/* sane - Scanner Access Now Easy. Copyright (C) 2010-2013 Stéphane Voltz Copyright (C) 2020 Povilas Kanapickas This file is part of the SANE package. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. As a special exception, the authors of SANE give permission for additional uses of the libraries contained in this release of SANE. */ #define DEBUG_DECLARE_ONLY #include "gl842_registers.h" #include "gl842.h" #include "test_settings.h" #include #include namespace genesys { namespace gl842 { static void gl842_init_registers(Genesys_Device& dev) { // Within this function SENSOR_DEF marker documents that a register is part // of the sensors definition and the actual value is set in // gl842_setup_sensor(). DBG_HELPER(dbg); dev.reg.clear(); if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x01, 0x00); dev.reg.init_reg(0x02, 0x78); dev.reg.init_reg(0x03, 0xbf); dev.reg.init_reg(0x04, 0x22); dev.reg.init_reg(0x05, 0x48); dev.reg.init_reg(0x06, 0xb8); dev.reg.init_reg(0x07, 0x00); dev.reg.init_reg(0x08, 0x00); dev.reg.init_reg(0x09, 0x00); dev.reg.init_reg(0x0a, 0x00); dev.reg.init_reg(0x0d, 0x01); } else if (dev.model->model_id == ModelId::CANON_LIDE_90) { dev.reg.init_reg(0x01, 0x82); dev.reg.init_reg(0x02, 0x10); dev.reg.init_reg(0x03, 0x60); dev.reg.init_reg(0x04, 0x10); dev.reg.init_reg(0x05, 0x8c); dev.reg.init_reg(0x06, 0x18); //dev.reg.init_reg(0x07, 0x00); dev.reg.init_reg(0x08, 0x00); dev.reg.init_reg(0x09, 0x21); dev.reg.init_reg(0x0a, 0x00); dev.reg.init_reg(0x0d, 0x00); } dev.reg.init_reg(0x10, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev.reg.init_reg(0x11, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev.reg.init_reg(0x12, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev.reg.init_reg(0x13, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev.reg.init_reg(0x14, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev.reg.init_reg(0x15, 0x00); // exposure, overwritten in scanner_setup_sensor() below // CCD signal settings. dev.reg.init_reg(0x16, 0x00); // SENSOR_DEF dev.reg.init_reg(0x17, 0x00); // SENSOR_DEF dev.reg.init_reg(0x18, 0x00); // SENSOR_DEF // EXPDMY[0:7]: Exposure time of dummy lines. dev.reg.init_reg(0x19, 0x00); // SENSOR_DEF // Various CCD clock settings. dev.reg.init_reg(0x1a, 0x00); // SENSOR_DEF if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x1b, 0x00); // SENSOR_DEF } dev.reg.init_reg(0x1c, 0x00); // SENSOR_DEF dev.reg.init_reg(0x1d, 0x00); // SENSOR_DEF dev.reg.init_reg(0x1e, 0x10); // WDTIME, LINESEL: setup during sensor and motor setup if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x1f, 0x01); dev.reg.init_reg(0x20, 0x27); // BUFSEL: buffer full condition } else if (dev.model->model_id == ModelId::CANON_LIDE_90) { dev.reg.init_reg(0x1f, 0x02); dev.reg.init_reg(0x20, 0x02); // BUFSEL: buffer full condition } dev.reg.init_reg(0x21, 0x10); // STEPNO: set during motor setup dev.reg.init_reg(0x22, 0x10); // FWDSTEP: set during motor setup dev.reg.init_reg(0x23, 0x10); // BWDSTEP: set during motor setup dev.reg.init_reg(0x24, 0x10); // FASTNO: set during motor setup dev.reg.init_reg(0x25, 0x00); // LINCNT: set during motor setup dev.reg.init_reg(0x26, 0x00); // LINCNT: set during motor setup dev.reg.init_reg(0x27, 0x00); // LINCNT: set during motor setup dev.reg.init_reg(0x29, 0xff); // LAMPPWM dev.reg.init_reg(0x2c, 0x02); // DPISET: set during sensor setup dev.reg.init_reg(0x2d, 0x58); // DPISET: set during sensor setup dev.reg.init_reg(0x2e, 0x80); // BWHI: black/white low threshdold dev.reg.init_reg(0x2f, 0x80); // BWLOW: black/white low threshold dev.reg.init_reg(0x30, 0x00); // STRPIXEL: set during sensor setup dev.reg.init_reg(0x31, 0x49); // STRPIXEL: set during sensor setup dev.reg.init_reg(0x32, 0x53); // ENDPIXEL: set during sensor setup dev.reg.init_reg(0x33, 0xb9); // ENDPIXEL: set during sensor setup dev.reg.init_reg(0x34, 0x13); // DUMMY: SENSOR_DEF dev.reg.init_reg(0x35, 0x00); // MAXWD: set during scan setup dev.reg.init_reg(0x36, 0x40); // MAXWD: set during scan setup dev.reg.init_reg(0x37, 0x00); // MAXWD: set during scan setup dev.reg.init_reg(0x38, 0x2a); // LPERIOD: SENSOR_DEF dev.reg.init_reg(0x39, 0xf8); // LPERIOD: SENSOR_DEF dev.reg.init_reg(0x3d, 0x00); // FEEDL: set during motor setup dev.reg.init_reg(0x3e, 0x00); // FEEDL: set during motor setup dev.reg.init_reg(0x3f, 0x01); // FEEDL: set during motor setup dev.reg.init_reg(0x52, 0x00); // SENSOR_DEF dev.reg.init_reg(0x53, 0x00); // SENSOR_DEF dev.reg.init_reg(0x54, 0x00); // SENSOR_DEF dev.reg.init_reg(0x55, 0x00); // SENSOR_DEF dev.reg.init_reg(0x56, 0x00); // SENSOR_DEF dev.reg.init_reg(0x57, 0x00); // SENSOR_DEF dev.reg.init_reg(0x58, 0x00); // SENSOR_DEF dev.reg.init_reg(0x59, 0x00); // SENSOR_DEF dev.reg.init_reg(0x5a, 0x00); // SENSOR_DEF if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x5e, 0x01); // DECSEL, STOPTIM } else if (dev.model->model_id == ModelId::CANON_LIDE_90) { dev.reg.init_reg(0x5e, 0x41); // DECSEL, STOPTIM dev.reg.init_reg(0x5d, 0x20); } dev.reg.init_reg(0x5f, 0x10); // FMOVDEC: set during motor setup dev.reg.init_reg(0x60, 0x00); // Z1MOD: overwritten during motor setup dev.reg.init_reg(0x61, 0x00); // Z1MOD: overwritten during motor setup dev.reg.init_reg(0x62, 0x00); // Z1MOD: overwritten during motor setup dev.reg.init_reg(0x63, 0x00); // Z2MOD: overwritten during motor setup dev.reg.init_reg(0x64, 0x00); // Z2MOD: overwritten during motor setup dev.reg.init_reg(0x65, 0x00); // Z2MOD: overwritten during motor setup if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x67, 0x7f); // STEPSEL, MTRPWM: partially overwritten during motor setup dev.reg.init_reg(0x68, 0x7f); // FSTPSEL, FASTPWM: partially overwritten during motor setup } else if (dev.model->model_id == ModelId::CANON_LIDE_90) { dev.reg.init_reg(0x66, 0x00); // PHFREQ dev.reg.init_reg(0x67, 0x40); // STEPSEL, MTRPWM: partially overwritten during motor setup dev.reg.init_reg(0x68, 0x40); // FSTPSEL, FASTPWM: partially overwritten during motor setup } dev.reg.init_reg(0x69, 0x10); // FSHDEC: overwritten during motor setup dev.reg.init_reg(0x6a, 0x10); // FMOVNO: overwritten during motor setup // 0x6b, 0x6c, 0x6d, 0x6e, 0x6f - set according to gpio tables. See gl842_init_gpio. dev.reg.init_reg(0x70, 0x00); // SENSOR_DEF dev.reg.init_reg(0x71, 0x00); // SENSOR_DEF dev.reg.init_reg(0x72, 0x00); // SENSOR_DEF dev.reg.init_reg(0x73, 0x00); // SENSOR_DEF dev.reg.init_reg(0x74, 0x00); // SENSOR_DEF dev.reg.init_reg(0x75, 0x00); // SENSOR_DEF dev.reg.init_reg(0x76, 0x00); // SENSOR_DEF dev.reg.init_reg(0x77, 0x00); // SENSOR_DEF dev.reg.init_reg(0x78, 0x00); // SENSOR_DEF dev.reg.init_reg(0x79, 0x00); // SENSOR_DEF dev.reg.init_reg(0x7a, 0x00); // SENSOR_DEF dev.reg.init_reg(0x7b, 0x00); // SENSOR_DEF dev.reg.init_reg(0x7c, 0x00); // SENSOR_DEF dev.reg.init_reg(0x7d, 0x00); // SENSOR_DEF // 0x7e - set according to gpio tables. See gl842_init_gpio. dev.reg.init_reg(0x7f, 0x00); // SENSOR_DEF // VRHOME, VRMOVE, VRBACK, VRSCAN: Vref settings of the motor driver IC for // moving in various situations. dev.reg.init_reg(0x80, 0x00); // MOTOR_PROFILE if (dev.model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev.reg.init_reg(0x81, 0x00); dev.reg.init_reg(0x82, 0x00); dev.reg.init_reg(0x83, 0x00); dev.reg.init_reg(0x84, 0x00); dev.reg.init_reg(0x85, 0x00); dev.reg.init_reg(0x86, 0x00); dev.reg.init_reg(0x87, 0x00); } else if (dev.model->model_id == ModelId::CANON_LIDE_90) { dev.reg.init_reg(0x7e, 0x00); dev.reg.init_reg(0x81, 0x00); dev.reg.init_reg(0x82, 0x0f); dev.reg.init_reg(0x83, 0x00); dev.reg.init_reg(0x84, 0x0e); dev.reg.init_reg(0x85, 0x00); dev.reg.init_reg(0x86, 0x0d); dev.reg.init_reg(0x87, 0x00); dev.reg.init_reg(0x88, 0x00); dev.reg.init_reg(0x89, 0x00); } const auto& sensor = sanei_genesys_find_sensor_any(&dev); sanei_genesys_set_dpihw(dev.reg, sensor.register_dpihw); scanner_setup_sensor(dev, sensor, dev.reg); } // Set values of analog frontend void CommandSetGl842::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, uint8_t set) const { DBG_HELPER_ARGS(dbg, "%s", set == AFE_INIT ? "init" : set == AFE_SET ? "set" : set == AFE_POWER_SAVE ? "powersave" : "huh?"); (void) sensor; if (set == AFE_INIT) { dev->frontend = dev->frontend_initial; } // check analog frontend type // FIXME: looks like we write to that register with initial data uint8_t fe_type = dev->interface->read_register(REG_0x04) & REG_0x04_FESET; if (fe_type == 2 || dev->model->model_id == ModelId::CANON_LIDE_90) { for (const auto& reg : dev->frontend.regs) { dev->interface->write_fe_register(reg.address, reg.value); } return; } if (fe_type != 0) { throw SaneException(SANE_STATUS_UNSUPPORTED, "unsupported frontend type %d", fe_type); } for (unsigned i = 1; i <= 3; i++) { dev->interface->write_fe_register(i, dev->frontend.regs.get_value(0x00 + i)); } for (const auto& reg : sensor.custom_fe_regs) { dev->interface->write_fe_register(reg.address, reg.value); } for (unsigned i = 0; i < 3; i++) { dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i)); } for (unsigned i = 0; i < 3; i++) { dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i)); } } static void gl842_init_motor_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, const ScanSession& session, Genesys_Register_Set* reg, const MotorProfile& motor_profile, unsigned int exposure, unsigned scan_yres, unsigned int scan_lines, unsigned int scan_dummy, unsigned int feed_steps, ScanFlag flags) { DBG_HELPER_ARGS(dbg, "exposure=%d, scan_yres=%d, step_type=%d, scan_lines=%d, scan_dummy=%d, " "feed_steps=%d, flags=%x", exposure, scan_yres, static_cast(motor_profile.step_type), scan_lines, scan_dummy, feed_steps, static_cast(flags)); unsigned step_multiplier = 2; bool use_fast_fed = false; if ((scan_yres >= 300 && feed_steps > 900) || (has_flag(flags, ScanFlag::FEEDING))) { use_fast_fed = true; } if (has_flag(dev->model->flags, ModelFlag::DISABLE_FAST_FEEDING)) { use_fast_fed = false; } reg->set24(REG_LINCNT, scan_lines); reg->set8(REG_0x02, 0); sanei_genesys_set_motor_power(*reg, true); std::uint8_t reg02 = reg->get8(REG_0x02); if (use_fast_fed) { reg02 |= REG_0x02_FASTFED; } else { reg02 &= ~REG_0x02_FASTFED; } // in case of automatic go home, move until home sensor if (has_flag(flags, ScanFlag::AUTO_GO_HOME)) { reg02 |= REG_0x02_AGOHOME | REG_0x02_NOTHOME; } // disable backtracking if needed if (has_flag(flags, ScanFlag::DISABLE_BUFFER_FULL_MOVE) || (scan_yres >= 2400) || (scan_yres >= sensor.full_resolution)) { reg02 |= REG_0x02_ACDCDIS; } if (has_flag(flags, ScanFlag::REVERSE)) { reg02 |= REG_0x02_MTRREV; } else { reg02 &= ~REG_0x02_MTRREV; } reg->set8(REG_0x02, reg02); // scan and backtracking slope table auto scan_table = create_slope_table(dev->model->asic_type, dev->motor, scan_yres, exposure, step_multiplier, motor_profile); scanner_send_slope_table(dev, sensor, SCAN_TABLE, scan_table.table); scanner_send_slope_table(dev, sensor, BACKTRACK_TABLE, scan_table.table); scanner_send_slope_table(dev, sensor, STOP_TABLE, scan_table.table); reg->set8(REG_STEPNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FASTNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FSHDEC, scan_table.table.size() / step_multiplier); // fast table const auto* fast_profile = get_motor_profile_ptr(dev->motor.fast_profiles, 0, session); if (fast_profile == nullptr) { fast_profile = &motor_profile; } auto fast_table = create_slope_table_fastest(dev->model->asic_type, step_multiplier, *fast_profile); scanner_send_slope_table(dev, sensor, FAST_TABLE, fast_table.table); scanner_send_slope_table(dev, sensor, HOME_TABLE, fast_table.table); reg->set8(REG_FMOVNO, fast_table.table.size() / step_multiplier); if (motor_profile.motor_vref != -1 && fast_profile->motor_vref != 1) { std::uint8_t vref = 0; vref |= (motor_profile.motor_vref << REG_0x80S_TABLE1_NORMAL) & REG_0x80_TABLE1_NORMAL; vref |= (motor_profile.motor_vref << REG_0x80S_TABLE2_BACK) & REG_0x80_TABLE2_BACK; vref |= (fast_profile->motor_vref << REG_0x80S_TABLE4_FAST) & REG_0x80_TABLE4_FAST; vref |= (fast_profile->motor_vref << REG_0x80S_TABLE5_GO_HOME) & REG_0x80_TABLE5_GO_HOME; reg->set8(REG_0x80, vref); } // substract acceleration distance from feedl unsigned feedl = feed_steps; feedl <<= static_cast(motor_profile.step_type); unsigned dist = scan_table.table.size() / step_multiplier; if (use_fast_fed) { dist += (fast_table.table.size() / step_multiplier) * 2; } // make sure when don't insane value : XXX STEF XXX in this case we should // fall back to single table move if (dist < feedl) { feedl -= dist; } else { feedl = 1; } reg->set24(REG_FEEDL, feedl); // doesn't seem to matter that much std::uint32_t z1, z2; sanei_genesys_calculate_zmod(use_fast_fed, exposure, scan_table.table, scan_table.table.size() / step_multiplier, feedl, scan_table.table.size() / step_multiplier, &z1, &z2); if (scan_yres > 600) { z1 = 0; z2 = 0; } reg->set24(REG_Z1MOD, z1); reg->set24(REG_Z2MOD, z2); reg->set8_mask(REG_0x1E, scan_dummy, 0x0f); reg->set8_mask(REG_0x67, static_cast(motor_profile.step_type) << REG_0x67S_STEPSEL, REG_0x67_STEPSEL); reg->set8_mask(REG_0x68, static_cast(fast_profile->step_type) << REG_0x68S_FSTPSEL, REG_0x68_FSTPSEL); // steps for STOP table reg->set8(REG_FMOVDEC, fast_table.table.size() / step_multiplier); } static void gl842_init_optical_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, unsigned int exposure, const ScanSession& session) { DBG_HELPER(dbg); scanner_setup_sensor(*dev, sensor, *reg); dev->cmd_set->set_fe(dev, sensor, AFE_SET); // enable shading regs_set_optical_off(dev->model->asic_type, *reg); if (has_flag(session.params.flags, ScanFlag::DISABLE_SHADING) || has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) || session.use_host_side_calib) { reg->find_reg(REG_0x01).value &= ~REG_0x01_DVDSET; } else { reg->find_reg(REG_0x01).value |= REG_0x01_DVDSET; } bool use_shdarea = true; if (use_shdarea) { reg->find_reg(REG_0x01).value |= REG_0x01_SHDAREA; } else { reg->find_reg(REG_0x01).value &= ~REG_0x01_SHDAREA; } if (dev->model->model_id == ModelId::CANON_8600F) { reg->find_reg(REG_0x03).value |= REG_0x03_AVEENB; } else { reg->find_reg(REG_0x03).value &= ~REG_0x03_AVEENB; } // FIXME: we probably don't need to set exposure to registers at this point. It was this way // before a refactor. sanei_genesys_set_lamp_power(dev, sensor, *reg, !has_flag(session.params.flags, ScanFlag::DISABLE_LAMP)); // select XPA reg->find_reg(REG_0x03).value &= ~REG_0x03_XPASEL; if (has_flag(session.params.flags, ScanFlag::USE_XPA)) { reg->find_reg(REG_0x03).value |= REG_0x03_XPASEL; } reg->state.is_xpa_on = has_flag(session.params.flags, ScanFlag::USE_XPA); // BW threshold reg->set8(REG_0x2E, 0x7f); reg->set8(REG_0x2F, 0x7f); // monochrome / color scan parameters std::uint8_t reg04 = reg->get8(REG_0x04); reg04 = reg04 & REG_0x04_FESET; switch (session.params.depth) { case 8: break; case 16: reg04 |= REG_0x04_BITSET; break; } if (session.params.channels == 1) { switch (session.params.color_filter) { case ColorFilter::RED: reg04 |= 0x14; break; case ColorFilter::BLUE: reg04 |= 0x1c; break; case ColorFilter::GREEN: reg04 |= 0x18; break; default: break; // should not happen } } else { switch (dev->frontend.layout.type) { case FrontendType::WOLFSON: // pixel by pixel reg04 |= 0x10; break; case FrontendType::ANALOG_DEVICES: // slow color pixel by pixel reg04 |= 0x20; break; default: throw SaneException("Invalid frontend type %d", static_cast(dev->frontend.layout.type)); } } reg->set8(REG_0x04, reg04); const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, session.output_resolution, session.params.channels, session.params.scan_method); sanei_genesys_set_dpihw(*reg, dpihw_sensor.register_dpihw); if (should_enable_gamma(session, sensor)) { reg->find_reg(REG_0x05).value |= REG_0x05_GMMENB; } else { reg->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB; } reg->set16(REG_DPISET, sensor.register_dpiset); reg->set16(REG_STRPIXEL, session.pixel_startx); reg->set16(REG_ENDPIXEL, session.pixel_endx); if (dev->model->is_cis) { reg->set24(REG_MAXWD, session.output_line_bytes_raw * session.params.channels); } else { reg->set24(REG_MAXWD, session.output_line_bytes_raw); } unsigned tgtime = exposure / 65536 + 1; reg->set16(REG_LPERIOD, exposure / tgtime); reg->set8(REG_DUMMY, sensor.dummy_pixel); } void CommandSetGl842::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, const ScanSession& session) const { DBG_HELPER(dbg); session.assert_computed(); // we enable true gray for cis scanners only, and just when doing scan since color calibration // is OK for this mode int dummy = 0; /* slope_dpi */ /* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */ int slope_dpi = 0; if (dev->model->is_cis) { slope_dpi = session.params.yres * session.params.channels; } else { slope_dpi = session.params.yres; } slope_dpi = slope_dpi * (1 + dummy); int exposure = sensor.exposure_lperiod; if (exposure < 0) { throw std::runtime_error("Exposure not defined in sensor definition"); } if (dev->model->model_id == ModelId::CANON_LIDE_90) { exposure *= 2; } const auto& motor_profile = get_motor_profile(dev->motor.profiles, exposure, session); // now _LOGICAL_ optical values used are known, setup registers gl842_init_optical_regs_scan(dev, sensor, reg, exposure, session); gl842_init_motor_regs_scan(dev, sensor, session, reg, motor_profile, exposure, slope_dpi, session.optical_line_count, dummy, session.params.starty, session.params.flags); setup_image_pipeline(*dev, session); dev->read_active = true; dev->session = session; dev->total_bytes_read = 0; dev->total_bytes_to_read = session.output_line_bytes_requested * session.params.lines; } ScanSession CommandSetGl842::calculate_scan_session(const Genesys_Device* dev, const Genesys_Sensor& sensor, const Genesys_Settings& settings) const { DBG_HELPER(dbg); debug_dump(DBG_info, settings); ScanFlag flags = ScanFlag::NONE; float move = 0.0f; if (settings.scan_method == ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter if (!dev->ignore_offsets) { move = dev->model->y_offset_ta - dev->model->y_offset_sensor_to_ta; } flags |= ScanFlag::USE_XPA; } else { if (!dev->ignore_offsets) { move = dev->model->y_offset; } } move += settings.tl_y; int move_dpi = dev->motor.base_ydpi; move = static_cast((move * move_dpi) / MM_PER_INCH); float start = 0.0f; if (settings.scan_method==ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { start = dev->model->x_offset_ta; } else { start = dev->model->x_offset; } start = start + settings.tl_x; start = static_cast((start * settings.xres) / MM_PER_INCH); ScanSession session; session.params.xres = settings.xres; session.params.yres = settings.yres; session.params.startx = static_cast(start); session.params.starty = static_cast(move); session.params.pixels = settings.pixels; session.params.requested_pixels = settings.requested_pixels; session.params.lines = settings.lines; session.params.depth = settings.depth; session.params.channels = settings.get_channels(); session.params.scan_method = settings.scan_method; session.params.scan_mode = settings.scan_mode; session.params.color_filter = settings.color_filter; session.params.flags = flags; compute_session(dev, session, sensor); return session; } void CommandSetGl842::save_power(Genesys_Device* dev, bool enable) const { (void) dev; DBG_HELPER_ARGS(dbg, "enable = %d", enable); } void CommandSetGl842::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const { (void) dev; DBG_HELPER_ARGS(dbg, "delay = %d", delay); } void CommandSetGl842::eject_document(Genesys_Device* dev) const { (void) dev; DBG_HELPER(dbg); } void CommandSetGl842::load_document(Genesys_Device* dev) const { DBG_HELPER(dbg); (void) dev; } void CommandSetGl842::detect_document_end(Genesys_Device* dev) const { DBG_HELPER(dbg); (void) dev; throw SaneException(SANE_STATUS_UNSUPPORTED); } // Send the low-level scan command void CommandSetGl842::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, bool start_motor) const { DBG_HELPER(dbg); (void) sensor; if (reg->state.is_xpa_on && reg->state.is_lamp_on && !has_flag(dev->model->flags, ModelFlag::TA_NO_SECONDARY_LAMP)) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } if (reg->state.is_xpa_on && !has_flag(dev->model->flags, ModelFlag::UTA_NO_SECONDARY_MOTOR)) { dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY); } if (dev->model->model_id == ModelId::CANON_LIDE_90) { if (has_flag(dev->session.params.flags, ScanFlag::REVERSE)) { dev->interface->write_register(REG_0x6B, 0x01); dev->interface->write_register(REG_0x6C, 0x02); } else { dev->interface->write_register(REG_0x6B, 0x03); switch (dev->session.params.xres) { case 150: dev->interface->write_register(REG_0x6C, 0x74); break; case 300: dev->interface->write_register(REG_0x6C, 0x38); break; case 600: dev->interface->write_register(REG_0x6C, 0x1c); break; case 1200: dev->interface->write_register(REG_0x6C, 0x2c); break; case 2400: dev->interface->write_register(REG_0x6C, 0x0c); break; default: break; } } dev->interface->sleep_ms(100); } scanner_clear_scan_and_feed_counts(*dev); // enable scan and motor std::uint8_t val = dev->interface->read_register(REG_0x01); val |= REG_0x01_SCAN; dev->interface->write_register(REG_0x01, val); scanner_start_action(*dev, start_motor); switch (reg->state.motor_mode) { case MotorMode::PRIMARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::PRIMARY); } break; } case MotorMode::PRIMARY_AND_SECONDARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::PRIMARY); dev->advance_head_pos_by_session(ScanHeadId::SECONDARY); } break; } case MotorMode::SECONDARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::SECONDARY); } break; } } } void CommandSetGl842::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg, bool check_stop) const { DBG_HELPER_ARGS(dbg, "check_stop = %d", check_stop); if (reg->state.is_xpa_on) { dev->cmd_set->set_xpa_lamp_power(*dev, false); } if (!dev->model->is_sheetfed) { scanner_stop_action(*dev); } } void CommandSetGl842::move_back_home(Genesys_Device* dev, bool wait_until_home) const { scanner_move_back_home(*dev, wait_until_home); } void CommandSetGl842::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { DBG_HELPER(dbg); int move; float calib_size_mm = 0; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { calib_size_mm = dev->model->y_size_calib_ta_mm; } else { calib_size_mm = dev->model->y_size_calib_mm; } unsigned resolution = sensor.shading_resolution; unsigned channels = 3; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels, dev->settings.scan_method); unsigned calib_pixels = 0; unsigned calib_pixels_offset = 0; if (should_calibrate_only_active_area(*dev, dev->settings)) { float offset = dev->model->x_offset_ta; // FIXME: we should use resolution here offset = static_cast((offset * dev->settings.xres) / MM_PER_INCH); float size = dev->model->x_size_ta; size = static_cast((size * dev->settings.xres) / MM_PER_INCH); calib_pixels_offset = static_cast(offset); calib_pixels = static_cast(size); } else { calib_pixels_offset = 0; calib_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH; } ScanFlag flags = ScanFlag::DISABLE_SHADING | ScanFlag::DISABLE_GAMMA | ScanFlag::DISABLE_BUFFER_FULL_MOVE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter move = static_cast(dev->model->y_offset_calib_white_ta - dev->model->y_offset_sensor_to_ta); flags |= ScanFlag::USE_XPA; } else { move = static_cast(dev->model->y_offset_calib_white); } move = static_cast((move * resolution) / MM_PER_INCH); unsigned calib_lines = static_cast(calib_size_mm * resolution / MM_PER_INCH); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = calib_pixels_offset; session.params.starty = move; session.params.pixels = calib_pixels; session.params.lines = calib_lines; session.params.depth = 16; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = dev->settings.scan_mode; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; compute_session(dev, session, calib_sensor); init_regs_for_scan_session(dev, calib_sensor, ®s, session); dev->calib_session = session; } void CommandSetGl842::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const { DBG_HELPER(dbg); if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) return; // No gamma on this model unsigned size = 256; std::vector gamma(size * 2 * 3); std::vector rgamma = get_gamma_table(dev, sensor, GENESYS_RED); std::vector ggamma = get_gamma_table(dev, sensor, GENESYS_GREEN); std::vector bgamma = get_gamma_table(dev, sensor, GENESYS_BLUE); // copy sensor specific's gamma tables for (unsigned i = 0; i < size; i++) { gamma[i * 2 + size * 0 + 0] = rgamma[i] & 0xff; gamma[i * 2 + size * 0 + 1] = (rgamma[i] >> 8) & 0xff; gamma[i * 2 + size * 2 + 0] = ggamma[i] & 0xff; gamma[i * 2 + size * 2 + 1] = (ggamma[i] >> 8) & 0xff; gamma[i * 2 + size * 4 + 0] = bgamma[i] & 0xff; gamma[i * 2 + size * 4 + 1] = (bgamma[i] >> 8) & 0xff; } dev->interface->write_gamma(0x28, 0x0000, gamma.data(), size * 2 * 3); } SensorExposure CommandSetGl842::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { return scanner_led_calibration(*dev, sensor, regs); } void CommandSetGl842::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { scanner_offset_calibration(*dev, sensor, regs); } void CommandSetGl842::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs, int dpi) const { scanner_coarse_gain_calibration(*dev, sensor, regs, dpi); } void CommandSetGl842::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg) const { DBG_HELPER(dbg); (void) sensor; unsigned channels = 3; unsigned resolution = dev->model->get_resolution_settings(dev->settings.scan_method) .get_nearest_resolution_x(600); const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels, dev->settings.scan_method); unsigned num_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH / 2; *reg = dev->reg; auto flags = ScanFlag::DISABLE_SHADING | ScanFlag::DISABLE_GAMMA | ScanFlag::SINGLE_LINE | ScanFlag::IGNORE_STAGGER_OFFSET | ScanFlag::IGNORE_COLOR_OFFSET; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { flags |= ScanFlag::USE_XPA; } ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = (num_pixels / 2) * resolution / calib_sensor.full_resolution; session.params.starty = 0; session.params.pixels = num_pixels; session.params.lines = 1; session.params.depth = dev->model->bpp_color_values.front(); session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; compute_session(dev, session, calib_sensor); init_regs_for_scan_session(dev, calib_sensor, reg, session); sanei_genesys_set_motor_power(*reg, false); } static void gl842_init_gpio(Genesys_Device* dev) { DBG_HELPER(dbg); apply_registers_ordered(dev->gpo.regs, { 0x6e, 0x6f }, [&](const GenesysRegisterSetting& reg) { dev->interface->write_register(reg.address, reg.value); }); } void CommandSetGl842::asic_boot(Genesys_Device* dev, bool cold) const { DBG_HELPER(dbg); if (cold) { dev->interface->write_register(0x0e, 0x01); dev->interface->write_register(0x0e, 0x00); } // setup initial register values gl842_init_registers(*dev); dev->interface->write_registers(dev->reg); if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { uint8_t data[32] = { 0xd0, 0x38, 0x07, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6a, 0x73, 0x63, 0x68, 0x69, 0x65, 0x6e, 0x00, }; dev->interface->write_buffer(0x3c, 0x010a00, data, 32); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200) { dev->interface->write_0x8c(0x10, 0x94); } if (dev->model->model_id == ModelId::CANON_LIDE_90) { dev->interface->write_0x8c(0x10, 0xd4); } // set RAM read address dev->interface->write_register(REG_0x2A, 0x00); dev->interface->write_register(REG_0x2B, 0x00); // setup gpio gl842_init_gpio(dev); dev->interface->sleep_ms(100); } void CommandSetGl842::init(Genesys_Device* dev) const { DBG_INIT(); DBG_HELPER(dbg); sanei_genesys_asic_init(dev); } void CommandSetGl842::update_hardware_sensors(Genesys_Scanner* s) const { DBG_HELPER(dbg); (void) s; } void CommandSetGl842::update_home_sensor_gpio(Genesys_Device& dev) const { DBG_HELPER(dbg); if (dev.model->model_id == ModelId::CANON_LIDE_90) { std::uint8_t val = dev.interface->read_register(REG_0x6C); val |= 0x02; dev.interface->write_register(REG_0x6C, val); } } /** * Send shading calibration data. The buffer is considered to always hold values * for all the channels. */ void CommandSetGl842::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor, uint8_t* data, int size) const { DBG_HELPER(dbg); int offset = 0; unsigned length = size; if (dev->reg.get8(REG_0x01) & REG_0x01_SHDAREA) { offset = dev->session.params.startx * sensor.shading_resolution / dev->session.params.xres; length = dev->session.output_pixels * sensor.shading_resolution / dev->session.params.xres; offset += sensor.shading_pixel_offset; // 16 bit words, 2 words per color, 3 color channels length *= 2 * 2 * 3; offset *= 2 * 2 * 3; } else { offset += sensor.shading_pixel_offset * 2 * 2 * 3; } dev->interface->record_key_value("shading_offset", std::to_string(offset)); dev->interface->record_key_value("shading_length", std::to_string(length)); std::vector final_data(length, 0); unsigned count = 0; if (offset < 0) { count += (-offset); length -= (-offset); offset = 0; } if (static_cast(length) + offset > static_cast(size)) { length = size - offset; } for (unsigned i = 0; i < length; i++) { final_data[count++] = data[offset + i]; count++; } dev->interface->write_buffer(0x3c, 0, final_data.data(), count); } bool CommandSetGl842::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const { (void) dev; return true; } void CommandSetGl842::wait_for_motor_stop(Genesys_Device* dev) const { (void) dev; } } // namespace gl842 } // namespace genesys