outgoing_link_ready(struct multi_context *m, struct multi_instance *mi, const unsigned int mpp_flags)
{
    struct mbuf_item item;
    bool ret = true;
    ASSERT(mi);

    /* extract from queue */
    if (mbuf_extract_item(mi->tcp_link_out_deferred, &item)) /* ciphertext IP packet */
    {
        dmsg(D_MULTI_TCP, "MULTI TCP: transmitting previously deferred packet");

        ASSERT(mi == item.instance);
        mi->context.c2.to_link = item.buffer->buf;
        ret = multi_process_outgoing_link_dowork(m, mi, mpp_flags);
        if (!ret)
        {
            mi = NULL;
        }
        mbuf_free_buf(item.buffer);
    }
    return ret;
}

static bool
multi_tcp_process_outgoing_link(struct multi_context *m, bool defer, const unsigned int mpp_flags)
{
    struct multi_instance *mi = multi_process_outgoing_link_pre(m);
    bool ret = true;

    if (mi)
    {
        if (defer || mbuf_defined(mi->tcp_link_out_deferred))
        {
            /* save to queue */
            struct buffer *buf = &mi->context.c2.to_link;
            if (BLEN(buf) > 0)
            {
                struct mbuf_buffer *mb = mbuf_alloc_buf(buf);
                struct mbuf_item item;

                set_prefix(mi);
                dmsg(D_MULTI_TCP, "MULTI TCP: queuing deferred packet");
                item.buffer = mb;
                item.instance = mi;
                mbuf_add_item(mi->tcp_link_out_deferred, &item);
                mbuf_free_buf(mb);
                buf_reset(buf);
                ret = multi_process_post(m, mi, mpp_flags);
                if (!ret)
                {
                    mi = NULL;
                }
                clear_prefix();
            }
        }
        else
        {
            ret = multi_process_outgoing_link_dowork(m, mi, mpp_flags);
            if (!ret)
            {
                mi = NULL;
            }
        }
    }
    return ret;
}

static int
multi_tcp_wait_lite(struct multi_context *m, struct multi_instance *mi, const int action, bool *tun_input_pending)
{
    struct context *c = multi_tcp_context(m, mi);
    unsigned int looking_for = 0;

    dmsg(D_MULTI_DEBUG, "MULTI TCP: multi_tcp_wait_lite a=%s mi=" ptr_format,
         pract(action),
         (ptr_type)mi);

    tv_clear(&c->c2.timeval); /* ZERO-TIMEOUT */

    switch (action)
    {
        case TA_TUN_READ:
            looking_for = TUN_READ;
            tun_input_pending = NULL;
            io_wait(c, IOW_READ_TUN);
            break;

        case TA_SOCKET_READ:
            looking_for = SOCKET_READ;
            tun_input_pending = NULL;
            io_wait(c, IOW_READ_LINK);
            break;

        case TA_TUN_WRITE:
            looking_for = TUN_WRITE;
            tun_input_pending = NULL;
            c->c2.timeval.tv_sec = 1; /* For some reason, the Linux 2.2 TUN/TAP driver hits this timeout */
            perf_push(PERF_PROC_OUT_TUN_MTCP);
            io_wait(c, IOW_TO_TUN);
            perf_pop();
            break;

        case TA_SOCKET_WRITE:
            looking_for = SOCKET_WRITE;
            io_wait(c, IOW_TO_LINK|IOW_READ_TUN_FORCE);
            break;

        default:
            msg(M_FATAL, "MULTI TCP: multi_tcp_wait_lite, unhandled action=%d", action);
    }

    if (tun_input_pending && (c->c2.event_set_status & TUN_READ))
    {
        *tun_input_pending = true;
    }

    if (c->c2.event_set_status & looking_for)
    {
        return action;
    }
    else
    {
        switch (action)
        {
            /* TCP socket output buffer is full */
            case TA_SOCKET_WRITE:
                return TA_SOCKET_WRITE_DEFERRED;

            /* TUN device timed out on accepting write */
            case TA_TUN_WRITE:
                return TA_TUN_WRITE_TIMEOUT;
        }

        return TA_UNDEF;
    }
}

static struct multi_instance *
multi_tcp_dispatch(struct multi_context *m, struct multi_instance *mi, const int action)
{
    const unsigned int mpp_flags = MPP_PRE_SELECT|MPP_RECORD_TOUCH;
    struct multi_instance *touched = mi;
    m->mpp_touched = &touched;

    dmsg(D_MULTI_DEBUG, "MULTI TCP: multi_tcp_dispatch a=%s mi=" ptr_format,
         pract(action),
         (ptr_type)mi);

    switch (action)
    {
        case TA_TUN_READ:
            read_incoming_tun(&m->top);
            if (!IS_SIG(&m->top))
            {
                multi_process_incoming_tun(m, mpp_flags);
            }
            break;

        case TA_SOCKET_READ:
        case TA_SOCKET_READ_RESIDUAL:
            ASSERT(mi);
            ASSERT(mi->context.c2.link_socket);
            set_prefix(mi);
            read_incoming_link(&mi->context);
            clear_prefix();
            if (!IS_SIG(&mi->context))
            {
                multi_process_incoming_link(m, mi, mpp_flags);
                if (!IS_SIG(&mi->context))
                {
                    stream_buf_read_setup(mi->context.c2.link_socket);
                }
            }
            break;

        case TA_TIMEOUT:
            multi_process_timeout(m, mpp_flags);
            break;

        case TA_TUN_WRITE:
            multi_process_outgoing_tun(m, mpp_flags);
            break;

        case TA_TUN_WRITE_TIMEOUT:
            multi_process_drop_outgoing_tun(m, mpp_flags);
            break;

        case TA_SOCKET_WRITE_READY:
            ASSERT(mi);
            multi_tcp_process_outgoing_link_ready(m, mi, mpp_flags);
            break;

        case TA_SOCKET_WRITE:
            multi_tcp_process_outgoing_link(m, false, mpp_flags);
            break;

        case TA_SOCKET_WRITE_DEFERRED:
            multi_tcp_process_outgoing_link(m, true, mpp_flags);
            break;

        case TA_INITIAL:
            ASSERT(mi);
            multi_tcp_set_global_rw_flags(m, mi);
            multi_process_post(m, mi, mpp_flags);
            break;

        default:
            msg(M_FATAL, "MULTI TCP: multi_tcp_dispatch, unhandled action=%d", action);
    }

    m->mpp_touched = NULL;
    return touched;
}

static int
multi_tcp_post(struct multi_context *m, struct multi_instance *mi, const int action)
{
    struct context *c = multi_tcp_context(m, mi);
    int newaction = TA_UNDEF;

#define MTP_NONE         0
#define MTP_TUN_OUT      (1<<0)
#define MTP_LINK_OUT     (1<<1)
    unsigned int flags = MTP_NONE;

    if (TUN_OUT(c))
    {
        flags |= MTP_TUN_OUT;
    }
    if (LINK_OUT(c))
    {
        flags |= MTP_LINK_OUT;
    }

    switch (flags)
    {
        case MTP_TUN_OUT|MTP_LINK_OUT:
        case MTP_TUN_OUT:
            newaction = TA_TUN_WRITE;
            break;

        case MTP_LINK_OUT:
            newaction = TA_SOCKET_WRITE;
            break;

        case MTP_NONE:
            if (mi && socket_read_residual(c->c2.link_socket))
            {
                newaction = TA_SOCKET_READ_RESIDUAL;
            }
            else
            {
                multi_tcp_set_global_rw_flags(m, mi);
            }
            break;

        default:
        {
            struct gc_arena gc = gc_new();
            msg(M_FATAL, "MULTI TCP: multi_tcp_post bad state, mi=%s flags=%d",
                multi_instance_string(mi, false, &gc),
                flags);
            gc_free(&gc);
            break;
        }
    }

    dmsg(D_MULTI_DEBUG, "MULTI TCP: multi_tcp_post %s -> %s",
         pract(action),
         pract(newaction));

    return newaction;
}

static void
multi_tcp_action(struct multi_context *m, struct multi_instance *mi, int action, bool poll)
{
    bool tun_input_pending = false;

    do
    {
        dmsg(D_MULTI_DEBUG, "MULTI TCP: multi_tcp_action a=%s p=%d",
             pract(action),
             poll);

        /*
         * If TA_SOCKET_READ_RESIDUAL, it means we still have pending
         * input packets which were read by a prior TCP recv.
         *
         * Otherwise do a "lite" wait, which means we wait with 0 timeout
         * on I/O events only related to the current instance, not
         * the big list of events.
         *
         * On our first pass, poll will be false because we already know
         * that input is available, and to call io_wait would be redundant.
         */
        if (poll && action != TA_SOCKET_READ_RESIDUAL)
        {
            const int orig_action = action;
            action = multi_tcp_wait_lite(m, mi, action, &tun_input_pending);
            if (action == TA_UNDEF)
            {
                msg(M_FATAL, "MULTI TCP: I/O wait required blocking in multi_tcp_action, action=%d", orig_action);
            }
        }

        /*
         * Dispatch the action
         */
        {
            struct multi_instance *touched = multi_tcp_dispatch(m, mi, action);

            /*
             * Signal received or TCP connection
             * reset by peer?
             */
            if (touched && IS_SIG(&touched->context))
            {
                if (mi == touched)
                {
                    mi = NULL;
                }
                multi_close_instance_on_signal(m, touched);
            }
        }

        /*
         * If dispatch produced any pending output
         * for a particular instance, point to
         * that instance.
         */
        if (m->pending)
        {
            mi = m->pending;
        }

        /*
         * Based on the effects of the action,
         * such as generating pending output,
         * possibly transition to a new action state.
         */
        action = multi_tcp_post(m, mi, action);

        /*
         * If we are finished processing the original action,
         * check if we have any TUN input.  If so, transition
         * our action state to processing this input.
         */
        if (tun_input_pending && action == TA_UNDEF)
        {
            action = TA_TUN_READ;
            mi = NULL;
            tun_input_pending = false;
            poll = false;
        }
        else
        {
            poll = true;
        }

    } while (action != TA_UNDEF);
}

static void
multi_tcp_process_io(struct multi_context *m)
{
    struct multi_tcp *mtcp = m->mtcp;
    int i;

    for (i = 0; i < mtcp->n_esr; ++i)
    {
        struct event_set_return *e = &mtcp->esr[i];

        /* incoming data for instance? */
        if (e->arg >= MTCP_N)
        {
            struct multi_instance *mi = (struct multi_instance *) e->arg;
            if (mi)
            {
                if (e->rwflags & EVENT_WRITE)
                {
                    multi_tcp_action(m, mi, TA_SOCKET_WRITE_READY, false);
                }
                else if (e->rwflags & EVENT_READ)
                {
                    multi_tcp_action(m, mi, TA_SOCKET_READ, false);
                }
            }
        }
        else
        {
#ifdef ENABLE_MANAGEMENT
            if (e->arg == MTCP_MANAGEMENT)
            {
                ASSERT(management);
                management_io(management);
            }
            else
#endif
            /* incoming data on TUN? */
            if (e->arg == MTCP_TUN)
            {
                if (e->rwflags & EVENT_WRITE)
                {
                    multi_tcp_action(m, NULL, TA_TUN_WRITE, false);
                }
                else if (e->rwflags & EVENT_READ)
                {
                    multi_tcp_action(m, NULL, TA_TUN_READ, false);
                }
            }
            /* new incoming TCP client attempting to connect? */
            else if (e->arg == MTCP_SOCKET)
            {
                struct multi_instance *mi;
                ASSERT(m->top.c2.link_socket);
                socket_reset_listen_persistent(m->top.c2.link_socket);
                mi = multi_create_instance_tcp(m);
                if (mi)
                {
                    multi_tcp_action(m, mi, TA_INITIAL, false);
                }
            }
            /* signal received? */
            else if (e->arg == MTCP_SIG)
            {
                get_signal(&m->top.sig->signal_received);
            }
#ifdef ENABLE_ASYNC_PUSH
            else if (e->arg == MTCP_FILE_CLOSE_WRITE)
            {
                multi_process_file_closed(m, MPP_PRE_SELECT | MPP_RECORD_TOUCH);
            }
#endif
        }
        if (IS_SIG(&m->top))
        {
            break;
        }
    }
    mtcp->n_esr = 0;

    /*
     * Process queued mbuf packets destined for TCP socket
     */
    {
        struct multi_instance *mi;
        while (!IS_SIG(&m->top) && (mi = mbuf_peek(m->mbuf)) != NULL)
        {
            multi_tcp_action(m, mi, TA_SOCKET_WRITE, true);
        }
    }
}

/*
 * Top level event loop for single-threaded operation.
 * TCP mode.
 */
void
tunnel_server_tcp(struct context *top)
{
    struct multi_context multi;
    int status;

    top->mode = CM_TOP;
    context_clear_2(top);

    /* initialize top-tunnel instance */
    init_instance_handle_signals(top, top->es, CC_HARD_USR1_TO_HUP);
    if (IS_SIG(top))
    {
        return;
    }

    /* initialize global multi_context object */
    multi_init(&multi, top, true, MC_SINGLE_THREADED);

    /* initialize our cloned top object */
    multi_top_init(&multi, top);

    /* initialize management interface */
    init_management_callback_multi(&multi);

    /* finished with initialization */
    initialization_sequence_completed(top, ISC_SERVER); /* --mode server --proto tcp-server */

#ifdef ENABLE_ASYNC_PUSH
    multi.top.c2.inotify_fd = inotify_init();
    if (multi.top.c2.inotify_fd < 0)
    {
        msg(D_MULTI_ERRORS | M_ERRNO, "MULTI: inotify_init error");
    }
#endif

    /* per-packet event loop */
    while (true)
    {
        perf_push(PERF_EVENT_LOOP);

        /* wait on tun/socket list */
        multi_get_timeout(&multi, &multi.top.c2.timeval);
        status = multi_tcp_wait(&multi.top, multi.mtcp);
        MULTI_CHECK_SIG(&multi);

        /* check on status of coarse timers */
        multi_process_per_second_timers(&multi);

        /* timeout? */
        if (status > 0)
        {
            /* process the I/O which triggered select */
            multi_tcp_process_io(&multi);
            MULTI_CHECK_SIG(&multi);
        }
        else if (status == 0)
        {
            multi_tcp_action(&multi, NULL, TA_TIMEOUT, false);
        }

        perf_pop();
    }

#ifdef ENABLE_ASYNC_PUSH
    close(top->c2.inotify_fd);
#endif

    /* shut down management interface */
    uninit_management_callback_multi(&multi);

    /* save ifconfig-pool */
    multi_ifconfig_pool_persist(&multi, true);

    /* tear down tunnel instance (unless --persist-tun) */
    multi_uninit(&multi);
    multi_top_free(&multi);
    close_instance(top);
}

#endif /* if P2MP_SERVER */